Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-08T02:30:49.501Z Has data issue: false hasContentIssue false

3 - Rapid eye movement sleep regulation by modulation of the noradrenergic system

from I - The neurochemistry of the states of sleep and wakefulness

Published online by Cambridge University Press:  23 October 2009

Jaime Monti
Affiliation:
Universidad de la República, Uruguay
S. R. Pandi-Perumal
Affiliation:
Mount Sinai School of Medicine, New York
Christopher M. Sinton
Affiliation:
University of Texas Southwestern Medical Center, Dallas
Get access

Summary

Abstract

Aserinsky & Kleitman (1953) identified within sleep a physiological state that expresses several signs apparently similar to those that occur during wakefulness. This state was termed rapid eye movement (REM) sleep. REM sleep may play a significant role in maintaining normal physiological functions, as its loss has serious detrimental psychopathological effects. The mechanism of REM sleep regulation is still unknown. The pontine cholinergic and noradrenergic transmissions in the brain undergo reciprocal variations in activity associated with the transformation from non-REM sleep to a REM sleep state and vice versa. The cessation of noradrenergic neuronal firing in the locus coeruleus (LC) plays a crucial role in the regulation of REM sleep. Disinhibition of the LC neurons may result in increased levels of noradrenaline (NA) in the brain, and this increased brain NA is likely to be responsible for the pathophysiological effects associated with REM sleep deprivation. Based on recent findings, we discuss the modulation as well as the role of LC neurons and NA in the modulation of REM sleep and the pathophysiological conditions associated with its deprivation. We propose that LC NA neurons are negative executive neurons for the regulation of REM sleep.

Introduction

One of the important characteristics of living beings is to alternate between active and rest phases, but the underlying mechanism/s and functions are not yet known.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×