Book contents
- Frontmatter
- Dedication
- Contents
- Preface
- Acknowledgments
- Notation
- 1 Introduction
- Part I Preliminaries
- Part II Single-Hop Networks
- Part III Multihop Networks
- 15 Graphical Networks
- 16 Relay Channels
- 17 Interactive Channel Coding
- 18 DiscreteMemoryless Networks
- 19 Gaussian Networks
- 20 Compression over Graphical Networks
- Part IV Extensions
- Appendices
- Bibliography
- Common Symbols
- Author Index
- Subject Index
17 - Interactive Channel Coding
from Part III - Multihop Networks
Published online by Cambridge University Press: 05 June 2012
- Frontmatter
- Dedication
- Contents
- Preface
- Acknowledgments
- Notation
- 1 Introduction
- Part I Preliminaries
- Part II Single-Hop Networks
- Part III Multihop Networks
- 15 Graphical Networks
- 16 Relay Channels
- 17 Interactive Channel Coding
- 18 DiscreteMemoryless Networks
- 19 Gaussian Networks
- 20 Compression over Graphical Networks
- Part IV Extensions
- Appendices
- Bibliography
- Common Symbols
- Author Index
- Subject Index
Summary
The network models we studied so far involve only one-way (feedforward) communication. Many communication systems are inherently interactive, allowing for cooperation through feedback and information exchange over multiway channels. In this chapter, we study the role of feedback in communication and present results on the two-way channel introduced by Shannon as the first multiuser channel. The role of multiway interaction in compression and secure communication will be studied in Chapters 20 and 22, respectively.
As we showed in Section 3.1.1, the capacity of a memoryless point-to-point channel does not increase when noiseless causal feedback is present. Feedback can still benefit point-to-point communication, however, by simplifying coding and improving reliability. The idea is to first send the message uncoded and then to use feedback to iteratively reduce the receiver's error about the message, the error about the error, and so on. We demonstrate this iterative refinement paradigm via the Schalkwijk–Kailath coding scheme for the Gaussian channel and the Horstein and block feedback coding schemes for the binary symmetric channel. We show that the probability of error for the Schalkwijk–Kailath scheme decays double-exponentially in the block length, which is significantly faster than the single-exponential decay of the probability of error without feedback.
We then show that feedback can enlarge the capacity region in multiuser channels. For the multiple access channel, feedback enlarges the capacity region by enabling statistical cooperation between the transmitters. We show that the capacity of the Gaussian MAC with feedback coincides with the outer bound obtained by allowing arbitrary (instead of product) joint input distributions. For the broadcast channel, feedback can enlarge the capacity region by enabling the sender to simultaneously refine both receivers’ knowledge about the messages. For the relay channel, we show that the cutset bound is achievable when noiseless causal feedback from the receiver to the relay is allowed. This is in contrast to the case without feedback in which the cutset bound is not achievable in general.
Finally, we discuss the two-way channel, where two nodes wish to exchange their messages interactively over a shared noisy channel. The capacity region of this channel is not known in general. We first establish simple inner and outer bounds on the capacity region.
- Type
- Chapter
- Information
- Network Information Theory , pp. 427 - 458Publisher: Cambridge University PressPrint publication year: 2011