Published online by Cambridge University Press: 15 September 2022
The structure of network materials is stochastic. This chapter introduces the minimum set of geometric parameters required to describe the network structure. This set includes the fiber and crosslink densities, the mean segment length, a measure of preferential fiber orientation, and the connectivity index. The relation between the mean segment length and the fiber density is established for two- and three-dimensional networks with cellular and fibrous architectures. The effect of fiber tortuosity, fiber preferential alignment, and excluded volume interactions on the mean segment length are outlined. The statistics of pore sizes in networks of fibrous and cellular types is discussed in terms of the geometric network parameters. The percolation threshold, at which the first connected path forms across the network domain, is discussed for specific methods used to generate the network.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.