Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-07T21:05:15.586Z Has data issue: false hasContentIssue false

10 - Newborn platelet disorders

Published online by Cambridge University Press:  10 August 2009

Pedro A. De Alarcón
Affiliation:
M.D. St Jude Children's Research Hospital, Memphis, TN, USA
Pedro A. de Alarcón
Affiliation:
University of Tennessee
Eric J. Werner
Affiliation:
Eastern Virginia Medical School
J. Lawrence Naiman
Affiliation:
Stanford University School of Medicine, California
Get access

Summary

Newborn platelet disorders

Bizzozero is credited with the first description of platelets, the last blood cell to be described [1]. Similarly, the understanding of platelet formation has lagged behind the study and understanding of erythropoiesis and myelopoiesis. The isolation of thrombopoietin in 1994 [2–6], the development of better techniques to isolate megakaryocytes [7–17], and the advent of molecular biology have brought about a much better understanding of megakaryocytopoiesis/thrombopoiesis, as well as the final steps of platelet production and release. Yet, our understanding of newborn platelets is incomplete. In this chapter, we will discuss briefly the ontogeny of hematopoiesis, megakaryocytopoiesis, thrombopoiesis, and platelet production, concentrating on the differences between adult and fetal processes. The majority of the chapter is devoted to platelet disorders of the newborn.

Megakaryocytopoiesis and thrombopoiesis in the newborn

Hematopoiesis

Our current understanding of hematopoiesis is based on the hypothesis that there is a hematopoietic stem cell capable of differentiating into all hematopoietic cell lines, including megakaryocyte/platelet lineage [18–22]. Hematopoietic stem-cell-transplantation animal models and cell-culture techniques, developed in the 1960s and 1970s, documented the ability of bone-marrow cells to reconstitute all hematopoietic lineages, which proved the existence of this hematopoietic progenitor cell [23]. For instance, Till and McCulloch in 1961 [23] documented that hematopoietic stem cells could reconstitute the blood in animals given otherwise lethal doses of radiation. Lineage-specific in vitro assays for myeloid, erythroid, megakaryocytic, and multilineage progenitor cells were first developed in mice [23–26] and now are available for human progenitors [27–30].

Type
Chapter
Information
Neonatal Hematology , pp. 187 - 253
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bizzozero, G.Su di un nuovo elemento morfologico del sangue dei mammiferi e della sue importanza nella trombosi e nella coagulazione. L'Ossevatore 1881; 17: 785–787Google Scholar
Wendling, F., Maraskovsky, E., Debili, N., et al.cMpl ligand is a humoral regulator of megakaryocytopoiesis. Nature 1994; 369: 571–574CrossRefGoogle ScholarPubMed
Kaushansky, K., Lok, S., Holly, R. D., et al.Promotion of megakaryocyte progenitor expansion and differentiation by the c-Mpl ligand thrombopoietin. Nature 1994; 369: 568–571CrossRefGoogle ScholarPubMed
Lok, S., Kaushansky, K., Holly, R. D., et al.Cloning and expression of murine thrombopoietin cDNA and stimulation of platelet production in vivo. Nature 1994; 369: 565–568CrossRefGoogle ScholarPubMed
Sauvage, F. J., Hass, P. E., Spencer, S. D., et al.Stimulation of megakaryocytopoiesis and thrombopoiesis by the c-Mpl ligand. Nature 1994; 369: 533–538CrossRefGoogle ScholarPubMed
Bartley, T. D., Bogenberger, J., Hunt, P., et al.Identification and cloning of a megakaryocyte growth and development factor that is a ligand for the cytokine receptor Mpl. Cell 1994; 77: 1117–1124CrossRefGoogle ScholarPubMed
Schmitz, B., Radbruch, A., Kummel, T., et al.Magnetic activated cell sorting (MACS) – a new immunomagnetic method for megakaryocytic cell isolation: comparison of different separation techniques. Eur J Haematol 1994; 52: 267–275CrossRefGoogle ScholarPubMed
Pampus, E. C., Geel, B. J., Huijgens, P. C., et al.Combining counterflow centrifugal elutriation and glycoprotein Ib-dependent purification of human megakaryocytes: efficacy and selectivity. Eur J Haematol 1991; 47: 299–304CrossRefGoogle ScholarPubMed
Shikama, Y.Isolation of rat megakaryocytes by immunomagnetic beads. Fukushima J Med Sci 1990; 36: 59–70Google ScholarPubMed
Pampus, E. C., Huijgens, P. C., Wijermans, P. W., Ossenkoppele, G. J., Langenhuijsen, M. M.Purification of human megakaryocytes using a glycoprotein Ib dependent agglutination technique. Clin Lab Haematol 1990; 12: 301–307CrossRefGoogle ScholarPubMed
Tanaka, H., Ishida, Y., Kaneko, T., Matsumoto, N.Isolation of human megakaryocytes by immunomagnetic beads. Br J Haematol 1989; 73: 18–22CrossRefGoogle ScholarPubMed
Tomer, A., Harker, L. A., Burstein, S. A.Flow cytometric analysis of normal human megakaryocytes. Blood 1988; 71: 1244–1252Google ScholarPubMed
Tomer, A., Harker, L. A., Burstein, S. A.Purification of human megakaryocytes by fluorescence-activated cell sorting. Blood 1987; 70: 1735–1742Google ScholarPubMed
Jackson, C. W., Steward, S. A., Hutson, N. K., Ashmun, R. A.Interaction of ristocetin and bovine plasma with guinea pig megakaryocytes: a means to enrich megakaryocytes based on membrane rather than physical characteristics. Blood 1987; 69: 173–179Google ScholarPubMed
Ishibashi, T., Ruggeri, Z. M., Harker, L. A., Burstein, S. A.Separation of human megakaryocytes by state of differentiation on continuous gradients of Percoll: size and ploidy analysis of cells identified by monoclonal antibody to glycoprotein IIb/IIIa. Blood 1986; 67: 1286–1292Google ScholarPubMed
Saigo, K., Ryo, R., Nakaya, Y., Yamaguchi, N.Isolation of megakaryocytes by a combination of density gradient centrifugation and velocity sedimentation, and centrifugal elutriation. Kobe J Med Sci 1985; 31: 251–261Google ScholarPubMed
Rabellino, E. M., Levene, R. B., Nachman, R. L., Leung, L. L.Human megakaryocytes. III. Characterization in myeloproliferative disorders. Blood 1984; 63: 615–622Google ScholarPubMed
Metcalf, D.Stem cells, pre-progenitor cells and lineage-committed cells: are our dogmas correct?Ann N Y Acad Sci 1999; 872: 289–303, 303–304CrossRefGoogle ScholarPubMed
Nakahata, T., Tsuji, K., Ishiguro, A., et al.Single-cell origin of human mixed hemopoietic colonies expressing various combinations of cell lineages. Blood 1985; 65: 1010–1016Google ScholarPubMed
Suda, T., Suda, J., Ogawa, M.Single-cell origin of mouse hemopoietic colonies expressing multiple lineages in variable combinations. Proc Natl Acad Sci USA 1983; 80: 6689–6693CrossRefGoogle ScholarPubMed
Morrison, S. J., Uchida, N., Weissman, I. L.The biology of hematopoietic stem cells. Annu Rev Cell Dev Biol 1995; 11: 35–71CrossRefGoogle ScholarPubMed
McCulloch, E. A.Stem cells in normal and leukemic hemopoiesis (Henry Stratton Lecture, 1982). Blood 1983; 62: 1–13Google Scholar
Till, J. E., McCulloch, E. A.A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res 1961; 14: 213–222CrossRefGoogle ScholarPubMed
Bradley, J. R., Metcalf, D.The growth of mouse bone marrow cells in vitro. Aust J Exp Biol Med Sci 1966; 44: 287–300CrossRefGoogle ScholarPubMed
Stephenson, J. R., Axelrad, A. A., McLeod, D. L., Shreeve, M. M.Induction of colonies of hemoglobin-synthesizing cells by erythropoietin in vitro. Proc Natl Acad Sci USA 1971; 68: 1542–1546CrossRefGoogle ScholarPubMed
Metcalf, D., MacDonald, H. R., Odartchenko, N., Sordat, B.Growth of mouse megakaryocyte colonies in vitro. Proc Natl Acad Sci USA 1975; 72: 1744–1748CrossRefGoogle ScholarPubMed
Pike, B. L., Robinson, W. A.Human bone marrow colony growth in agar-gel. J Cell Physiol 1970; 76: 77–84CrossRefGoogle Scholar
Tepperman, A. D., Curtis, J. E., McCulloch, E. A.Erythropoietic colonies in cultures of human marrow. Blood 1974; 44: 659–669Google Scholar
Vainchenker, W., Guichard, J., Breton-Gorius, J.Differentiation of human megakaryocytes in culture starting from the primordial circulating cells in the newborn. C R Acad Sci Hebd Seances Acad Sci D 1978; 287: 177–179Google ScholarPubMed
Fauser, A. A., Messner, H. A.Identification of megakaryocytes, macrophages, and eosinophils in colonies of human bone marrow containing neurophilic granulocytes and erythroblasts. Blood 1979; 53: 1023–1027Google Scholar
Chertkov, J. L., Drize, N. J., Gurevitch, O. A., Udalov, G. A.Self-renewal capacity and clonal succession of haemopoietic stem cells in long-term bone marrow culture. Cell Tissue Kinet 1985; 18: 483–491Google ScholarPubMed
Quesenberry, P., Temeles, D., McGrath, H., et al.Long-term marrow cultures: human and murine systems. J Cell Biochem 1991; 45: 273–278CrossRefGoogle ScholarPubMed
McNiece, I. K., Bertoncello, I., Kriegler, A. B., Quesenberry, P. J.Colony-forming cells with high proliferative potential (HPP-CFC). Int J Cell Cloning 1990; 8: 146–160CrossRefGoogle Scholar
McNiece, I. K., Stewart, F. M., Deacon, D. M., et al.Detection of a human CFC with a high proliferative potential. Blood 1989; 74: 609–612Google ScholarPubMed
Tsuji, K., Nakahata, T.Stochastic model for multipotent hemopoietic progenitor differentiation. J Cell Physiol 1989; 139: 647–653CrossRefGoogle ScholarPubMed
Nakahata, T., Gross, A. J., Ogawa, M.A stochastic model of self-renewal and commitment to differentiation of the primitive hemopoietic stem cells in culture. J Cell Physiol 1982; 113: 455–458CrossRefGoogle ScholarPubMed
Paulus, J. M., Levin, J., Debili, N., Albert, A., Vainchenker, W.Genesis of clone size heterogeneity in megakaryocytic and other hemopoietic colonies: the stochastic model revisited. Exp Hematol 2001; 29: 1256–1269CrossRefGoogle ScholarPubMed
Ogawa, M.Stochastic model revisited. Int J Hematol 1999; 69: 2–5Google ScholarPubMed
Abkowitz, J. L., Catlin, S. N., Guttorp, P.Evidence that hematopoiesis may be a stochastic process in vivo. Nat Med 1996; 2: 190–197CrossRefGoogle ScholarPubMed
Novak, J. P., Stewart, C. C.Stochastic versus deterministic in haemopoiesis: what is what?Br J Haematol 1991; 78: 149–154CrossRefGoogle Scholar
Brown, G., Bunce, C. M., Howie, A. J., Lord, J. M.Stochastic or ordered lineage commitment during hemopoiesis?Leukemia 1987; 1: 150–153Google ScholarPubMed
Ogawa, M., Pharr, P. N., Suda, T.Stochastic nature of stem cell functions in culture. Prog Clin Biol Res 1985; 184: 11–19Google ScholarPubMed
Levenson, R., Housman, D.Commitment: how do cells make the decision to differentiate?Cell 1981; 25: 5–6CrossRefGoogle Scholar
Till, J. E., McCulloch, E. A., Siminovitch, L.A stochastic model of stem cell proliferation, based on the growth of spleen colony-forming cells. Proc Natl Acad Sci USA 1964; 51: 29–36CrossRefGoogle ScholarPubMed
Briddell, R. A., Brandt, J. E., Straneva, J. E., Srour, E. F., Hoffman, R.Characterization of the human burst-forming unit-megakaryocyte. Blood 1989; 74: 145–151Google ScholarPubMed
Vainchenker, W., Kieffer, N.Human megakaryocytopoiesis: in vitro regulation and characterization of megakaryocytic precursor cells by differentiation markers. Blood Rev 1988; 2: 102–107CrossRefGoogle ScholarPubMed
Vainchenker, W., Guichard, J., Breton-Gorius, J.Growth of human megakaryocyte colonies in culture from fetal, neonatal, and adult peripheral blood cells: ultrastructural analysis. Blood Cells 1979; 5: 25–42Google ScholarPubMed
Mazur, E. M., Hoffman, R., Chasis, J., Marchesi, S., Bruno, E.Immunofluorescent identification of human megakaryocyte colonies using an antiplatelet glycoprotein antiserum. Blood 1981; 57: 277–286Google ScholarPubMed
Drygalski, A., Xu, G., Constantinescu, D., et al.The frequency and proliferative potential of megakaryocytic colony-forming cells (Meg-CFC) in cord blood, cytokine-mobilized peripheral blood and bone marrow, and their correlation with total CFC numbers: implications for the quantitation of Meg-CFC to predict platelet engraftment following cord blood transplantation. Bone Marrow Transplant 2000; 25: 1029–1034CrossRefGoogle ScholarPubMed
Hoffman, R., Murrav, L. J., Young, J. C., Luens, K. M., Bruno, E.Hierarchical structure of human megakaryocyte progenitor cells. Stem Cells 1996; 14 (Suppl 1): 75–81CrossRefGoogle ScholarPubMed
Debili, N., Coulombel, L., Croisille, L., et al.Characterization of a bipotent erythro-megakaryocytic progenitor in human bone marrow. Blood 1996; 88: 1284–1296Google ScholarPubMed
Briddell, R. A., Brandt, J. E., Leemhuis, T. B., Hoffman, R.Role of cytokines in sustaining long-term human megakaryocytopoiesis in vitro. Blood 1992; 79: 332–337Google ScholarPubMed
Debili, N., Masse, J. M., Katz, A., et al.Effects of the recombinant hematopoietic growth factors interleukin-3, interleukin-6, stem cell factor, and leukemia inhibitory factor on the megakaryocytic differentiation of CD34+ cells. Blood 1993; 82: 84–95Google ScholarPubMed
Arriaga, M., South, K., Cohen, J. L., Mazur, E. M.Interrelationship between mitosis and endomitosis in cultures of human megakaryocyte progenitor cells. Blood 1987; 69: 486–492Google ScholarPubMed
Levine, R. F.Isolation and characterization of normal human megakaryocytes. Br J Haematol 1980; 45: 487–497CrossRefGoogle ScholarPubMed
Ebbe, S., Yee, T., Carpenter, D., Phalen, E.Megakaryocytes increase in size within ploidy groups in response to the stimulus of thrombocytopenia. Exp Hematol 1988; 16: 55–61Google ScholarPubMed
Kobayashi, Y., Kondo, M.Human megakaryocyte ploidy. Histol Histopathol 1999; 14: 1223–1229Google ScholarPubMed
Mazur, E. M., Lindquist, D. L., Alarcon, P. A., Cohen, J. L.Evaluation of bone marrow megakaryocyte ploidy distributions in persons with normal and abnormal platelet counts. J Lab Clin Med 1988; 111: 194–202
Odell, T. T., Murphy, T. R., Jackson, C. W.Stimulation of megakaryocytopoiesis by acute thrombocytopenia in rats. Blood 1976; 48: 765–775Google ScholarPubMed
Zimmet, J., Ravid, K.Polyploidy: occurrence in nature, mechanisms, and significance for the megakaryocyte-platelet system. Exp Hematol 2000; 28: 3–16CrossRefGoogle ScholarPubMed
Murray, L. J., Mandich, D., Bruno, E., et al.Fetal bone marrow CD34+ CD41+ cells are enriched for multipotent hematopoietic progenitors, but not for pluripotent stem cells. Exp Hematol 1996; 24: 236–245Google Scholar
Campagnoli, C., Fisk, N., Overton, T., et al.Circulating hematopoietic progenitor cells in first trimester fetal blood. Blood 2000; 95: 1967–1972Google ScholarPubMed
Wyrsch, A., Dalle, C., Jansen, W., et al.Umbilical cord blood from preterm human fetuses is rich in committed and primitive hematopoietic progenitors with high proliferative and self-renewal capacity. Exp Hematol 1999; 27: 1338–1345CrossRefGoogle Scholar
Murray, N. A., Watts, T. L., Roberts, I. A.Endogenous thrombopoietin levels and effect of recombinant human thrombopoietin on megakaryocyte precursors in term and preterm babies. Pediatr Res 1998; 43: 148–151CrossRefGoogle ScholarPubMed
Olson, T. A., Levine, R. F., Mazur, E. M., Wright, D. G., Salvado, A. J.Megakaryocytes and megakaryocyte progenitors in human cord blood. Am J Pediatr Hematol Oncol 1992; 14: 241–247CrossRefGoogle ScholarPubMed
Mattia, G., Vulcano, F., Milazzo, L., et al.Different ploidy levels of megakaryocytes generated from peripheral or cord blood CD34+ cells are correlated with different levels of platelet release. Blood 2002; 99: 888–897CrossRefGoogle ScholarPubMed
Odell, T. T. Jr, Jackson, C. W., Friday, T. J., Charsha, D. E.Effects of thrombocytopenia on megakaryocytopoiesis. Br J Haematol 1969; 17: 91–101CrossRefGoogle ScholarPubMed
Allen, Graeve, J. L., Alarcón, P. A.Megakaryocytopoiesis in the human fetus. Arch Dis Child 1989; 64: 481–484CrossRefGoogle Scholar
Levine, R. F., Olson, T. A., Shoff, P. K., Miller, M. K., Weisman, L. E.Mature micromegakaryocytes: an unusual developmental pattern in term infants. Br J Haematol 1996; 94: 391–399CrossRefGoogle ScholarPubMed
Straneva, J. E., Briddell, R. A., Hui, S. L., Hoffman, R.Serum from patients with various thrombopoietic disorders alters terminal cytoplasmic maturation of human megakaryocytes in vitro. Eur J Haematol 1989; 42: 293–297CrossRefGoogle ScholarPubMed
Hoffman, R., Mazur, E., Bruno, E., Floyd, V.Assay of an activity in the serum of patients with disorders of thrombopoiesis that stimulates formation of megakaryocytic colonies. N Engl J Med 1981; 305: 533–538CrossRefGoogle ScholarPubMed
Alarcón, P. A., Graeve, J. L.Analysis of megakaryocyte ploidy in fetal bone marrow biopsies using a new adaptation of the feulgen technique to measure DNA content and estimate megakaryocyte ploidy from biopsy specimens. Pediatr Res 1996; 39: 166–170CrossRefGoogle ScholarPubMed
Bornstein, R., Garcia-Vela, J., Gilsanz, F., Auray, C., Cales, C.Cord blood megakaryocytes do not complete maturation, as indicated by impaired establishment of endomitosis and low expression of G1/S cyclins upon thrombopoietin-induced differentiation. Br J Haematol 2001; 114: 458–465CrossRefGoogle Scholar
Vinci, G., Tabilio, A., Deschamps, J. F., et al.Immunological study of in vitro maturation of human megakaryocytes. Br J Haematol 1984; 56: 589–605CrossRefGoogle ScholarPubMed
Edelman, P., Vinci, G., Villeval, J. L., et al.A monoclonal antibody against an erythrocyte ontogenic antigen identifies fetal and adult erythroid progenitors. Blood 1986; 67: 56–63Google ScholarPubMed
Debili, N., Issaad, C., Masse, J. M., et al.Expression of CD34 and platelet glycoproteins during human megakaryocytic differentiation. Blood 1992; 80: 3022–3035Google ScholarPubMed
Debili, N., Wendling, F., Cosman, D., et al.The Mpl receptor is expressed in the megakaryocytic lineage from late progenitors to platelets. Blood 1995; 85: 391–401Google ScholarPubMed
Louache, F., Debili, N., Marandin, A., Coulombel, L., Vainchenker, W.Expression of CD4 by human hematopoietic progenitors. Blood 1994; 84: 3344–3355Google ScholarPubMed
Norol, F., Vitrat, N., Cramer, E., et al.Effects of cytokines on platelet production from blood and marrow CD34(+) cells. Blood 1998; 91: 830–843Google ScholarPubMed
Riviere, C., Subra, F., Cohen-Solal, K., et al.Phenotypic and functional evidence for the expression of CXCR4 receptor during megakaryocytopoiesis. Blood 1999; 93: 1511–1523Google ScholarPubMed
Debili, N., Kieffer, N., Nakazawa, M., et al.Expression of platelet glycoprotein Ib by cultured human megakaryocytes: ultrastructural localization and biosynthesis. Blood 1990; 76: 368–376Google ScholarPubMed
Behnke, O., Forer, A.From megakaryocytes to platelets: platelet morphogenesis takes place in the bloodstream. Eur J HaematolSuppl 1998; 61: 3–23Google ScholarPubMed
Cramer, E. M., Norol, F., Guichard, J., et al.Ultrastructure of platelet formation by human megakaryocytes cultured with the Mpl ligand. Blood 1997; 89: 2336–2346Google ScholarPubMed
Choi, E. S., Nichol, J. L., Hokom, M. M., Hornkohl, A. C., Hunt, P.Platelets generated in vitro from proplatelet-displaying human megakaryocytes are functional. Blood 1995; 85: 402–413Google ScholarPubMed
Italiano, J. E. Jr, Lecine, P., Shivdasani, R. A., Hartwig, J. H.Blood platelets are assembled principally at the ends of proplatelet processes produced by differentiated megakaryocytes. J Cell Biol 1999; 147: 1299–1312CrossRefGoogle ScholarPubMed
Zucker-Franklin, D.Megakaryocyte and platelet structure in thrombocytopoiesis: the effect of cytokines. Stem Cells 1996; 14 (Suppl 1): 1–17CrossRefGoogle ScholarPubMed
Moake, J. L.Platelet function, surface structure and antigenicity. Prog Clin Biol Res 1990; 337: 41–43Google ScholarPubMed
Parise, L. V.The structure and function of platelet integrins. Curr Opin Cell Biol 1989; 1: 947–952CrossRefGoogle ScholarPubMed
Fox, J. E., Boyles, J. K.Structure and function of the platelet membrane skeleton. Soc Gen Physiol Ser 1988; 43: 111–123Google ScholarPubMed
Hartwig, J. H. Platelet structure. In Michelson, A. D., ed. Platelets. San Diego: Academic Press 2002: 37–64Google Scholar
Crawford, N.Structure and organisation of platelet membranes. Adv Exp Med Biol 1985; 192: 1–13CrossRefGoogle ScholarPubMed
White, J. G.Current concepts of platelet structure. Am J Clin Pathol 1979; 71: 363–378CrossRefGoogle ScholarPubMed
Clemetson, K. J. Platelet receptors. In Michelson, A. D., ed. Platelets. San Diego: Academic Press, 2002: 65–84Google Scholar
Paulus, J.-M.Platelet size in man. Blood 1975; 46: 321–336Google ScholarPubMed
O'Malley, T., Ludlam, C. A., Fox, K. A., Elton, R. A.Measurement of platelet volume using a variety of different anticoagulant and antiplatelet mixtures. Blood Coagul Fibrinolysis 1996; 7: 431–436CrossRefGoogle ScholarPubMed
McShine, R. L., Sibinga, S., Brozovic, B.Differences between the effects of EDTA and citrate anticoagulants on platelet count and mean platelet volume. Clin Lab Haematol 1990; 12: 277–285CrossRefGoogle ScholarPubMed
Bath, P. M.The routine measurement of platelet size using sodium citrate alone as the anticoagulant. Thromb Haemost 1993; 70: 687–690Google ScholarPubMed
Thompson, C. B., Diaz, D. D., Quinn, P. G., et al.The role of anticoagulation in the measurement of platelet volumes. Am J Clin Pathol 1983; 80: 327–332CrossRefGoogle ScholarPubMed
Stenberg, P. E., Levin, J.Ultrastructural analysis of acute immune thrombocytopenia in mice: dissociation between alterations in megakaryocytes and platelets. J Cell Physiol 1989; 141: 160–169CrossRefGoogle ScholarPubMed
Thompson, C. B., Jakubowski, J. A.The pathophysiology and clinical relevance of platelet heterogeneity. Blood 1988; 72: 1–8Google ScholarPubMed
Thompson, C. B., Jakubowski, J. A., Quinn, P. G., Deykin, D., Valeri, C. R.Platelet size and age determine platelet function independently. Blood 1984; 63: 1372–1375Google ScholarPubMed
Thompson, C. B., Love, D. G., Quinn, P. G., Valeri, C. R.Platelet size does not correlate with platelet age. Blood 1983; 62: 487–494Google Scholar
Saving, K. L., Jennings, D. E., Aldag, J. C., Caughey, R. C.Platelet ultrastructure of high-risk premature infants. Thromb Res 1994; 73: 371–384CrossRefGoogle ScholarPubMed
Corby, D. G., O'Barr, T. P.Decreased alpha-adrenergic receptors in newborn platelets: cause of abnormal response to epinephrine. Dev Pharmacol Ther 1981; 2: 215–225Google Scholar
Saving, K. L., Mankin, P., Maragos, J., Adams, D., Caughy, R.Association of whole blood aggregation response with immunogold-labeled glycoproteins in adult and neonatal platelets. Thromb Res 2001; 101: 73–81CrossRefGoogle ScholarPubMed
Israels, S. J., Odaibo, F. S., Robertson, C., McMillan, E. M., McNicol, A.Deficient thromboxane synthesis and response in platelets from premature infants. Pediatr Res 1997; 41: 218–223CrossRefGoogle ScholarPubMed
Israels, S. J., Daniels, M., McMillan, E. M.Deficient collagen-induced activation in the newborn platelet. Pediatr Res 1990; 27: 337–343CrossRefGoogle ScholarPubMed
Gruel, Y., Boizard, B., Daffos, F., et al.Determination of platelet antigens and glycoproteins in the human fetus. Blood 1986; 68: 488–492Google ScholarPubMed
Shenkman, B., Linder, N., Savion, N., et al.Increased neonatal platelet deposition on subendothelium under flow conditions: the role of plasma von Willebrand factor. Pediatr Res 1999; 45: 270–275CrossRefGoogle ScholarPubMed
Simak, J., Holada, K., Janota, J., Stranak, Z.Surface expression of major membrane glycoproteins on resting and TRAP-activated neonatal platelets. Pediatr Res1999; 46: 445–449CrossRef
Saving, K. L., Mankin, P. E., Gorman, M. J.Differences in adhesion receptor expression between immature and older platelets and red blood cells of neonates and adults. J Pediatr Hematol Oncol 2002; 24: 120–124CrossRefGoogle ScholarPubMed
Kipper, S. L., Sieger, L.Whole blood platelet volumes in newborn infants. J Pediatr 1982; 101: 763–766CrossRefGoogle ScholarPubMed
Arad, I. D., Alpan, G., Sznajderman, S. D., Eldor, A.The mean platelet volume (MPV) in the neonatal period. Am J Perinatol 1986; 3: 1–3CrossRefGoogle ScholarPubMed
Patrick, C. H., Lazarchick, J., Stubbs, T., Pittard, W. B.Mean platelet volume and platelet distribution width in the neonate. Am J Pediatr Hematol Oncol 1987; 9: 130–132CrossRefGoogle ScholarPubMed
Meher-Homji, N. J., Montemagno, R., Thilaganathan, B., Nicolaides, K. H.Platelet size and glycoprotein Ib and IIIa expression in normal fetal and maternal blood. Am J Obstet Gynecol 1994; 171: 791–796CrossRefGoogle ScholarPubMed
Hartwig, J. H. Platelet structure. In Michelson, A. D., ed. Platelets. San Diego: Academic Press, 2002: 37–64Google Scholar
Woulfe, D., Yang, J., Prevost, N., O'Brien, P. J., Brass, L. F. Signal transduction during the initiation, extension, and perpetuation of platelet plug formation. In Michelson, A. D., ed. Platelets. San Diego: Academic Press, 2002: 197–213Google Scholar
Born, G. V. R.Aggregation of blood platelets by adenosine diphosphate and its reversal. Nature 1962; 194: 927–929CrossRefGoogle ScholarPubMed
O'Brien, J.Platelet aggregation. II. Some results from a new method of study. J Clin Pathol 1962; 15: 452–481Google Scholar
Del Vecchio, A., Sola, M. C.Performing and interpreting the bleeding time in the neonatal intensive care unit. Clin Perinatol 2000; 27: 643–654CrossRefGoogle ScholarPubMed
Andrew, M., Paes, B., Bowker, J., Vegh, P.Evaluation of an automated bleeding time device in the newborn. Am J Hematol 1990; 35: 275–277CrossRefGoogle ScholarPubMed
Andrew, M., Castle, V., Mitchell, L., Paes, B.Modified bleeding time in the infant. Am J Hematol 1989; 30: 190–191CrossRefGoogle ScholarPubMed
Andrew, M., Paes, B., Milner, R., et al.Development of the human coagulation system in the healthy premature infant. Blood 1988; 72: 1651–1657Google ScholarPubMed
Andrew, M., Paes, B., Milner, R., et al.Development of the human coagulation system in the full-term infant. Blood 1987; 70: 165–172Google ScholarPubMed
Knofler, R., Weissbach, G., Kuhlisch, E.Platelet function tests in childhood: measuring aggregation and release reaction in whole blood. Semin Thromb Hemost 1998; 24: 513–521CrossRefGoogle ScholarPubMed
Rand, M. L., Carcao, M. D., Blanchette, V. S.Use of the PFA-100 (R) in the assessment of primary, platelet-related hemostasis in a pediatric setting. Semin Thromb Hemost 1998; 24: 523–529CrossRefGoogle Scholar
Roschitz, B., Sudi, K., Kostenberger, M., Muntean, W.Shorter PFA-100 closure times in neonates than in adults: role of red cells, white cells, platelets and von Willebrand factor. Acta Paediatr 2001; 90: 664–670CrossRefGoogle ScholarPubMed
Rajasekhar, D., Barnard, M. R., Bednarek, F. J., Michelson, A. D.Platelet hyporeactivity in very low birth weight neonates. Thromb Haemost 1997; 77: 1002–1007Google ScholarPubMed
Klein, B., Faridi, A., Amo-Takyi, B. K., et al.Neonatal platelet activation in preeclampsia. Clin Appl Thromb Hemost 2001; 7: 29–32CrossRefGoogle ScholarPubMed
Corby, D. G., Zuck, T. F.Newborn platelet dysfunction: a storage pool and release defect. Thromb Haemost 1976; 36: 200–207Google ScholarPubMed
Foley, M. E., Clayton, J. K., McNicol, G. P.Haemostatic mechanisms in maternal, umbilical vein and umbilical artery blood at the time of delivery. Br J Obstet Gynaecol 1977; 84: 81–87CrossRefGoogle ScholarPubMed
Ts'ao, C. H., Green, D., Schultz, K.Function and ultrastructure of platelets of neonates: enhanced ristocetin aggregation of neonatal platelets. Br J Haematol 1976; 32: 225–233CrossRefGoogle ScholarPubMed
Stuart, M. J.Platelet function in the neonate. Am J Pediatr Hematol Oncol 1979; 1: 227–234CrossRefGoogle ScholarPubMed
Stuart, M. J., Allen, J. B.Arachidonic acid metabolism in the neonatal platelet. Pediatrics 1982; 69: 714–718Google ScholarPubMed
Gader, A. M., Bahakim, H., Jabbar, F. A., et al.Dose–response aggregometry in maternal/neonatal platelets. Thromb Haemost 1988; 60: 314–318Google ScholarPubMed
Ahlsten, G., Ewald, U., Kindahl, H., Tuvemo, T.Aggregation of and thromboxane B2 synthesis in platelets from newborn infants of smoking and non-smoking mothers. Prostaglandins Leukot Med 1985; 19: 167–176CrossRefGoogle ScholarPubMed
Stuart, M. J., Dusse, J., Clark, D. A., Walenga, R. W.Differences in thromboxane production between neonatal and adult platelets in response to arachidonic acid and epinephrine. Pediatr Res 1984; 18: 823–826CrossRefGoogle ScholarPubMed
Israels, S. J., Cheang, T., Roberston, C., McMillan-Ward, E. M., McNicol, A.Impaired signal transduction in neonatal platelets. Pediatr Res 1999; 45: 687–691CrossRefGoogle ScholarPubMed
Andrew, M., Vegh, P., Johnston, M., et al.Maturation of the hemostatic system during childhood. Blood 1992; 80: 1998–2005Google ScholarPubMed
Hayashi, T., Suzuki, K.Molecular pathogenesis of Bernard–Soulier syndrome. Semin Thromb Hemost 2000; 26: 53–59CrossRefGoogle ScholarPubMed
Lopez, J. A., Andrews, R. K., Afshar-Kharghan, V., Berndt, M. C.Bernard–Soulier syndrome. Blood 1998; 91: 4397–4418Google ScholarPubMed
Nakagawa, M., Okuno, M., Okamoto, N., Fujino, H., Kato, H.Bernard–Soulier syndrome associated with 22q11.2 microdeletion. Am J Med Genet 2001; 99: 286–2883.0.CO;2-T>CrossRefGoogle ScholarPubMed
George, J. N., Caen, J. P., Nurden, A. T.Glanzmann's thrombasthenia: the spectrum of clinical disease. Blood 1990; 75: 1383–1395Google ScholarPubMed
Reichert, N., Seligsohn, U., Ramot, B.Clinical and genetic aspects of Glanzmann's thrombasthenia in Israel: report of 22 cases. Thromb Diath Haemorrh 1975; 34: 806–820Google ScholarPubMed
Boussemart, T., Marechaud, M., Ditzhuyzen, O., Millot, F., Oriot, D.Hepatic haematoma related to Glanzmann thrombasthenia in a newborn infant. Br J Obstet Gynaecol 1996; 103: 179–180CrossRefGoogle Scholar
Poon, M. C., d'Oiron, R.Recombinant activated factor VII (NovoSeven) treatment of platelet-related bleeding disorders. International Registry on Recombinant Factor VIIa and Congenital Platelet Disorders Group. Blood Coagul Fibrinolysis 2000; 11 (Suppl 1): S55–S68CrossRefGoogle ScholarPubMed
Casonato, A., De, Marco, L., Mazzucato, M., et al.A new congenital platelet abnormality characterized by spontaneous platelet aggregation, enhanced von Willebrand factor platelet interaction, and the presence of all von Willebrand factor multimers in plasma. Blood 1989; 74: 2028–2033Google Scholar
Hoyer, L. W.Pseudo-von Willebrand's disease. N Engl J Med 1982; 306: 360–362CrossRefGoogle ScholarPubMed
Moroi, M., Jung, S. M.Platelet receptors for collagen. Thromb Haemost 1997; 78: 439–444Google ScholarPubMed
Moroi, M., Jung, S. M., Shinmyozu, K., et al.Analysis of platelet adhesion to a collagen-coated surface under flow conditions: the involvement of glycoprotein VI in the platelet adhesion. Blood 1996; 88: 2081–2092Google ScholarPubMed
Arai, M., Yamamoto, N., Moroi, M., et al.Platelets with 10% of the normal amount of glycoprotein VI have an impaired response to collagen that results in a mild bleeding tendency. Br J Haematol 1995; 89: 124–130CrossRefGoogle Scholar
Moroi, M., Jung, S. M., Okuma, M., Shinmyozu, K.A patient with platelets deficient in glycoprotein VI that lack both collagen-induced aggregation and adhesion. J Clin Invest 1989; 84: 1440–1445CrossRefGoogle ScholarPubMed
Joutsi-Korhonen, L., Smethurst, P. A., Rankin, A., et al.The low frequency allele of the platelet collagen signalling receptor glycoprotein VI is associated with reduced functional responses and expression. Blood 2003; 101: 4372–4379CrossRefGoogle Scholar
Hermos, C. R., Huizing, M., Kaiser-Kupfer, M. I., Gahl, W. A.Hermansky–Pudlak syndrome type 1: gene organization, novel mutations, and clinical-molecular review of non-Puerto Rican cases. Hum Mutat 2002; 20: 482CrossRefGoogle ScholarPubMed
Siegel, D. H., Howard, R.Molecular advances in genetic skin diseases. Curr Opin Pediatr 2002; 14: 419–425CrossRefGoogle ScholarPubMed
Anikster, Y., Huizing, M., White, J., et al.Mutation of a new gene causes a unique form of Hermansky–Pudlak syndrome in a genetic isolate of central Puerto Rico. Nat Genet 2001; 28: 376–380CrossRefGoogle Scholar
Suzuki, T., Li, W., Zhang, Q., et al.Hermansky–Pudlak syndrome is caused by mutations in HPS4, the human homolog of the mouse light-ear gene. Nat Genet 2002; 30: 321–324CrossRefGoogle Scholar
Barrat, F. J., Auloge, L., Pastural, E., et al.Genetic and physical mapping of the Chediak–Higashi syndrome on chromosome 1q42–43. Am J Hum Genet 1996; 59: 625–632Google ScholarPubMed
Barbosa, M. D., Barrat, F. J., Tchernev, V. T., et al.Identification of mutations in two major mRNA isoforms of the Chediak–Higashi syndrome gene in human and mouse. Hum Mol Genet 1997; 6: 1091–1098CrossRefGoogle Scholar
Zahavi, J., Gale, R., Kakkar, V. V.Storage pool disease of platelets in an infant with thrombocytopenic absent radii (TAR) syndrome simulating Fanconi's anaemia. Haemostasis 1981; 10: 121–133
Stormorken, H., Hellum, B., Egeland, T., Abrahamsen, T. G., Hovig, T.X-linked thrombocytopenia and thrombocytopathia: attenuated Wiskott–Aldrich syndrome. Functional and morphological studies of platelets and lymphocytes. Thromb Haemost 1991; 65: 300–305Google ScholarPubMed
Nurden, A. T., Nurden, P. Inherited disorders of platelet function. In Michelson, A. D., ed. Platelets. San Diego: Academic Press, 2002: 681–700Google Scholar
Smith, T. J., Gill, J. C., Ambruso, D. R., Hathaway, W. E.Hyponatremia and seizures in young children given DDAVP. Am J Hematol 1989; 31: 199–202CrossRefGoogle ScholarPubMed
Benigni, A., Gregorini, G., Frusca, T., et al.Effect of low-dose aspirin on fetal and maternal generation of thromboxane by platelets in women at risk for pregnancy-induced hypertension. N Engl J Med 1989; 321: 357–362CrossRefGoogle ScholarPubMed
Dasari, R., Narang, A., Vasishta, K., Garewal, G.Effect of maternal low dose aspirin on neonatal platelet function. Indian Pediatr 1998; 35: 507–511Google ScholarPubMed
Michelson, A. D., Benoit, S. E., Furman, M. I., et al.Effects of nitric oxide/EDRF on platelet surface glycoproteins. Am J Physiol 1996; 270: H1640–H1648Google ScholarPubMed
Cheung, P. Y., Salas, E., Schulz, R., Radomski, M. W.Nitric oxide and platelet function: implications for neonatology. Semin Perinatol 1997; 21: 409–417CrossRefGoogle ScholarPubMed
Keh, D., Kurer, I., Dudenhausen, J. W., et al.Response of neonatal platelets to nitric oxide in vitro. Intensive Care Med 2001: 27: 283–286CrossRefGoogle ScholarPubMed
George, T. N., Johnson, K. J., Bates, J. N., Segar, J. L.The effect of inhaled nitric oxide therapy on bleeding time and platelet aggregation in neonates. J Pediatr 1998; 132: 731–734CrossRefGoogle ScholarPubMed
Ylikorkala, O., Halmesmaki, E., Viinikka, L.Effect of ethanol on thromboxane and prostacyclin synthesis by fetal platelets and umbilical artery. Life Sci 1987; 41: 371–376CrossRefGoogle ScholarPubMed
Suvansri, U., Cheung, W. H., Sawitsky, A.The effect of bilirubin on the human platelet. J Pediatr 1969; 74: 240–246CrossRefGoogle ScholarPubMed
Tozzi-Ciancarelli, M. G., Amicosante, G., Menichelli, A., Di, G., Del, P. Photodynamic damage induced by bilirubin on human platelets: possible relevance to newborn pathology. Biol Neonate 1985; 48: 336–340CrossRefGoogle Scholar
Goodman, D. M.Platelet dysfunction during extracorporeal membrane oxygenation: a new mechanism by which to control bleeding?Crit Care Med 2000; 28: 2667–2668CrossRefGoogle ScholarPubMed
Cheung, P. Y., Sawicki, G., Salas, E., et al.The mechanisms of platelet dysfunction during extracorporeal membrane oxygenation in critically ill neonates. Crit Care Med 2000; 28: 2584–2590CrossRefGoogle ScholarPubMed
Aballi, A. J., Puapondh, Y., Desposito, F.Platelet counts in thriving premature infants. Pediatrics 1968; 42: 685–689Google ScholarPubMed
Ablin, A. R., Kushner, J. H., Murphy, A., Zippin, C.Platelet enumeration in the neonatal period. Pediatrics 1961; 28: 822–824Google ScholarPubMed
Sell, E. J., Corrigan, J. J. Jr.Platelet counts, fibrinogen concentration, and factor V and factor VIII levels in healthy infants according to gestational age. J Pediatr 1973; 82: 1028–1032CrossRefGoogle Scholar
McLean, S., Caffey, J. P., Kreidel, K. V., Burland, R., Brod, M.Blood platelet counts in infants and in young children. Am J Dis Child 1925; 30: 810–828Google Scholar
Fogel, B. J., Arias, D., Kung, F.Platelet counts in healthy premature infants. J Pediatr 1968; 73: 108–110CrossRefGoogle ScholarPubMed
Appleyard, W. J., Brinton, A.Venous platelet counts in low birth weight infants. Biol Neonate 1971; 17: 30–34CrossRefGoogle ScholarPubMed
Wolff, J. A., Goodfellow, A. M.Hematopoiesis in premature infants with special consideration of the effect of iron and animal-protein factor. Pediatrics 1955; 16: 753–762Google ScholarPubMed
Forestier, F., Daffos, F., Glacteros, F., et al.Hematological values of 163 normal fetuses between 18 and 30 weeks of gestation. Pediatr Res 1986; 20: 342–346CrossRefGoogle ScholarPubMed
Burrows, R. F., Kelton, J. G.Incidentally detected thrombocytopenia in healthy mothers and their infants. N Engl J Med 1988; 319: 142–145CrossRefGoogle ScholarPubMed
Boehlen, F., Hohlfeld, P., Extermann, P., Perneger, T. V., Moerloose, P.Platelet count at term pregnancy: a reappraisal of the threshold. Obstet Gynecol 2000; 95: 29–33Google ScholarPubMed
Burrows, R. F., Kelton, J. G.Fetal thrombocytopenia and its relation to maternal thrombocytopenia. N Engl J Med 1993; 329: 1463–1466CrossRefGoogle ScholarPubMed
Mandelbrot, L., Schlienger, I., Bongain, A., et al.Thrombocytopenia in pregnant women infected with human immunodeficiency virus: maternal and neonatal outcome. Am J Obstet Gynecol 1994; 171: 252–257CrossRefGoogle ScholarPubMed
Rozdzinski, E., Hertenstein, B., Schmeiser, T., et al.Thrombotic thrombocytopenic purpura in early pregnancy with maternal and fetal survival. Ann Hematol 1992; 64: 245–248CrossRefGoogle ScholarPubMed
Egerman, R. S., Witlin, A. G., Friedman, S. A., Sibai, B. M.Thrombotic thrombocytopenic purpura and hemolytic uremic syndrome in pregnancy: review of 11 cases. Am J Obstet Gynecol 1996; 175: 950–956CrossRefGoogle ScholarPubMed
Christiaens, G. C.Immune thrombocytopenic purpura in pregnancy. Baillieres Clin Haematol 1998; 11: 373–380CrossRefGoogle ScholarPubMed
Burrows, R. F., Kelton, J. G.Perinatal thrombocytopenia. Clin Perinatol 1995; 22: 779–801CrossRefGoogle ScholarPubMed
Sullivan, C. A., Martin, J. N. J.Management of the obstetric patient with thrombocytopenia. Clin Obstet Gynecol 1995; 38: 521–534CrossRefGoogle ScholarPubMed
Cohen, D. L., Baglin, T. P.Assessment and management of immune thrombocytopenia in pregnancy and in neonates. Arch Dis Child Fetal Neonatal Ed 1995; 72: F71–F76CrossRefGoogle ScholarPubMed
Letsky, E. A., Greaves, M.Guidelines on the investigation and management of thrombocytopenia in pregnancy and neonatal alloimmune thrombocytopenia. Maternal and Neonatal Haemostasis Working Party of the Haemostasis and Thrombosis Task Force of the British Society for Haematology. Br J Haematol 1996; 95: 21–26Google ScholarPubMed
Ribeiro, F. M., Rocha, E., Maccariello, E., et al.Early gestational hemolytic uremic syndrome: case report and review of literature. Ren Fail 1997; 19: 475–479CrossRefGoogle ScholarPubMed
George, J. N., El-Harake, M. A., Raskob, G. E.Chronic idiopathic thrombocytopenic purpura. N Engl J Med 1994; 331: 1207–1211CrossRefGoogle ScholarPubMed
Burrows, R. F., Kelton, J. G.Pregnancy in patients with idiopathic thrombocytopenic purpura: assessing the risks for the infant at delivery. Obstet Gynecol Surv 1993; 48: 781–788CrossRefGoogle ScholarPubMed
Christiaens, G. C., Nieuwenhuis, H. K., Bussel, J. B.Comparison of platelet counts in first and second newborns of mothers with immune thrombocytopenic purpura. Obstet Gynecol 1997; 90: 546–552CrossRefGoogle ScholarPubMed
Samuels, P., Bussel, J. B., Braitman, L. E., et al.Estimation of the risk of thrombocytopenia in the offspring of pregnant women with presumed immune thrombocytopenic purpura. N Engl J Med 1990; 323: 229–235CrossRefGoogle ScholarPubMed
Mueller-Eckhardt, C., Kiefel, V., Grubert, A.High-dose IgG treatment for neonatal alloimmune thrombocytopenia. Blut 1989; 59: 145–146CrossRefGoogle ScholarPubMed
Berry, S. M., Leonardi, M. R., Wolfe, H. M., Dombrowski, M. P., Lanouette, J. M., Cotton, D. B.Maternal thrombocytopenia. Predicting neonatal thrombocytopenia with cordocentesis. J Reprod Med 1997; 42: 276–280Google ScholarPubMed
Al-Mofada, S. M., Osman, M. E., Kides, E., et al.Risk of thrombocytopenia in the infants of mothers with idiopathic thrombocytopenia. Am J Perinatol 1994; 11: 423–426CrossRefGoogle ScholarPubMed
Sharon, R., Tatarsky, I.Low fetal morbidity in pregnancy associated with acute and chronic idiopathic thrombocytopenic purpura. Am J Hematol 1994; 46: 87–90CrossRefGoogle ScholarPubMed
Asano, T., Sawa, R., Araki, T., Yamamoto, M.Incidence of thrombocytopenia in infants born to mothers with idiopathic thrombocytopenic purpura. Acta Paediatr Jpn 1998; 40: 112–115CrossRefGoogle ScholarPubMed
Cook, R. L., Miller, R. C., Katz, V. L., Cefalo, R. C.Immune thrombocytopenic purpura in pregnancy: a reappraisal of management. Obstet Gynecol 1991; 78: 578–583Google ScholarPubMed
Burrows, R. F., Kelton, J. G.Low fetal risks in pregnancies associated with idiopathic thrombocytopenic purpura. Am J Obstet Gynecol 1990; 163: 1147–1150CrossRefGoogle ScholarPubMed
Kelton, J. G.Idiopathic thrombocytopenic purpura complicating pregnancy. Blood Rev 2002; 16: 43–46CrossRefGoogle ScholarPubMed
Bessho, T., Ida, A., Minagawa, K., Koyama, K.Effects of maternally administered immunoglobulin on platelet counts of neonates born to mothers with autoimmune thrombocytopenia: re-evaluation. Clin Exp Obstet Gynecol 1997; 24: 53–57Google ScholarPubMed
Kelton, J. G.Management of the pregnant patient with idiopathic thrombocytopenic purpura. Ann Intern Med 1983; 99: 796–800CrossRefGoogle ScholarPubMed
Silver, R. M., Branch, D. W., Scott, J. R.Maternal thrombocytopenia in pregnancy: time for a reassessment. Am J Obstet Gynecol 1995; 173: 479–482CrossRefGoogle ScholarPubMed
Tampakoudis, P., Bili, H., Lazaridis, E., et al.Prenatal diagnosis of intracranial hemorrhage secondary to maternal idiopathic thrombocytopenic purpura: a case report. Am J Perinatol 1995; 12: 268–270CrossRefGoogle ScholarPubMed
Burrows, R. F., Kelton, J. G.Perinatal thrombocytopenia. Clin Perinatol 1995; 22: 779–801CrossRefGoogle ScholarPubMed
Burrows, R. F., Kelton, J. G.Thrombocytopenia at delivery: a prospective survey of 6715 deliveries. Am J Obstet Gynecol 1990; 162: 731–734CrossRefGoogle ScholarPubMed
Lee, L. A.Neonatal lupus erythematosus. J Invest Dermatol 1993; 100: 9S–13SCrossRefGoogle ScholarPubMed
Weston, W. L., Morelli, J. G., Lee, L. A.The clinical spectrum of anti-Ro-positive cutaneous neonatal lupus erythematosus. J Am Acad Dermatol 1999; 40: 675–681CrossRefGoogle ScholarPubMed
Lee, L. A.Neonatal lupus: clinical features, therapy, and pathogenesis. Curr Rheumatol Rep 2001; 3: 391–395CrossRefGoogle ScholarPubMed
Su, C. T., Huang, C. B., Chung, M. Y.Neonatal lupus erythematosus in association with anti-RNP antibody: a case report. Am J Perinatol 2001; 18: 421–426CrossRefGoogle ScholarPubMed
Watson, R., Kang, J. E., May, M., et al.Thrombocytopenia in the neonatal lupus syndrome. Arch Dermatol 1988; 124: 560–563CrossRefGoogle ScholarPubMed
Hariharan, D., Manno, C. S., Seri, I. Neonatal lupus erythematosus with microvascular hemolysis. J Pediatr Hematol Oncol 2000; 22: 351–354CrossRefGoogle ScholarPubMed
Ovali, F., Samanci, N., Ermis, B.et al.Alternative therapies for neonatal autoimmune thrombocytopenia. Vox Sang 1998; 74: 198–200CrossRefGoogle ScholarPubMed
Brazy, J. E., Grimm, J. K., Little, V. A.Neonatal manifestations of severe maternal hypertension occurring before the thirty-sixth week of pregnancy. J Pediatr 1982; 100: 265–271CrossRefGoogle ScholarPubMed
Burrows, R. F., Andrew, M.Neonatal thrombocytopenia in the hypertensive disorders of pregnancy. Obstet Gynecol 1990; 76: 234–238Google ScholarPubMed
Sibai, B. M., Abdella, T. N., Hill, G. A., Anderson, G. D.Hematologic findings in mothers and infants of patients with severe pre-eclampsia/eclampsia. Clin Exp Hypertens 1984; B3: 13–21Google Scholar
Kleckner, H. B., Giles, H. R., Corrigan, J. J.The association of maternal and neonatal thrombocytopenia in high-risk pregnancies. Am J Obstet Gynecol 1977; 128: 235–238CrossRefGoogle ScholarPubMed
Koenig, J. M., Christensen, R. D.Incidence, neutrophil kinetics, and natural history of neonatal neutropenia associated with maternal hypertension. N Engl J Med 1989; 321: 557–562CrossRefGoogle ScholarPubMed
Pritchard, J. A., Cunningham, F. G., Pritchard, S. A., Mason, R. A.How often does maternal preeclampsia–eclampsia incite thrombocytopenia in the fetus?Obstet Gynecol 1987; 69: 292–295Google ScholarPubMed
Hackett, T., Kelton, J. G., Powers, P.Drug-induced platelet destruction. Semin Thromb Hemost 1982; 8: 116–137CrossRefGoogle ScholarPubMed
Aster, R. H.Drug-induced immune thrombocytopenia: an overview of pathogenesis. Semin Hematol 1999; 36 (1 Suppl 1): 2–6Google ScholarPubMed
Wiholm, B. E., Emanuelsson, S.Drug-related blood dyscrasias in a Swedish reporting system, 1985–1994. Eur J Haematol Suppl 1996; 60: 42–46Google Scholar
Pedersen-Bjergaard, U., Andersen, M., Hansen, P. B.Drug-specific characteristics of thrombocytopenia caused by non-cytotoxic drugs. Eur J Clin Pharmacol 1998; 54: 701–706CrossRefGoogle ScholarPubMed
Leikin, S. L.Maternal thiazides and platelet counts of neonates. J Pediatr 1970; 77: 1097–1098CrossRefGoogle ScholarPubMed
Jerkner, K., Kutti, J., Victorin, L.Platelet counts in mothers and their newborn infants with respect to ante-partum administration of oral diuretics. Acta Med Scand 1973; 194: 473–475CrossRefGoogle ScholarPubMed
Widerlov, E., Karlman, I., Storsater, J.Hydralazine-induced neonatal thrombocytopenia. N Engl J Med 1980; 303: 1235Google ScholarPubMed
Merenstein, G. B., O'Loughlin, E. P., Plunket, D. C.Effects of maternal thiazides on platelet counts of newborn infants. J Pediatr 1970; 76: 766–767CrossRefGoogle ScholarPubMed
Schiff, D., Aranda, J. V., Stern, L.Neonatal thrombocytopenia and congenital malformations associated with administration of tolbutamide to the mother. J Pediatr 1970; 77: 457–458CrossRefGoogle Scholar
Page, T. E., Hoyme, H. E., Markarian, M., Jones, K. L.Neonatal hemorrhage secondary to thrombocytopenia: an occasional effect of prenatal hydantoin exposure. Birth Defects Orig Artic Ser 1982; 18: 47–54Google ScholarPubMed
Bruel, H., Chabrolle, J. P., Amusini, P., et al.Hyperammonia, hypoglycemia and thrombocytopenia in a newborn after materanl treatment with valproate. Arch Pediatr 2001; 8: 446–447CrossRefGoogle Scholar
Stahl, M. M., Neiderud, J., Vinge, E.Thrombocytopenic purpura and anemia in a breast-fed infant whose mother was treated with valproic acid. J Pediatr 1997; 130: 1001–1003CrossRefGoogle Scholar
Belik, J., Musey, J., Trussell, R. A.Continuous infusion of glucagon induces severe hyponatremia and thrombocytopenia in a premature neonate. Pediatrics 2001; 107: 595–597CrossRefGoogle Scholar
Newman, P. M., Chong, B. H.Heparin-induced thrombocytopenia: new evidence for the dynamic binding of purified anti-PF4-heparin antibodies to platelets and the resultant platelet activation. Blood 2000; 96: 182–187Google ScholarPubMed
Deitcher, S. R., Topoulos, A. P., Bartholomew, J. R., Kichuk-Chrisant, M. R.Lepirudin anticoagulation for heparin-induced thrombocytopenia. J Pediatr 2002; 140: 264–266CrossRefGoogle ScholarPubMed
Schmugge, M., Risch, L., Huber, A. R., Benn, A., Fischer, J. E.Heparin-induced thrombocytopenia-associated thrombosis in pediatric intensive care patients. Pediatrics 2002; 109: E10CrossRefGoogle ScholarPubMed
Zohrer', B., Zenz, W., Rettenbacher, A., et al.Danaparoid sodium (Orgaran) in four children with heparin-induced thrombocytopenia type II. Acta Paediatr 2001; 90: 765–771CrossRefGoogle ScholarPubMed
Saxon, B. R., Black, M. D., Edgell, D., Noel, D., Leaker, M. T.Pediatric heparin-induced thrombocytopenia: management with Danaparoid (orgaran). Ann Thorac Surg 1999; 68: 1076–1078CrossRefGoogle Scholar
Murdoch, I. A., Beattie, R. M., Silver, D. M.Heparin-induced thrombocytopenia in children. Acta Paediatr 1993; 82: 495–497CrossRefGoogle ScholarPubMed
Clark, F. I.Heparin-induced thrombocytopenia. J Pediatr 1993; 122: 669CrossRefGoogle ScholarPubMed
Potter, C., Gill, J. C., Scott, J. P., McFarland, J. G.Heparin-induced thrombocytopenia in a child. J Pediatr 1992; 121: 135–138CrossRefGoogle Scholar
Walls, J. T., Curtis, J. J., Silver, D., Boley, T. M.Heparin-induced thrombocytopenia in patients who undergo open heart surgery. Surgery 1990; 108: 686–692Google ScholarPubMed
Ranze, O., Ranze, P., Magnani, H. N., Greinacher, A.Heparin-induced thrombocytopenia in paediatric patients: a review of the literature and a new case treated with danaparoid sodium. Eur J Pediatr 1999; 158 (Suppl 3): S130–S133CrossRefGoogle Scholar
Spadone, D., Clark, F., James, E., et al.Heparin-induced thrombocytopenia in the newborn. J Vasc Surg 1992; 15: 306–311CrossRefGoogle ScholarPubMed
Naiman, J. L. Disorders of the platelet. In Oski, F. A., Naiman, J. L., eds. Hematologic Problems in the Newborn. Philadelphia, PA: W. B. Saunders, 1982: 175–222Google ScholarPubMed
Zhang, P., Benirschke, K.Placental pathology casebook: serpentine aneurysms of the placenta with fetal consequences. J Perinatol 2000; 20: 63–65Google ScholarPubMed
Chen, C. P., Chern, S. R., Wang, T. Y., et al.Pregnancy with concomitant chorangioma and placental vascular malformation with mesenchymal hyperplasia. Hum Reprod 1997; 12: 2553–2556CrossRefGoogle ScholarPubMed
Wang, L. H., Tang, J. R., Teng, R. J., et al.Hydrops fetalis due to placental chorioangioma: report of one case. Zhonghua Min Guo Xiao Er Ke Yi Xue Hui Za Zhi 1997; 38: 155–158Google ScholarPubMed
Zoppini, C., Acaia, B., Lucci, G., et al.Varying clinical course of large placental chorioangiomas: report of 3 cases. Fetal Diagn Ther 1997; 12: 61–64CrossRefGoogle ScholarPubMed
D'Ercole, C., Cravello, L., Boubli, L., et al.Large chorioangioma associated with hydrops fetalis: prenatal diagnosis and management. Fetal Diagn Ther 1996; 11: 357–360CrossRefGoogle ScholarPubMed
Lopez-Herce, C. J., Escriba, P. R., Escudero, L. R.Placental chorioangioma and neonatal intracranial hemorrhage. An Esp Pediatr 1983; 19: 405–406Google Scholar
Bauer, C. R., Fojaco, R. M., Bancalari, E., Fernandez-Rocha, L.Microangiopathic hemolytic anemia and thrombocytopenia in a neonate associated with a large placental chorioangioma. Pediatrics 1978; 62: 574–577Google Scholar
Williams, J. H., Benirschke, K.Chorionic vessel thrombosis: a possible etiology of neonatal purpura. J Reprod Med 1978; 20: 285–288Google ScholarPubMed
Mehta, P., Vasa, R., Neumann, L., Karpatkin, M.Thrombocytopenia in the high-risk infant. J Pediatr 1980; 97: 791–794CrossRefGoogle ScholarPubMed
Andrew, M., Castle, V., Saigal, S., Carter, C., Kelton, J. G.Clinical impact of neonatal thrombocytopenia. J Pediatr 1987; 110: 457–464CrossRefGoogle ScholarPubMed
Murray, N. A., Howarth, L. J., McCloy, M. P., Letsky, E. A., Roberts, I. A.Platelet transfusion in the management of severe thrombocytopenia in neonatal intensive care unit patients. Transfus Med 2002; 12: 35–41CrossRefGoogle ScholarPubMed
Castle, V., Andrew, M., Kelton, J., et al.Frequency and mechanism of neonatal thrombocytopenia. J Pediatr 1986; 108: 749–755CrossRefGoogle ScholarPubMed
Silliman, C. C., Cusack, N. A., Swanson, N. J., Ghaffarifar, S., Ambruso, D. R.Platelets and neutrophils from healthy term neonates exhibit increased levels of immunoglobulins. Pediatr Res 1995; 38: 993–997CrossRefGoogle ScholarPubMed
Castle, V., Coates, G., Kelton, J. G., Andrew, M.111In-oxine platelet survivals in thrombocytopenic infants. Blood 1987; 70: 652–656Google ScholarPubMed
de Alarçon P. A. Thrombopoiesis in the fetus and newborn. In Stockman, J. A. III, Pochedly, C., eds. Developmental and Neonatal Hematology, New York: Raven Press, pp. 103–130
Ballin, A.Reduction of platelet counts induced by mechanical ventilation in newborn infants. J Pediatr 1987; 111: 445–449CrossRefGoogle ScholarPubMed
Sainio, S., Jarvenpaa, A. L., Renlund, M., et al.Thrombocytopenia in term infants: a population-based study. Obstet Gynecol 2000; 95: 441–446Google ScholarPubMed
Dreyfus, M., Kaplan, C., Verdy, E., et al.Frequency of immune thrombocytopenia in newborns: a prospective study. Immune Thrombocytopenia Working Group. Blood 1997; 89: 4402–4406Google ScholarPubMed
Uhrynowska, M., Niznikowska-Marks, M., Zupanska, B.Neonatal and maternal thrombocytopenia: incidence and immune background. Eur J Haematol 2000; 64: 42–46CrossRefGoogle ScholarPubMed
Moerloose, P., Boehlen, F., Extermann, P., Hohfeld, P.Neonatal thrombocytopenia: incidence and characterization of maternal antiplatelet antibodies by MAIPA assay. Br J Haematol 1998; 100: 735–740CrossRefGoogle ScholarPubMed
Harrington, W. J., Sprague, C. C., Minnich, V., et al.Immunologic mechanisms in idiopathic and neonatal thrombocytopenic purpura. Ann Inter Med 1953; 38: 433–469Google ScholarPubMed
Pearson, H. A., Shulman, N. R., Marder, V. J., Cone, T. E. Jr.Isoimmune neonatal thrombocytopenic purpura: clinical and therapeutic considerations. Blood 1964; 23: 154–177Google ScholarPubMed
Porcelijn, L., Folman, C. C., Haas, M., et al.Fetal and neonatal thrombopoietin levels in alloimmune thrombocytopenia. Pediatr Res 2002; 52: 105–108CrossRefGoogle ScholarPubMed
Warwick, R. M., Vaughan, J., Murray, N., Lubenko, A., Roberts, I.In vitro culture of colony forming unit-megakaryocyte (CFU-MK) in fetal alloimmune thrombocytopenia. Br J Haematol 1994; 88: 874–877CrossRefGoogle Scholar
Evans, D. I.Immune amegakaryocytic thrombocytopenia of the newborn: association with anti-HLA-A2. J Clin Pathol 1987; 40: 258–261CrossRefGoogle ScholarPubMed
Bizzaro, N., Dianese, G.Neonatal alloimmune amegakaryocytosis: case report. Vox Sang 1988; 54: 112–114Google ScholarPubMed
Dickinson, J. E., Marshall, L. R., Phillips, J. M., Barr, A. L.Antenatal diagnosis and management of fetomaternal alloimmune thrombocytopenia. Am J Perinatol 1995; 12: 333–335CrossRefGoogle ScholarPubMed
Deaver, J. E., Leppert, P. C., Zaroulis, C. G.Neonatal alloimmune thrombocytopenic purpura. Am J Perinatol 1986; 3: 127–131CrossRefGoogle ScholarPubMed
Mueller-Eckhardt, C., Kiefel, V., Grubert, A., et al.348 cases of suspected neonatal alloimmune thrombocytopenia. Lancet 1989; 1: 363–366CrossRefGoogle ScholarPubMed
Loghem, J. J. Jr, Dofmeijer, H., Hart, M., Schreuder, F.Serological and genetical studies on a platelet antigen (Zw). Vox Sang 1959; 4: 161–169CrossRefGoogle Scholar
Shulman, N. R., Aster, R. H., Leiter, A., Hiller, M. C.Immunoreactions involving platelets. V. Post-transfusion purpura due to a complement-fixing antibody against a genetically controlled platelet antigen: a proposed mechanism for thrombocytopenia and its relevance in “autoimmunity”. J Clin Invest 1961; 40: 1597–1620CrossRefGoogle ScholarPubMed
Dem Borne, A. E., Decary, F.ICSH/ISBT Working Party on platelet serology: nomenclature of platelet-specific antigens. Vox Sang 1990; 58: 176CrossRefGoogle Scholar
Newman, P. J.Nomenclature of human platelet alloantigens: a problem with the HPA system?Blood 1994; 83: 1447–1451Google ScholarPubMed
Santoso, S., Kiefel, V.Human platelet-specific alloantigens: update. Vox Sang 1998; 74 (Suppl 2): 249–253CrossRefGoogle Scholar
Kaplan, C.Immune thrombocytopenia in the foetus and the newborn: diagnosis and therapy. Transfus Clin Biol 2001; 8: 311–314CrossRefGoogle ScholarPubMed
Mueller-Eckhardt, C., Santoso, S., Kiefel, V.Platelet alloantigens: molecular, genetic, and clinical aspects. Vox Sang 1994; 67 (Suppl 3): 89–93CrossRefGoogle Scholar
Seo, D. H., Park, S. S., Kim, D. W., et al.Gene frequencies of eight human platelet-specific antigens in Koreans. Transfus Med 1998; 8: 129–132CrossRefGoogle ScholarPubMed
Mueller-Eckhardt, C., Becker, T., Weisheit, M., Witz, C., Santoso, S.Neonatal alloimmune thrombocytopenia due to fetomaternal Zwb incompatibility. Vox Sang 1986; 50: 94–96CrossRefGoogle ScholarPubMed
Blanchette, V. S., Chen, L., Friedberg, Z. S., et al.Alloimmunization to the PlA1 platelet antigen: results of a prospective study. Br J Haematol 1990; 74: 209–215CrossRefGoogle ScholarPubMed
Taaning, E., Skibsted, L.The frequency of platelet alloantibodies in pregnant women and the occurrence and management of neonatal alloimmune thrombocytopenic purpura. Obstet Gynecol Surv 1990; 45: 521–525CrossRefGoogle ScholarPubMed
Uhrynowska, M., Maslanka, K., Zupanska, B.Neonatal thrombocytopenia: incidence, serological and clinical observations. Am J Perinatol 1997; 14: 415–418CrossRefGoogle ScholarPubMed
Mueller-Eckhardt, C., Mueller-Eckhardt, G., Willen-Ohff, H., et al.Immunogenicity of and immune response to the human platelet antigen Zwa is strongly associated with HLA-B8 and DR3. Tissue Antigens 1985; 26: 71–76CrossRefGoogle ScholarPubMed
Panzer, S., Auerbach, L., Cechova, E., et al.Maternal alloimmunization against fetal platelet antigens: a prospective study. Br J Haematol 1995; 90: 655–660CrossRefGoogle ScholarPubMed
Reznikoff-Etievant, M. F., Kaplan, C., Muller, , , J. Y., Daffos, F., Forestier, F.Allo-immune thrombocytopenias, definition of a group at risk: a prospective study. Curr Stud Hematol Blood Transfus 1988; 336: 119–124CrossRefGoogle Scholar
Valentin, N., Vergracht, A., Bignon, J. D., et al.HLA-DRw52a is involved in alloimmunization against PL-A1 antigen. Hum Immunol 1990; 27: 73–79CrossRefGoogle ScholarPubMed
Decary, F., L'Abbe, D., Tremblay, L., Chartrand, P.The immune response to the HPA-1a antigen: association with HLA-DRw52a. Transfus Med 1991; 1: 55–62CrossRefGoogle ScholarPubMed
Dickerson, P. A., Prendiville, J. S.Thrombocytopenia and hepatosplenomegaly in a newborn. Pediatr Dermatol 1989; 6: 346–348CrossRefGoogle Scholar
Kaplan, C., Morel-Kopp, M. C., Kroll, H., et al.HPA-5b (Br(a)) neonatal alloimmune thrombocytopenia: clinical and immunological analysis of 39 cases. Br J Haematol 1991; 78: 425–429CrossRefGoogle ScholarPubMed
Glade-Bender, J., McFarland, J. G., Kaplan, C., Porcelijn, L., Bussel, J. B.Anti-HPA-3A induces severe neonatal alloimmune thrombocytopenia. J Pediatr 2001; 138: 862–867CrossRefGoogle ScholarPubMed
Boehlen, F., Kaplan, C., Moerloose, P.Severe neonatal alloimmune thrombocytopenia due to anti-HPA-3a. Vox Sang 1998; 74: 201–204CrossRefGoogle ScholarPubMed
King, K. E., Kao, K. J., Bray, P. F., et al.The role of HLA antibodies in neonatal thrombocytopenia: a prospective study. Tissue Antigens 1996; 47: 206–211CrossRefGoogle ScholarPubMed
Sharon, R., Amar, A.Maternal anit-HLA antibodies and neonatal thrombocytopenia. Lancet 1981; 1: 1313CrossRefGoogle ScholarPubMed
Del Rosario, M. L., Fox, E. R., Kickler, T. S., Kao, K. J.Neonatal alloimmune thrombocytopenia associated with maternal anti-HLA antibody: a case report. J Pediatr Hematol Oncol 1998; 20: 252–256CrossRefGoogle ScholarPubMed
Chow, M. P., Sun, K. J., Yung, C. H., et al.Neonatal alloimmune thrombocytopenia due to HLA-A2 antibody. Acta Haematol 1992; 87: 153–155CrossRefGoogle ScholarPubMed
Vlugt, A. H., Epkema, B. G., Amminga, R. Y. J.A case of neonatal HPA-1b allo-immune thrombocytopenia. Int J Pediatr Hematol Oncol 1999; 6: 251–254Google Scholar
Kiefel, V., Shechter, Y., Atias, D., et al.Neonatal alloimmune thrombocytopenia due to anti-Brb (HPA-5a): report of three cases in two families. Vox Sang 1991; 60: 244–245Google ScholarPubMed
Kekomaki, S., Koskela, S., Laes, M., Teramo, K., Kekomaki, R.Neonatal thrombocytopenia in two of six human platelet alloantigen (HPA) 5a-positive children of an HPA-5a-immunized mother. Transfus Med 2000; 10: 81–85CrossRefGoogle ScholarPubMed
Roper, T. S., Lown, J. A., Barr, A. L.Feto-maternal alloimmune thrombocytopenia associated with anti-HPA-5a: the first Australian case. Pathology 1994; 26: 294–295CrossRefGoogle ScholarPubMed
Kiefel, V., Vicariot, M., Giovangrandi, Y., et al.Alloimmunization against Iy, a low-frequency antigen on platelet glycoprotein Ib/IX as a cause of severe neonatal alloimmune thrombocytopenic purpura. Vox Sang 1995; 69: 250–254CrossRefGoogle ScholarPubMed
Simsek, S., Vlekke, A. B., Kuijpers, R. W., Goldschmeding, R., dem Borne, A. E.A new private platelet antigen, Groa, localized on glycoprotein IIIa, involved in neonatal alloimmune thrombocytopenia. Vox Sang 1994; 67: 302–306Google ScholarPubMed
Masters, R., Taaning, E.Three cases of platelet alloimmunisation associated with the presence of a novel platelet-specific antibody. Vox Sang 1998; 75: 242–246CrossRefGoogle ScholarPubMed
Berry, J. E., Murphy, C. M., Smith, G. A., et al.Detection of Gov system antibodies by MAIPA reveals an immunogenicity similar to the HPA-5 alloantigens. Br J Haematol 2000; 110: 735–742CrossRefGoogle ScholarPubMed
Schuh, A. C., Watkins, N. A., Nguyen, Q., et al.A tyrosine703serine polymorphism of CD109 defines the Gov platelet alloantigens. Blood 2002; 99: 1692–1698CrossRefGoogle ScholarPubMed
Santoso, S., Kiefel, V., Richter, I. G., et al.A functional platelet fibrinogen receptor with a deletion in the cysteine-rich repeat region of the beta(3) integrIn the Oe(a) alloantigen in neonatal alloimmune thrombocytopenia. Blood 2002; 99: 1205–1214CrossRefGoogle ScholarPubMed
Masters, R., Taaning, E.Three cases of platelet alloimmunisation associated with the presence of a novel platelet-specific antibody. Vox Sang 1998; 75: 242–246CrossRefGoogle ScholarPubMed
Sachs, U. J., Kiefel, V., Bohringer, M., et al.Single amino acid substitution in human platelet glycoprotein Ibbeta is responsible for the formation of the platelet-specific alloantigen Iy(a). Blood 2000; 95: 1849–1855Google Scholar
Reznikoff-Etievant, M. F., Dangu, C., Lobet, R.HLA-B8 antigens and anti-PLa1 allo-immunization. Tissue Antigens 1981; 18: 66–68CrossRefGoogle ScholarPubMed
Reznikoff-Etievant, M. F., Muller, J. Y., Julien, F., Patereau, C.An immune response gene linked to MHC in man. Tissue Antigens 1983; 22: 312–314CrossRefGoogle ScholarPubMed
Waal, L. P., Dalen, C. M., Engelfriet, C. P., dem Borne, A. E.Alloimmunization against the platelet-specific Zwa antigen, resulting in neonatal alloimmune thrombocytopenia or posttransfusion purpura, is associated with the supertypic DRw52 antigen including DR3 and DRw6. Hum Immunol 1986; 17: 45–53CrossRefGoogle ScholarPubMed
L'Abbe, D., Tremblay, L., Filion, M., et al.Alloimmunization to platelet antigen HPA-1a (PIA1) is strongly associated with both HLA-DRB3*0101 and HLA-DQB1*0201. Hum Immunol 1992; 34: 107–114CrossRefGoogle ScholarPubMed
Williamson, L. M.Screening programmes for foetomaternal alloimmune thrombocytopenia. Vox Sang 1998; 74 (Suppl 2): 385–389CrossRefGoogle Scholar
Mueller-Eckhardt, C., Kiefel, V., Kroll, H., Mueller-Eckhardt, G.HLA-DRw6, a new immune response marker for immunization against the platelet alloantigen Bra. Vox Sang 1989; 57: 90–91Google ScholarPubMed
Semana, G., Zazoun, T., Alizadeh, M., et al.Genetic susceptibility and anti-human platelet antigen 5b alloimmunization role of HLA class II and TAP genes. Hum Immunol 1996; 46: 114–119CrossRefGoogle ScholarPubMed
Mawas, F., Wiener, E., Williamson, L. M., Rodeck, C. H.Immunoglobulin G subclasses of anti-human platelet antigen 1a in maternal sera: relation to the severity of neonatal alloimmune thrombocytopenia. Eur J Haematol 1997; 59: 287–292CrossRefGoogle ScholarPubMed
Maslanka, K., Yassai, M., Gorski, J.Molecular identification of T cells that respond in a primary bulk culture to a peptide derived from a platelet glycoprotein implicated in neonatal alloimmune thrombocytopenia. J Clin Invest 1996; 98: 1802–1808CrossRefGoogle Scholar
Bussel, J. B., Berkowitz, R. L., McFarland, J. G., Lynch, L., Chitkara, U.Antenatal treatment of neonatal alloimmune thrombocytopenia. N Engl J Med 1988; 319: 1374–1378CrossRefGoogle ScholarPubMed
Durand-Zaleski, I., Schlegel, N., Blum-Boisgard, C., et al.Screening primiparous women and newborns for fetal/neonatal alloimmune thrombocytopenia: a prospective comparison of effectiveness and costs. Immune Thrombocytopenia Working Group. Am J Perinatol 1996; 13: 423–431CrossRefGoogle ScholarPubMed
Doughty, H. A., Murphy, M. F., Metcalfe, P., Waters, A. H.Antenatal screening for fetal alloimmune thrombocytopenia: the results of a pilot study. Br J Haematol 1995; 90: 321–325CrossRefGoogle ScholarPubMed
McFarland, J. G., Aster, R. H., Bussel, J. B., et al.Prenatal diagnosis of neonatal alloimmune thrombocytopenia using allele-specific oligonucleotide probes. Blood 1991; 78: 2276–2282Google ScholarPubMed
Kiefel, V., Santoso, S., Katzmann, B., Mueller-Eckhardt, C.A new platelet-specific alloantigen Bra. Report of 4 cases with neonatal alloimmune thrombocytopenia. Vox Sang 1988; 54: 101–106Google ScholarPubMed
Kaplan, C., Daffos, F., Forestier, F., et al.Management of alloimmune thrombocytopenia: antenatal diagnosis and in utero transfusion of maternal platelets. Blood 1988; 72: 340–343Google ScholarPubMed
Kaplan, C., Morel-Kopp, M. C., Clemenceau, S., et al.Fetal and neonatal alloimmune thrombocytopenia: current trends in diagnosis and therapy. Transfus Med 1992; 2: 265–271CrossRefGoogle ScholarPubMed
Bussel, J., Kaplan, C.The fetal and neonatal consequences of maternal alloimmune thrombocytopenia. Baillieres Clin Haematol 1998; 11: 391–408CrossRefGoogle ScholarPubMed
Andrew, M., Vegh, P., Caco, C., et al.A randomized, controlled trial of platelet transfusions in thrombocytopenic premature infants. J Pediatr 1993; 123: 285–291CrossRefGoogle ScholarPubMed
Katz, J., Hodder, F. S., Aster, R. S., Bennetts, G. A., Cairo, M. S.Neonatal isoimmune thrombocytopenia: the natural course and management and the detection of maternal antibody. Clin Pediatr 1984; 23: 159–162CrossRefGoogle ScholarPubMed
McIntosh, S., O'Brien, R. T., Schwartz, A. D., Pearson, H. A.Neonatal isoimmune purpura: response to platelet infusion. J Pediatr 1973; 82: 1020–1027CrossRefGoogle Scholar
O'Brien, T., O'Brien, B., Cosgrove, J. F., Counahan, R.Isoimmune thrombocytopenia treated with random donor platelets. Ir Med J 1981; 74: 81–82Google ScholarPubMed
Win, N.Provision of random-donor platelets (HPA-1a positive) in neonatal alloimmune thrombocytopenia due to anti HPA-1a alloantibodies. Vox Sang 1996; 71: 130–131CrossRefGoogle ScholarPubMed
Galea, P., Patrick, M. J., Goel, K. M.Isoimmune neonatal thrombocytopenic purpura. Arch Dis Child 1981; 56: 112–115CrossRefGoogle ScholarPubMed
Vain, N. E., Bedros, A. A.Treatment of isoimmune thrombocytopenia of the newborn with transfusion of maternal platelets. Pediatrics 1979; 63: 107–109Google ScholarPubMed
Win, N., Ouwehand, W. H., Hurd, C.Provision of platelets for severe neonatal alloimmune thrombocytopenia. Br J Haematol 1997; 97: 930–932Google ScholarPubMed
Ranasinghe, E., Walton, J. D., Hurd, C. M., et al.Provision of platelet support for fetuses and neonates affected by severe fetomaternal alloimmune thrombocytopenia. Br J Haematol 2001; 113: 40–42CrossRefGoogle ScholarPubMed
Lee, K., Beaujean, F., Bierling, P.Treatment of severe fetomaternal alloimmune thrombocytopenia with compatible frozen-thawed platelet concentrates. Br J Haematol 2002; 117: 482–483CrossRefGoogle ScholarPubMed
Sidiropoulos, D.The treatment of neonatal isoimmune thrombocytopenia with intravenous immunoglobin (IgG i.v.). Blut 1984; 48: 383CrossRefGoogle Scholar
Pietz, J., Kiefel, V., Sontheimer, D., et al.High-dose intravenous gammaglobulin for neonatal alloimmune thrombocytopenia in twins. Acta Paediatr Scand 1991; 80: 129–132CrossRefGoogle ScholarPubMed
Derycke, M., Dreyfus, M., Ropert, J. C., Tchernia, G. Intravenous immunoglobulin for neonatal isoimmune thrombocytopenia. Arch Dis Child 1985; 60: 667–669CrossRefGoogle Scholar
Giovangrandi, Y., Daffos, F., Kaplan, C., et al.Very early intracranial haemorrhage in alloimmune fetal thrombocytopenia. Lancet 1990; 336: 310CrossRefGoogle ScholarPubMed
Marzusch, K.Clinical uses of intravenous immunoglobulin in pregnancy. Am J Obstet Gynecol 1997; 177: 1560–1561Google ScholarPubMed
Bowman, J., Harman, C., Mentigolou, S., Pollock, J.Intravenous fetal transfusion of immunoglobulin for alloimmune thrombocytopenia. Lancet 1992; 340: 1034–1035CrossRefGoogle ScholarPubMed
Lynch, L., Bussel, J. B., McFarland, J. G., Chitkara, U., Berkowitz, R. L.Antenatal treatment of alloimmune thrombocytopenia. Obstet Gynecol 1992; 80: 67–71Google ScholarPubMed
Bussel, J. B., Berkowitz, R. L., Lynch, L., et al.Antenatal management of alloimmune thrombocytopenia with intravenous gamma-globulIn a randomized trial of the addition of low-dose steroid to intravenous gamma-globulin. Am J Obstet Gynecol 1996; 174: 1414–1423CrossRefGoogle ScholarPubMed
Bussel, J. B., Zabusky, M. R., Berkowitz, R. L., McFarland, J. G.Fetal alloimmune thrombocytopenia. N Engl J Med 1997; 337: 22–26CrossRefGoogle ScholarPubMed
Kaplan, C., Murphy, M. F., Kroll, H., Waters, A. H.Feto-maternal alloimmune thrombocytopenia: antenatal therapy with IvIgG and steroids: more questions than answers. European Working Group on FMAIT. Br J Haematol 1998; 100: 62–65CrossRefGoogle Scholar
Giers, G., Hoch, J., Bauer, H., et al.Therapy with intravenous immunoglobulin G (ivIgG) during pregnancy for fetal alloimmune (HPA-1a(Zwa)) thrombocytopenic purpura. Prenat Diagn 1996; 16: 495–5023.0.CO;2-Y>CrossRefGoogle Scholar
Kroll, H.Neonatal autoimmune thrombocytopenia [in German]. Dtsch Med Wochenschr 1999; 124: 1435–1436Google Scholar
Daffos, F., Forestier, F., Muller, J. Y., et al.Prenatal treatment of alloimmune thrombocytopenia. Lancet 1984; 2: 632CrossRefGoogle ScholarPubMed
Vries, L. S., Connell, J., Bydder, G. M., et al.Recurrent intracranial haemorrhages in utero in an infant with alloimmune thrombocytopenia: case report. Br J Obstet Gynaecol 1988; 95: 299–302CrossRefGoogle Scholar
Overton, T. G., Duncan, K. R., Jolly, M., Letsky, E., Fisk, N. M.Serial aggressive platelet transfusion for fetal alloimmune thrombocytopenia: platelet dynamics and perinatal outcome. Am J Obstet Gynecol 2002; 186: 826–831CrossRefGoogle ScholarPubMed
Murphy, M. F., Pullon, H. W., Metcalfe, P., et al.Management of fetal alloimmune thrombocytopenia by weekly in utero platelet transfusions. Vox Sang 1990; 58: 45–49CrossRefGoogle ScholarPubMed
Murphy, M. F., Waters, A. H., Doughty, H. A., et al.Antenatal management of fetomaternal alloimmune thrombocytopenia: report of 15 affected pregnancies. Transfus Med 1994; 4: 281–292CrossRefGoogle ScholarPubMed
Kanhai, H. H., Porcelijn, L., Zoeren, D., et al.Antenatal care in pregnancies at risk of alloimmune thrombocytopenia: report of 19 cases in 16 families. Eur J Obstet Gynecol Reprod Biol 1996; 68: 67–73CrossRefGoogle Scholar
Sainio, S., Teramo, K., Kekomaki, R.Prenatal treatment of severe fetomaternal alloimmune thrombocytopenia. Transfus Med 1999; 9: 321–330CrossRefGoogle ScholarPubMed
Spencer, J. A., Burr, . Feto-maternal alloimmune thrombocytopenia; a literature review and statistical analysis. Aust NEJ Obstet Gynecol 2001; 41: 45–55CrossRefGoogle ScholarPubMed
Bussel, J., Kaplan, C., McFarland, J.Recommendations for the evaluation and treatment of neonatal autoimmune and alloimmune thrombocytopenia. The Working Party on Neonatal Immune Thrombocytopenia of the Neonatal Hemostasis Subcommittee of the Scientific and Standardization Committee of the ISTH. Thromb Haemost 1991; 65: 631–634Google ScholarPubMed
Kay, H. H., Hage, M. L., Kurtzberg, J., Dunsmore, K. P.Alloimmune thrombocytopenia may be associated with systemic disease. Am J Obstet Gynecol 1992; 166: 110–111CrossRefGoogle ScholarPubMed
Paidas, M. J., Berkowitz, R. L., Lynch, L., et al.Alloimmune thrombocytopenia: fetal and neonatal losses related to cordocentesis. Am J Obstet Gynecol 1995; 172: 475–479CrossRefGoogle ScholarPubMed
Blanchette, V. S., Johnson, J., Rand, M.The management of alloimmune neonatal thrombocytopenia. Baillieres Best Pract Res Clin Haematol 2000; 13: 365–390CrossRefGoogle ScholarPubMed
Mao, C. Y., Guo, J. W., Chituwo, B. M.Intraventricular haemorrhage and its prognosis, prevention and treatment in term infants. J Trop Pediatr 1999; 45: 237–240Google ScholarPubMed
Bonacossa, I. A., Jocelyn, L. J.Alloimmune thrombocytopenia of the newborn: neurodevelopmental sequelae. Am J Perinatol 1996; 13: 211–215CrossRefGoogle ScholarPubMed
Bussel, J. B., Tanli, S., Peterson, H. C.Favorable neurological outcome in 7 cases of perinatal intracranial hemorrhage due to immune thrombocytopenia. Am J Pediatr Hematol Oncol 1991; 13: 156–159CrossRefGoogle ScholarPubMed
Sharif, U., Kuban, A.Prenatal intracranial ICH and neurologic complications. J Clin Neurol 2001; 16: 838–842Google Scholar
Lassiter, H. A., Bibb, K. W., Bertolone, S. J., Patel, C. C., Stroncek, D. F.Neonatal immune neutropenia following the administration of intravenous immune globulin. Am J Pediatr Hematol Oncol 1993; 15: 120–123CrossRefGoogle ScholarPubMed
Adams, J. T., Donn, S. M.Association of isoimmune thrombocytopenia and neonatal hyperinsulinism/hypoglycemia. Am J Perinatol 1994; 11: 374–376CrossRefGoogle ScholarPubMed
Bastian, J. F., Williams, R. A., Ornelas, W., Tani, P., Thompson, L. F.Maternal isoimmunisation resulting in combined immunodeficiency and fatal graft-versus-host disease in an infant. Lancet 1984; 1: 1435–1437CrossRefGoogle ScholarPubMed
Chessells, J. M., Wigglesworth, J. S.Haemostatic failure in babies with rhesus isoimmunization. Arch Dis Child 1971; 46: 38–45CrossRefGoogle ScholarPubMed
Letts, H. W., Kredenster, B. K.Thrombocytopenia, hemolytic anemia, three pregnancies, and death: a supplementary case report. Am J Clin Pathol 1969; 51: 780–783CrossRefGoogle ScholarPubMed
Matthews, T. G., Nolan, G., O'Sullivan, B. J.Observations on severe rhesus haemolytic disease. Ir Med J 1976; 69: 243–245Google ScholarPubMed
Saade, G. R., Moise, K. J. Jr, Copel, J. A., Belfort, M. A., Carpenter, R. J. Jr.Fetal platelet counts correlate with the severity of the anemia in red-cell alloimmunization. Obstet Gynecol 1993; 82: 987–991Google ScholarPubMed
Koenig, J. M., Christensen, R. D.Neutropenia and thrombocytopenia in infants with Rh hemolytic disease. J Pediatr 1989; 114: 625–631CrossRefGoogle ScholarPubMed
Deforges, J. F., O'Connell, L. G.Hematologic observations of the course of erythroblastosis fetalis. Blood 1955; 10: 802–811Google Scholar
Chudwin, D. S., Ammann, A. J., Wara, D. W., Cowan, M. J., Phibbs, R. H.Posttransfusion syndrome: rash, eosinophilia, and thrombocytopenia following intrauterine and exchange transfusions. Am J Dis Child 1982; 136: 612–614CrossRefGoogle ScholarPubMed
Umlas, J., Gootblatt, S.The use of frozen blood in neonatal exchange transfusion. Transfusion 1976; 16: 636–640CrossRefGoogle ScholarPubMed
Mondanlou, H. D., Ortiz, O. B.Thrombocytopenia in neonatal infection. Clin Pediatr 1981; 20: 402–407CrossRefGoogle Scholar
Kreuger, A., Blomback, M.Exchange transfusions with frozen blood: effects on blood coagulation in the newborn. Haemostasis 1974; 3: 329–339Google ScholarPubMed
Najean, Y., Lecompte, T.Hereditary thrombocytopenias in childhood. Semin Thromb Hemost 1995; 21: 294–304CrossRefGoogle ScholarPubMed
Powars, D. R., Meiselman, H. J., Fisher, T. C., Hiti, A., Johnson, C.Beta-S gene cluster haplotypes modulate hematologic and hemorheologic expression in sickle cell anemia: use in predicting clinical severity. Am J Pediatr Hematol Oncol 1994; 16: 55–61Google ScholarPubMed
Zipursky, A., Palko, J., Milner, R., Akenzua, G. I.The hematology of bacterial infections in premature infants. Pediatrics 1976; 57: 839–853Google ScholarPubMed
Tchernia, G., Subtil, E., Dehan, M., et al.Thrombopenia and neonatal bacterial infections. Nouv Rev Fr Hematol 1975; 15: 484–495Google ScholarPubMed
Tate, D. Y., Carlton, G. T., Johnson, D., et al.Immune thrombocytopenia in severe neonatal infections. J Pediatr 1981; 98: 449–453CrossRefGoogle ScholarPubMed
Zipursky, A., Jaber, H. M.The haematology of bacterial infection in newborn infants. Clin Haematol 1978; 7: 175–193Google ScholarPubMed
Colarizi, P., Fiorucci, P., Caradonna, A., et al.Circulating thrombopoietin levels in neonates with infection. Acta Paediatr 1999; 88: 332–337CrossRefGoogle ScholarPubMed
Murray, N. A., Roberts, I. A.Circulating megakaryocytes and their progenitors in early thrombocytopenia in preterm neonates. Pediatr Res 1996; 40: 112–119CrossRefGoogle ScholarPubMed
Sola, M. C., Juul, S. E., Meng, Y. G., et al.Thrombopoietin (Tpo) in the fetus and neonate: Tpo concentrations in preterm and term neonates, and organ distribution of Tpo and its receptor (c-mpl) during human fetal development. Early Hum Dev 1999; 53: 239–250CrossRefGoogle ScholarPubMed
Sola, M. C., Calhoun, D. A., Hutson, A. D., Christensen, R. D.Plasma thrombopoietin concentrations in thrombocytopenic and non-thrombocytopenic patients in a neonatal intensive care unit. Br J Haematol 1999; 104: 90–92CrossRefGoogle Scholar
Oygur, N., Tunga, M., Mumcu, Y., et al.Thrombopoietin levels of thrombocytopenic term and preterm newborns with infection. Am J Perinatol 2001; 18: 279–286CrossRefGoogle ScholarPubMed
Walka, M. M., Sonntag, J., Dudenhausen, J. W., Obladen, M.Thrombopoietin concentration in umbilical cord blood of healthy term newborns is higher than in adult controls. Biol Neonate 1999; 75: 54–58CrossRefGoogle ScholarPubMed
Amit, Y., Peleg, O., Singer, R., Arad, I. D.Intravenous immunoglobulin for Flavobacterium-induced thrombocytopenia in a premature infant. Am J Perinatol 1991; 8: 161–163CrossRefGoogle Scholar
O'Connor, T. A., Ringer, K. M., Gaddis, M. L.Mean platelet volume during coagulase-negative staphylococcal sepsis in neonates. Am J Clin Pathol 1993; 99: 69–71CrossRefGoogle ScholarPubMed
Daffos, F., Forestier, F., Capella-Pavlovsky, M., et al.Prenatal management of 746 pregnancies at risk for congenital toxoplasmosis. N Engl J Med 1988; 318: 271–275CrossRefGoogle ScholarPubMed
Dudgeon, J. A.Congenital rubella. J Pediatr 1975; 87: 1078–1086CrossRefGoogle ScholarPubMed
Cooper, L. Z., Krugman, S.Clinical manifestations of postnatal and congenital rubella. Arch Ophthalmol 1967; 77: 434–439CrossRefGoogle ScholarPubMed
Cooper, L. Z., Green, R. H., Krugman, S., Giles, J. P., Mirick, G. S.Neonatal thrombocytopenic purpura and other manifestations of rubella contracted in utero. Am J Dis Child 1965; 110: 416–427Google ScholarPubMed
Banatvala, J. E., Horstmann, D. M., Payne, M. C., Gluck, L.Rubella syndrome and thrombocytopenic purpura in newborn infants: clinical and virologic observations. N Engl J Med 1965; 273: 474–478CrossRefGoogle ScholarPubMed
Boppana, S. B., Pass, R. F., Britt, W. J., Stagno, S., Alford, C. A.Symptomatic congenital cytomegalovirus infection: neonatal morbidity and mortality. Pediatr Infect Dis J 1992; 11: 93–99CrossRefGoogle ScholarPubMed
Hohlfeld, P., Vial, Y., Maillard-Brignon, C., Vaudaux, B., Fawer, C. L.Cytomegalovirus fetal infection: prenatal diagnosis. Obstet Gynecol 1991; 78: 615–618Google ScholarPubMed
Hubbell, C., Dominguez, R., Kohl, S.Neonatal herpes simplex pneumonitis. Rev Infect Dis 1988; 10: 431–438CrossRefGoogle ScholarPubMed
Chesney, P. J., Taher, A., Gilbert, E. M., Shahide, N. T.Intranuclear inclusions in megakaryocytes in congenital cytomegalovirus infection. J Pediatr 1978; 92: 957–958Google ScholarPubMed
Osborn, J. E., Shahidi, N. T.Thrombocytopenia in murine cytomegalovirus infection. J Lab Clin Med 1973; 81: 53–63Google ScholarPubMed
Isomura, H., Yoshida, M., Namba, H., et al.Suppressive effects of human herpesvirus-6 on thrombopoietin-inducible megakaryocytic colony formation in vitro. J Gen Virol 2000; 81: 663–673CrossRefGoogle ScholarPubMed
Forestier, F., Tissot, J. D., Vial, Y., Daffos, F., Hohlfeld, P.Haematological parameters of parvovirus B19 infection in 13 fetuses with hydrops foetalis. Br J Haematol 1999; 104: 925–927CrossRefGoogle ScholarPubMed
Murray, J. C., Morad, A. B., Pierce, M. A., Mihm, S.Thrombocytopenia accompanying early postnatal infection by human parvovirus B19. Am J Hematol 1995; 49: 360CrossRefGoogle ScholarPubMed
Canavan, B. F., Huhn, R. D., Kim, H. C., et al.Concurrent presentation of erythrocytic and megakaryocytic aplasia. Am J Hematol 1996; 51: 68–723.0.CO;2-7>CrossRefGoogle ScholarPubMed
Nagai, K., Morohoshi, T., Kudoh, T., et al.Transient erythroblastopenia of childhood with megakaryocytopenia associated with human parvovirus B19 infection. Br J Haematol 1992; 80: 131–132CrossRefGoogle ScholarPubMed
Srivastava, A., Bruno, E., Briddell, R., et al.Parvovirus B19-induced perturbation of human megakaryocytopoiesis in vitro. Blood 1990; 76: 1997–2004Google ScholarPubMed
Lamana, M. L., Albella, B., Bueren, J. A., Segovia, J. C.In vitro and in vivo susceptibility of mouse megakaryocytic progenitors to strain i of parvovirus minute virus of mice. Exp Hematol 2001; 29: 1303–1309CrossRefGoogle ScholarPubMed
Abzug, M. J.Prognosis for neonates with enterovirus hepatitis and coagulopathy. Pediatr Infect Dis J 2001; 20: 758–763CrossRefGoogle ScholarPubMed
Lake, A. M., Lauer, B. A., Clark, J. C., Wesenberg, R. L., McIntosh, K.Enterovirus infections in neonates. J Pediatr 1976; 89: 787–791CrossRefGoogle ScholarPubMed
Abzug, M. J., Levin, M. J., Rotbart, H. A.Profile of enterovirus disease in the first two weeks of life. Pediatr Infect Dis J 1993; 12: 820–824CrossRefGoogle ScholarPubMed
Kimura, H., Minakami, H., Harigaya, A., et al.Treatment of neonatal infection caused by coxsackievirus B3. J Perinatol 1999; 19: 388–390CrossRefGoogle ScholarPubMed
Chou, L. L., Chang, C. P., Wu, L. C.Neonatal coxsackievirus B1 infection associated with severe hepatitis: report of three cases. Zhonghua Min Guo Xiao Er Ke Yi Xue Hui Za Zhi 1995; 36: 296–299Google ScholarPubMed
Abzug, M. J., Levin, M. J.Neonatal adenovirus infection: four patients and review of the literature. Pediatrics 1991; 87: 890–896Google ScholarPubMed
Andronikou, S., Kostoula, A., Ioachim, E., et al.Perinatal Epstein Barr virus infection in a premature infant. Scand J Infect Dis 1999; 31: 96–98Google Scholar
Boussemart, T., Babe, P., Sibille, G., Neyret, C., Berchel, C.Prenatal transmission of dengue: two new cases. J Perinatol 2001; 21: 255–257CrossRefGoogle ScholarPubMed
Rigaud, M., Leibovitz, E., Quee, C. S., et al.Thrombocytopenia in children infected with human immunodeficiency virus: long-term follow-up and therapeutic considerations. J Acquir Immune Defic Synd 1992; 5: 450–455Google ScholarPubMed
Roux, W., Pieper, C., Cotton, M.Thrombocytopenia as marker for HIV exposure in the neonate. J Trop Pediatr 2001; 47: 208–210CrossRefGoogle ScholarPubMed
Cole, J. L., Marzec, U. M., Gunthel, C. J., Karpatkin, S., Worford, L., Sundell, I. B., et al.Ineffective platelet pro-duction in thrombocytopenic human immunodeficiency virus infected patients. Blood 1998; 91: 3239–3246Google Scholar
Makhoul, I. R., Kassis, I., Smolkin, T., Tamir, A., Sujov, P.Review of 49 neonates with acquired fungal sepsis: further characterization. Pediatrics 2001; 107: 61–66CrossRefGoogle ScholarPubMed
Warris, A., Semmekrot, B. A., Voss, A.Candidal and bacterial bloodstream infections in premature neonates: a case–control study. Med Mycol 2001; 39: 75–79CrossRefGoogle ScholarPubMed
Padovani, E. M., Michielutti, F., Dall'Agnola, A., Dal Moro, A., Khoory, B. J.Sepsis caused by Candida in the neonatal period. Pediatr Med Chir 1997; 19: 83–88Google ScholarPubMed
Dyke, M. P., Ott, K.Severe thrombocytopenia in extremely low birthweight infants with systemic candidiasis. J Paediatr Child Health 1993; 29: 298–301CrossRefGoogle ScholarPubMed
Melville, C., Kempley, S., Graham, J., Berry, C. L.Early onset systemic Candida infection in extremely preterm neonates. Eur J Pediatr 1996; 155: 904–906CrossRefGoogle ScholarPubMed
Fairchild, K. D., Tomkoria, S., Sharp, E. C., Mena, F. V.Neonatal Candida glabrata sepsis: clinical and laboratory features compared with other Candida species. Pediatr Infect Dis J 2002; 21: 39–43CrossRefGoogle ScholarPubMed
Khoory, B. J., Vino, L., Dall'Agnola, A., Fanos, V.Candida infections in newborns: a review. J Chemother 1999; 11: 367–378CrossRefGoogle ScholarPubMed
McDonnell, M., Isaacs, D.Neonatal systemic candidiasis. J Paediatr Child Health 1995; 31: 490–492CrossRefGoogle ScholarPubMed
Kicklighter, S. D., Springer, S. C., Cox, T., Hulsey, T. C., Turner, R. B.Fluconazole for prophylaxis against candidal rectal colonization in the very low birth weight infant. Pediatrics 2001; 107: 293–298CrossRefGoogle ScholarPubMed
Kaufman, D., Boyle, R., Hazen, K. C., et al.Fluconazole prophylaxis against fungal colonization and infection in preterm infants. N Engl J Med 2001; 345: 1660–1666CrossRefGoogle ScholarPubMed
Dankner, W. M., Spector, S. A., Fierer, J., Davis, C. E.Malassezia fungemia in neonates and adults: complication of hyperalimentation. Rev Infect Dis 1987; 9: 743–753CrossRefGoogle ScholarPubMed
Patel, C. C.Hematologic abnormalities in acute necrotizing enterocolitis. Pediatr Clin North Am 1977; 24: 579–584CrossRefGoogle ScholarPubMed
Hutter, J. J. Jr, Hathaway, W. E., Wayne, E. R.Hematologic abnormalities in severe neonatal necrotizing enterocolitis. J Pediatr 1976; 88: 1026–1031CrossRefGoogle ScholarPubMed
Kosloske, A. M., Papile, L. A., Burstein, J.Indications for operation in acute necrotizing enterocolitis of the neonate. Surgery 1980; 87: 502–508Google ScholarPubMed
Ververidis, M., Kiely, E. M., Spitz, L., et al.The clinical significance of thrombocytopenia in neonates with necrotizing enterocolitis. J Pediatr Surg 2001; 36: 799–803CrossRefGoogle ScholarPubMed
Caplan, M. S., Sun, X. M., Hseuh, W., Hageman, J. R.Role of platelet activating factor and tumor necrosis factor-alpha in neonatal necrotizing enterocolitis. J Pediatr 1990; 116: 960–964CrossRefGoogle ScholarPubMed
Colarizi, P., Fiorucci, P., Caradonna, A., et al.Circulating thrombopoietin levels in neonates with infection. Acta Paediatr 1999; 88: 332–337CrossRefGoogle ScholarPubMed
Halpern, M. D., Dominguez, J. A., Dvorakova, K., Holubec, H., Williams, C. S., Meza, Y. G., et al.Ileal cytokine dysregulation in experimental necrotizing enterocolitis is reduced by epidermal growth factor. J Pediatr Gastroenterol Nutr 2003; 36: 126–133CrossRefGoogle ScholarPubMed
Caplan, M. S., Sun, X. M., Hsueh, W.Hypoxia, PAF, and necrotizing enterocolitis. Lipids 1991; 26: 1340–1343CrossRefGoogle ScholarPubMed
Hsueh, W., Caplan, M. S., Sun, X., et al.Platelet-activating factor, tumor necrosis factor, hypoxia and necrotizing enterocolitis. Acta Paediatr Suppl 1994; 396: 11–17CrossRefGoogle ScholarPubMed
Caplan, M. S., Hedlund, E., Adler, L., Lickerman, M., Hsueh, W.The platelet-activating factor receptor antagonist WEB 2170 prevents neonatal necrotizing enterocolitis in rats. J Pediatr Gastroenterol Nutr 1997; 24: 296–301CrossRefGoogle ScholarPubMed
Caplan, M. S., Jilling, T.New concepts in necrotizing enterocolitis. Curr Opin Pediatr 2001; 13: 111–115CrossRefGoogle ScholarPubMed
Araneda, M., Krishnan, V., Hall, K., et al.Reactive and clonal thrombocytosis: proinflammatory and hematopoietic cytokines and acute phase proteins. South Med J 2001; 94: 417–420CrossRefGoogle ScholarPubMed
Cobankara, V., Oran, B., Ozatli, D., et al.Cytokines, endothelium, and adhesive molecules in pathologic thrombopoiesis. Clin Appl Thromb Hemost 2001; 7: 126–130CrossRefGoogle ScholarPubMed
Dan, K., Gomi, S., Inokuchi, K., et al.Effects of interleukin-1 and tumor necrosis factor on megakaryocytopoiesis: mechanism of reactive thrombocytosis. Acta Haematol 1995; 93: 67–72CrossRefGoogle ScholarPubMed
Markenson, A. L., Hilgartner, M. W., Miller, D. R.Letter: transient thrombocytopenia in 18-trisomy. J Pediatr 1975; 87: 834–835CrossRefGoogle ScholarPubMed
Stoll, C., Sacrez, R., Willard, D., Freysz, H.A case of trisomy 18 with bilateral aplasia of the radius and thrombopenia. Pediatrie 1972; 27: 537–542Google ScholarPubMed
Stoll, C., Sacrez, R., Willard, D., Freysz, H., Clement, B.Transient neonatal thrombopenia of trisomy 21. Nouv Presse Med 1972; 1: 396Google ScholarPubMed
Rabinowitz, J. G., Moseley, J. E., Mitty, H. A., Hirschhorn, K.Trisomy 18, esophageal atresia, anomalies of the radius, and congenital hypoplastic thrombocytopenia. Radiology 1967; 89: 488–491CrossRefGoogle ScholarPubMed
Thuring, W., Tonz, O.Neonatal thrombocyte values in children with Down's syndrome and other autosome trisomies. Helv Paediatr Acta 1979; 34: 545–555Google ScholarPubMed
Hord, J. D., Gay, J. C., Whitlock, J. A.Thrombocytopenia in neonates with trisomy 21. Arch Pediatr Adolesc Med 1995; 149: 824–825CrossRefGoogle ScholarPubMed
Hohlfeld, P., Forestier, F., Kaplan, C., Tissot, J. D., Daffos, F.Fetal thrombocytopenia: a retrospective survey of 5,194 fetal blood samplings. Blood 1994; 84: 1851–1856Google ScholarPubMed
Hohlfeld, P., Forestier, F., Vial, Y., Tissot, J. D.Hematological features of fetal triploidy: a report of 11 cases. Biol Neonate 1997; 72: 279–283CrossRefGoogle ScholarPubMed
Miller, M., Cosgriff, J. M.Hematological abnormalities in newborn infants with Down syndrome. Am J Med Genet 1983; 16: 173–177CrossRefGoogle ScholarPubMed
Zipursky, A., Brown, E. J., Christensen, H., Doyle, J.Transient myeloproliferative disorder (transient leukemia) and hematologic manifestations of Down syndrome. Clin Lab Med 1999; 19: 157–167Google ScholarPubMed
Ganick, D.Hematological changes in Down's syndrome. Crit Rev Oncol Hematol 1986; 6: 55–69CrossRefGoogle ScholarPubMed
Lappalainen, J., Kouvalainen, K.High hematocrits in newborns with Down's syndrome: a hitherto undescribed finding. Clin Pediatr 1972; 11: 472–474CrossRefGoogle ScholarPubMed
Starc, T. J.Erythrocyte macrocytosis in infants and children with Down syndrome. J Pediatr 1992; 121: 578–581CrossRefGoogle Scholar
Huret, J. L., Leonard, C.Chromosome 21 and platelets: a gene dosage effect?Clin Genet 1997; 51: 140–141CrossRefGoogle ScholarPubMed
Clang, D. R., LaBaere, R. J.Jacobsen syndrome: chromosome deletion at 11q23. J Am Osteopath Assoc 1998; 98: 551–554Google ScholarPubMed
Kasabach, H. H., Merritt, K. K.Capillary hemangioma with extensive purpura: report of a case. Am J Dis Child 1940; 59: 1063–1070CrossRefGoogle Scholar
Margileth, A. M., Museles, M.Current concepts in diagnosis and management of congenital cutaneous hemangiomas. Pediatrics 1965; 36: 410–416Google ScholarPubMed
Zukerberg, L. R., Nickoloff, B. J., Weiss, S. W.Kaposiform hemangioendothelioma of infancy and childhood: an aggressive neoplasm associated with Kasabach–Merritt syndrome and lymphangiomatosis. Am J Surg Pathol 1993; 17: 321–328CrossRefGoogle ScholarPubMed
Niedt, G. W., Greco, M. A., Wieczorek, R., Blanc, W. A., Knowles, D. M.Hemangioma with Kaposi's sarcoma-like features: report of two cases. Pediatr Pathol 1989; 9: 567–575CrossRefGoogle ScholarPubMed
Sarkar, M., Mulliken, J. B., Kozakewich, H. P., Robertson, R. L., Burrows, P. E.Thrombocytopenic coagulopathy (Kasabach-Merritt phenomenon) is associated with Kaposiform hemangioendothelioma and not with common infantile hemangioma. Plast Reconstr Surg 1997; 100: 1377–1386CrossRefGoogle Scholar
Enjolras, O., Wassef, M., Mazoyer, E., et al.Infants with Kasabach–Merritt syndrome do not have “true” hemangiomas. J Pediatr 1997; 130: 631–640CrossRefGoogle ScholarPubMed
Seo, S. K., Suh, J. C., Na, G. Y., Kim, I. S., Sohn, K. R.Kasabach–Merritt syndrome: identification of platelet trapping in a tufted angioma by immunohistochemistry technique using monoclonal antibody to CD61. Pediatr Dermatol 1999; 16: 392–394CrossRefGoogle Scholar
Antovic, J., Bakic, M., Milicevic, R., Gojkovic, G., Blomback, M.Activation of the coagulation system occurs within rather than outside cutaneous haemangiomas. Acta Paediatr 2001; 90: 1137–1140CrossRefGoogle ScholarPubMed
Anai, T., Miyakawa, I., Ohki, H., Ogawa, T.Hydrops fetalis caused by fetal Kasabach–Merritt syndrome. Acta Paediatr Jpn 1992; 34: 324–327CrossRefGoogle ScholarPubMed
Currie, B. G., Schell, D., Bowring, A. C.Giant hemangioma of the arm associated with cardiac failure and the Kasabach–Merritt syndrome in a neonate. J Pediatr Surg 1991; 26: 734–737CrossRefGoogle Scholar
Margileth, A. M., Museles, M.Cutaneous hemangiomas in children. Diagnosis and conservative management. J Am Med Assoc 1965; 194: 523–526CrossRefGoogle ScholarPubMed
Drolet, B. A., Scott, L. A., Esterly, N. B., Gosain, A. K.Early surgical intervention in a patient with Kasabach–Merritt phenomenon. J Pediatr 2001; 138: 756–758CrossRefGoogle Scholar
Hesselmann, S., Micke, O., Marquardt, T., et al.Case report: Kasabach–Merritt syndrome: a review of the therapeutic options and a case report of successful treatment with radiotherapy and interferon alpha. Br J Radiol 2002; 75: 180–184CrossRefGoogle Scholar
Fost, N. C., Esterly, N. B.Successful treatment of juvenile hemangiomas with prednisone. J Pediatr 1968; 72: 351–357CrossRefGoogle ScholarPubMed
Dresse, M. F., David, M., Hume, H., et al.Successful treatment of Kasabach–Merritt syndrome with prednisone and epsilon-aminocaproic acid. Pediatr Hematol Oncol 1991; 8: 329–334CrossRefGoogle ScholarPubMed
Katz, H. P., Askin, J.Multiple hemangiomata with thrombopenia: an unusual case with comments on steroid therapy. Am J Dis Child 1968; 115: 351–357CrossRefGoogle ScholarPubMed
Ozsoylu, S.Megadose methylprednisolone therapy for Kasabach–Merritt syndrome. J Pediatr 1996; 129: 947–948CrossRefGoogle ScholarPubMed
Hasan, Q., Tan, S. T., Gush, J., Peters, S. G., Davis, P. F.Steroid therapy of a proliferating hemangioma: histochemical and molecular changes. Pediatrics 2000; 105: 117–121CrossRefGoogle ScholarPubMed
Hanna, B. D., Bernstein, M.Tranexamic acid in the treatment of Kasabach–Merritt syndrome in infants. Am J Pediatr Hematol Oncol 1989; 11: 191–195Google ScholarPubMed
Warrell, R. P. Jr, Kempin, S. J.Treatment of severe coagulopathy in the Kasabach–Merritt syndrome with aminocaproic acid and cryoprecipitate. N Engl J Med 1985; 313: 309–312CrossRefGoogle ScholarPubMed
Ezekowitz, R. A. B., Phil, D., Mulliken, J. B., Folkman, J.Interferon alfa-2a therapy for life-threatening hemangiomas of infancy. N Engl J Med 1992; 326: 1456–1463CrossRefGoogle ScholarPubMed
Teillac-Hamel, D., Prost, Y., Bodemer, C., et al.Serious childhood angiomas: unsuccessful alpha-2b interferon treatment: a report of four cases. Br J Dermatol 1993; 129: 473–476CrossRefGoogle ScholarPubMed
Dubois, J., Hershon, L., Carmant, L., et al.Toxicity profile of interferon alfa-2b in children: a prospective evaluation. J Pediatr 1999; 135: 782–785CrossRefGoogle ScholarPubMed
Hu, B., Lachman, R., Phillips, J., Peng, S. K., Sieger, L.Kasabach–Merritt syndrome associated kaposiform hemangioendothelioma successfully treated with cyclophosphamide, vincristine, and actinomycin D. J Pediatr Hematol Oncol 1998; 20: 567–569CrossRefGoogle ScholarPubMed
Nelson, L. B., Melick, J. E., Harley, R. D.Intralesional corticosteroid injections for infantile hemangiomas of the eyelid. Pediatrics 1984; 74: 241–245Google Scholar
Burrows, P. E., Lasjaunias, P. L., Ter, Brugge, K. G., Flodmark, O.Urgent and emergent embolization of lesions of the head and neck in children: indications and results. Pediatrics 1987; 80: 386–394Google ScholarPubMed
Tan, O. T., Gilchrest, B. A.Laser therapy for selected cutaneous vascular lesions in the pediatric population: a review. Pediatrics 1988; 82: 652–662Google ScholarPubMed
Verheul, H. M., Panigrahy, D., Flynn, E., Pinedo, H. M., D'Amato, R. J.Treatment of the Kasabach–Merritt syndrome with pegylated recombinant human megakaryocyte growth and development factor in mice: elevated platelet counts, prolonged survival, and tumor growth inhibition. Pediatr Res 1999; 46: 562–565CrossRefGoogle ScholarPubMed
Drolet, B. A., Esterly, N. B., Frieden, I. J.Primary care: hemangiomas in children. N Engl J Med 1999; 341: 173–181CrossRefGoogle Scholar
Enjolras, O., Riche, M. C., Merland, J. J., Escande, J. P.Management of alarming hemangiomas in infancy: a review of 25 cases. Pediatrics 1990; 85: 491–498Google ScholarPubMed
Hall, G. W.Kasabach–Merritt syndrome: pathogenesis and management. Br J Haematol 2001; 112: 851–862CrossRefGoogle ScholarPubMed
Larsen, E. C., Zinkham, W. H., Eggleston, J. C., Zitelli, B. J.Kasabach–Merritt syndrome: therapeutic considerations. Pediatrics 1987; 79: 971–980Google ScholarPubMed
Teillac-Hamel, D., Andry, P., Bodemer, C., et al.Kasabach–Merritt syndrome in children. Ann Pediatr (Paris) 1992; 39: 435–441Google ScholarPubMed
Fanconi, G.Familiare infantile perniziosaartige Anamie (pernizioses Blutbilt und Kostitution). Jahrbuch Kinder 1927; 117: 257Google Scholar
Butturini, A., Gale, R. P., Verlander, P. C., et al.Hematologic abnormalities in Fanconi anemia: an international Fanconi Anemia Registry study. Blood 1994; 84: 1650–1655Google ScholarPubMed
Sasaki, M. S., Tonomura, A.A high susceptibility of Fanconi's anemia to chromosome breakage by DNA cross-linking agents. Cancer Res 1973; 33: 1829–1836Google ScholarPubMed
Auerbach, A. D.Fanconi anemia diagnosis and the diepoxybutane (DEB) test. Exp Hematol 1993; 21: 731–733Google ScholarPubMed
Auerbach, A. D., Warburton, D., Bloom, A. D., Chaganti, R. S.Preliminary communication: prenatal detection of the Fanconi anemia gene by cytogenetic methods. Am J Hum Genet 1979; 31: 77–81Google ScholarPubMed
Gregory, R. C., Taniguchi, T., D'Andrea, A. D.Regulation of the Fanconi anemia pathway by monoubiquitination. Semin Cancer Biol 2003; 13: 77–82CrossRefGoogle ScholarPubMed
Ahmad, S. I., Hanaoka, F., Kirk, S. H.Molecular biology of Fanconi anaemia: an old problem, a new insight. Bioessays 2002; 24: 439–448CrossRefGoogle ScholarPubMed
Joenje, H., Patel, K. J.The emerging genetic and molecular basis of Fanconi anaemia. Nat Rev Genet 2001; 2: 446–457CrossRefGoogle ScholarPubMed
Kupfer, G. M., Naf, D., D'Andrea, A. D.Molecular biology of Fanconi anemia. Hematol Oncol Clin North Am 1997; 11: 1045–1060CrossRefGoogle ScholarPubMed
Alter, B. P.Cancer in Fanconi anemia, 1927–2001. Cancer 2003; 97: 425–440CrossRefGoogle ScholarPubMed
Dokal, I.Dyskeratosis congenita in all its forms. Br J Haematol 2000; 110: 768–779CrossRefGoogle ScholarPubMed
Boeck, K., Degreef, H., Verwilghen, R., et al.Thrombocytopenia: first symptom in a patient with dyskeratosis congenita. Pediatrics 1981; 67: 898–903Google Scholar
Shaw, S., Oliver, R. A. M.Congenital hypoplastic thrombocytopenia with skeletal deformities in siblings. Blood 1959; 14: 374–377Google ScholarPubMed
Carroll, R. E., Louis, D. S.Anomalies associated with radial dysplasia. J Pediatr 1974; 84: 409–411CrossRefGoogle ScholarPubMed
Hall, J. G., Levin, J., Kuhn, J. P., et al.Thrombocytopenia with absent radius (TAR). Medicine 1969; 48: 411–439CrossRefGoogle Scholar
Fayen, W. T., Harris, J. W.Thrombocytopenia with absent radii (the TAR syndrome). Am J Med Sci 1980; 280: 95–99CrossRefGoogle Scholar
Hedberg, V. A., Lipton, J. M.Thrombocytopenia with absent radii: a review of 100 cases. Am J Pediatr Hematol Oncol 1988; 10: 51–64CrossRefGoogle ScholarPubMed
Sultan, Y., Scrobohaci, M. L., Rendu, F., Caen, J. P.Abnormal platelet function, population, and survival-time in a boy with congenital absent radii and thrombocytopenia. Lancet 1972; 2: 653Google Scholar
Day, H. J., Holmsen, H.Platelet adenine nucleotide “storage pool deficiency” in thrombocytopenic absent radii syndrome. J Am Med Assoc 1972; 221: 1053–1054CrossRefGoogle Scholar
Fayen, W. T., Harris, J. W.Thrombocytopenia with absent radii (the TAR syndrome). Am J Med Sci 1980; 280: 95–99CrossRefGoogle Scholar
Digilio, M. C., Giannotti, A., Marino, B., et al.Radial aplasia and chromosome 22q11 deletion. J Med Genet 1997; 34: 942–944CrossRefGoogle ScholarPubMed
Ryan, A. K., Goodship, J. A., Wilson, D. I., et al.Spectrum of clinical features associated with interstitial chromosome 22q11 deletions: a European collaborative study. J Med Genet 1997; 34: 798–804CrossRefGoogle ScholarPubMed
Whitfield, M. F., Barr, D. G.Cows' milk allergy in the syndrome of thrombocytopenia with absent radius. Arch Dis Child 1976; 51: 337–343CrossRefGoogle ScholarPubMed
Greenhalgh, K. L., Howell, R. T., Bottani, A., et al.Thrombocytopenia-absent radius syndrome: a clinical genetic study. J Med Genet 2002; 39: 876–881CrossRefGoogle ScholarPubMed
Freedman, M. H.Congenital failure of hematopoiesis in the newborn infant. Clin Perinatol 1984; 11: 417–431CrossRefGoogle ScholarPubMed
Homans, A. C., Cohen, J. L., Mazur, E. M.Defective megakaryocytopoiesis in the syndrome of thrombocytopenia with absent radii. Br J Haematol 1988; 70: 205–210CrossRefGoogle ScholarPubMed
Alarcón, P. A., Graeve, J. A., Levine, R. F., McDonald, T. P., Beal, D. W.Thrombocytopenia and absent radii syndrome: defective megakaryocytopiesis-thrombocytopoiesis. Am J Pediatr Hematol Oncol 1991; 13: 77–83CrossRefGoogle Scholar
Sekine, I., Hagiwara, T., Miyazaki, H., et al.Thrombocytopenia with absent radii syndrome: studies on serum thrombopoietin levels and megakaryopoiesis in vitro. J Pediatr Hematol Oncol 1998; 20: 74–78Google ScholarPubMed
Ballmaier, M., Schulze, H., Strauss, G., et al.Thrombopoietin in patients with congenital thrombocytopenia and absent radii: elevated serum levels, normal receptor expression, but defective reactivity to thrombopoietin. Blood 1997; 90: 612–619Google ScholarPubMed
Ballmaier, M., Schulze, H., Cremer, M., et al.Defective c-Mpl signaling in the syndrome of thrombocytopenia with absent radii. Stem Cells 1998; 16 (Suppl 2): 177–184CrossRefGoogle ScholarPubMed
Letestu, R., Vitrat, N., Masse, A., et al.Existence of a differentiation blockage at the stage of a megakaryocyte precursor in the thrombocytopenia and absent radii (TAR) syndrome. Blood 2000; 95: 1633–1641Google ScholarPubMed
Kmita, M., Fraudeau, N., Herault, Y., Duboule, D.Serial deletions and duplications suggest a mechanism for the collinearity of Hoxd genes in limbs. Nature 2002; 420: 145–150CrossRefGoogle ScholarPubMed
Goodman, F. R.Limb malformations and the human HOX genes. Am J Med Genet 2002; 112: 256–265CrossRefGoogle ScholarPubMed
Taghon, T., Stolz, F., Smedt, M., et al.HOX-A10 regulates hematopoietic lineage commitment: evidence for a monocyte-specific transcription factor. Blood 2002; 99: 1197–1204CrossRefGoogle ScholarPubMed
Pineault, N., Helgason, C. D., Lawrence, H. J., Humphries, R. K.Differential expression of Hox, Meis1, and Pbx1 genes in primitive cells throughout murine hematopoietic ontogeny. Exp Hematol 2002; 30: 49–57CrossRefGoogle ScholarPubMed
Bjornsson, J. M., Andersson, E., Lundstrom, P., et al.Proliferation of primitive myeloid progenitors can be reversibly induced by HOXA10. Blood 2001; 98: 3301–3308CrossRefGoogle ScholarPubMed
Fleischman, R. A., Letestu, R., Mi, X., et al.Absence of mutations in the HoxA10, HoxA11 and HoxD11 nucleotide coding sequences in thrombocytopenia with absent radius syndrome. Br J Haematol 2002; 116: 367–375CrossRefGoogle ScholarPubMed
Dokal, I., Ganly, P., Riebero, I., et al.Late onset bone marrow failure associated with proximal fusion of radius and ulna: a new syndrome. Br J Haematol 1989; 71: 277–280CrossRefGoogle ScholarPubMed
Solorzano, E., Lisker, R., Hernandez, J.Hereditary radioulnar sinostosis (author's translation). Rev Invest Clin 1978; 30: 307–310Google Scholar
Thompson, A. A., Woodruff, K., Feig, S. A., Nguyen, L. T., Schanen, N. C.Congenital thrombocytopenia and radio-ulnar synostosis: a new familial syndrome. Br J Haematol 2001; 113: 866–870CrossRefGoogle ScholarPubMed
Thompson, A. A., Nguyen, L. T.Amegakaryocytic thrombocytopenia and radio-ulnar synostosis are associated with HOXA11 mutation. Nat Genet 2000; 26: 397–398CrossRefGoogle ScholarPubMed
Aquino, V. M., Mustafa, M. M., Vaickus, L., Wooley, R., Buchanan, G. R.Recombinant interleukin-6 in the treatment of congenital thrombocytopenia associated with absent radii. J Pediatr Hematol Oncol 1998; 20: 474–476CrossRefGoogle ScholarPubMed
Dempfle, C. E., Burck, C., Grutzmacher, T., Wizenmann, J., Heene, D. L.Increase in platelet count in response to rHuEpo in a patient with thrombocytopenia and absent radii syndrome. Blood 2001; 97: 2189–2190CrossRefGoogle Scholar
Weinblatt, M., Petrikovsky, B., Bialer, M., Kochen, J., Harper, R.Prenatal evaluation and in utero platelet transfusion for thrombocytopenia absent radii syndrome. Prenat Diagn 1994; 14: 892–896CrossRefGoogle ScholarPubMed
Labrune, P., Pons, J. C., Khalil, M., Mirlesse, , et al.Antenatal thrombocytopenia in three patients with TAR (thrombocytopenia with absent radii) syndrome. Prenat Diagn 1993; 13: 463–466CrossRefGoogle ScholarPubMed
Ergur, A. R., Yergok, Y. Z., Ertekin, A., Tayyar, M., Yilmazturk, A.Prenatal diagnosis of an uncommon syndrome: thrombocytopenia absent radius (TAR). Zentralbl Gynakol 1998; 120: 75–78Google Scholar
Luthy, D. A., Hall, J. G., Graham, C. B.Prenatal diagnosis of thrombocytopenia with absent radii. Clin Genet 1979; 15: 495–499CrossRefGoogle ScholarPubMed
Luthy, D. A., Mack, L., Hirsch, J., Cheng, E.Prenatal ultrasound diagnosis of thrombocytopenia with absent radii. Am J Obstet Gynecol 1981; 141: 350–351CrossRefGoogle ScholarPubMed
Donnenfeld, A. E.Prenatal diagnosis of thrombocytopenia in TAR syndrome. Prenat Diagn 1994; 14: 73–74CrossRefGoogle ScholarPubMed
Donnenfeld, A. E., Wiseman, B., Lavi, E., Weiner, S.Prenatal diagnosis of thrombocytopenia absent radius syndrome by ultrasound and cordocentesis. Prenat Diagn 1990; 10: 29–35CrossRefGoogle ScholarPubMed
Fadoo, Z., Naqvi, S. M.Acute myeloid leukemia in a patient with thrombocytopenia with absent radii syndrome. J Pediatr Hematol Oncol 2002; 24: 134–135CrossRefGoogle Scholar
Camitta, B. M., Rock, A.Acute lymphoidic leukemia in a patient with thrombocytopenia/absent radii (Tar) syndrome. Am J Pediatr Hematol Oncol 1993; 15: 335–337Google Scholar
Alter, B. P., Young, N. S. The bone marrow failure syndromes. In Nathan, D. G., Orkin, S. H., eds. Nathan and Oski's Hematology of Infancy and Childhood. Philadelphia, PA: W. B. Saunders, 1998: 237–335Google Scholar
Oostrom, C. G., Wilms, R. H.Congenital thrombocytopenia, associated with raised concentrations of haemoglobin F: a case report. Helv Paediatr Acta 1978; 33: 59–61Google ScholarPubMed
Guinan, E. C., Lee, Y. S., Lopez, K. D., et al.Effects of interleukin-3 and granulocyte-macrophage colony-stimulating factor on thrombopoiesis in congenital amegakaryocytic thrombocytopenia. Blood 1993; 81: 1691–1698Google ScholarPubMed
Muraoka, K., Ishii, E., Tsuji, K., et al.Defective response to thrombopoietin and impaired expression of c-mpl mRNA of bone marrow cells in congenital amegakaryocytic thrombocytopenia. Br J Haematol 1997; 96: 287–292CrossRefGoogle ScholarPubMed
Ihara, K. [Identification of mutations in c-mpl gene in congenital amegakaryocytic thrombocytopenia.] Fukuoka Igaku Zasshi 2000; 91: 207–211Google ScholarPubMed
Oudenrijn, S., Bruin, M., Folman, C. C., et al.Mutations in the thrombopoietin receptor, Mpl, in children with congenital amegakaryocytic thrombocytopenia. Br J Haematol 2000; 110: 441–448CrossRefGoogle ScholarPubMed
Tonelli, R., Scardovi, A. L., Pession, A., et al.Compound heterozygosity for two different amino-acid substitution mutations in the thrombopoietin receptor (c-mpl gene) in congenital amegakaryocytic thrombocytopenia (CAMT). Hum Genet 2000; 107: 225–233CrossRefGoogle Scholar
Ballmaier, M., Germeshausen, M., Schulze, H., et al.c-mpl mutations are the cause of congenital amegakaryocytic thrombocytopenia. Blood 2001; 97: 139–146CrossRefGoogle ScholarPubMed
Ouderijn, S., Haas, M., dem Borne, A. E.Screening for c-mpl mutations in patients with congenital amegakaryocytic thrombocytopenia identifies a polymorphism. Blood 2001; 97: 3675–3676CrossRefGoogle Scholar
Hallett, J. M., Martell, R. W., Sher, C., Jacobs, P.Amegakaryocytic thrombocytopenia with duplication of part of the long arm of chromosome 3. Br J Haematol 1989; 71: 291–292CrossRefGoogle Scholar
Miyazaki, H., Kato, T.ThrombopoietIn biology and clinical potentials. Int J Hematol 1999; 70: 216–225Google ScholarPubMed
Lackner, A., Basu, O., Bierings, M., et al.Haematopoietic stem cell transplantation for amegakaryocytic thrombocytopenia. Br J Haematol 2000; 109: 773–775CrossRefGoogle ScholarPubMed
Cramer, E.Gray platelet syndrome: immunoelectron microscopic localization of fibrinogen and von Willebrand. Blood 1985; 66: 1309Google ScholarPubMed
Rosa, J.-P., George, J. N., Bainton, D. F., et al.Gray platelet syndrome: demonstration of alpha granule membranes that can fuse with the cell surface. J Clin Invest 1987; 80: 1138–1146CrossRefGoogle ScholarPubMed
Jantunen, E.Inherited giant platelet disorders. Eur J Haematol 1994; 53: 191–196CrossRefGoogle ScholarPubMed
Greinacher, A., Mueller-Eckhardt, C.Hereditary types of thrombocytopenia with giant platelets and inclusion bodies in the leukocytes. Blut 1990; 60: 53–60CrossRefGoogle ScholarPubMed
Krishnamurti, L., Neglia, J. P., Nagarajan, R., et al.Paris–Trousseau syndrome platelets in a child with Jacobsen's syndrome. Am J Hematol 2001; 66: 295–299CrossRefGoogle Scholar
Behrens, W. E.Mediterranean macrothrombocytopenia. Blood 1975; 46: 199–208Google ScholarPubMed
Okita, J. R., Frojmovic, M. M., Kristopeit, S., Wong, T., Kunicki, T. J.Montreal platelet syndrome: a defect in calcium-activated neutral proteinase (calpain). Blood 1989; 74: 715–721Google Scholar
Hu, A., Wang, F., Sellers, J. R.Mutations in human nonmuscle myosin IIA found in patients with May–Hegglin anomaly and Fechtner syndrome result in impaired enzymatic function. J Biol Chem 2002; 277: 46512–46517CrossRefGoogle ScholarPubMed
Ochs, H. D., Slichter, S. J., Harker, L. A., et al.The Wiskott–Aldrich syndrome: studies of lymphocytes, granulocytes, and platelets. Blood 1980; 55: 243–252Google ScholarPubMed
Lawson, S. E., Thompson, L., Williams, M. D.Wiskott Aldrich syndrome presenting as congenital thrombocytopenia. Clin Lab Haematol 1999; 21: 397–399CrossRefGoogle ScholarPubMed
Sullivan, K. E., Mullen, C. A., Blaese, R. M., Winkelstein, J. A.A multiinstitutional survey of the Wiskott–Aldrich syndrome. J Pediatr 1994; 125: 876–885CrossRefGoogle ScholarPubMed
Derry, J. M., Ochs, H. D., Francke, U.Isolation of a novel gene mutated in Wiskott–Aldrich syndrome. Cell 1994; 78: 635–644CrossRefGoogle ScholarPubMed
Derry, J. M., Kerns, J. A., Weinberg, K. I., et al.WASP gene mutations in Wiskott–Aldrich syndrome and X-linked thrombocytopenia. Hum Mol Genet 1995; 4: 1127–1135CrossRefGoogle ScholarPubMed
Abo, A.Understanding the molecular basis of Wiskott–Aldrich-syndrome. Cell Mol Life Sci 1998; 54: 1145–1153CrossRefGoogle ScholarPubMed
Haddad, E., Cramer, E., Riviere, C., et al.The thrombocytopenia of Wiskott Aldrich syndrome is not related to a defect in proplatelet formation. Blood 1999; 94: 509–518Google Scholar
Filipovich, A. H., Stone, J. V., Tomany, S. C., et al.Impact of donor type on outcome of bone marrow transplantation for Wiskott–Aldrich syndrome: collaborative study of the International Bone Marrow Transplant Registry and the National Marrow Donor Program. Blood 2001; 97: 1598–1603CrossRefGoogle ScholarPubMed
Notarangelo, L. D., Parolini, O., Faustini, R., et al.Presentation of Wiskott Aldrich syndrome as isolated thrombocytopenia. Blood 1991; 77: 1125–1126Google ScholarPubMed
Thompson, A. R., Wood, W. G., Stamatoyannopoulos, G. X-linked syndrome of platelet dysfunction, thrombocytopenia, and imbalanced globin chain synthesis with hemolysis. Blood 1977; 50: 303–316Google Scholar
Raskind, W. H., Niakan, K. K., Wolff, J., et al.Mapping of a syndrome of X-linked thrombocytopenia with thalassemia to band Xp11–12: further evidence of genetic heterogeneity of X-linked thrombocytopenia. Blood 2000; 95: 2262–2268Google ScholarPubMed
Yu, C., Niakan, K. K., Matsushita, M., et al.X-linked thrombocytopenia with thalassemia from a mutation in the amino finger of GATA-1 affecting DNA binding rather than FOG-1 interaction. Blood 2002; 100: 2040–2045CrossRefGoogle ScholarPubMed
Nichols, K. E., Crispino, J. D., Poncz, M., et al.Familial dyserythropoietic anaemia and thrombocytopenia due to an inherited mutation in GATA1. Nat Genet 2000; 24: 266–270CrossRefGoogle Scholar
Freson, K., Devriendt, K., Matthijs, G., et al.Platelet characteristics in patients with X-linked macrothrombocytopenia because of a novel GATA1 mutation. Blood 2001; 98: 85–92CrossRefGoogle ScholarPubMed
Mehaffey, M. G., Newton, A. L., Gandhi, M. J., Crossley, M., Drachman, J. G.X-linked thrombocytopenia caused by a novel mutation of GATA-1. Blood 2001; 98: 2681–2688CrossRefGoogle ScholarPubMed
Arias, S., Penchaszadeh, V. B., Pinto-Cisternas, J., Larrauri, S.The IVIC syndrome: a new autosomal dominant complex pleiotropic syndrome with radial ray hypoplasia, hearing impairment, external ophthalmoplegia, and thrombocytopenia. Am J Med Genet 1980; 6: 25–59CrossRefGoogle ScholarPubMed
Epstein, C. J., Sahud, M. A., Piel, C. F., Goodman, J. R.Hereditary macrothrombocytopathia, nephritis and deafness. Am J Med 1972; 52: 299–310CrossRefGoogle ScholarPubMed
Hoyeraal, H. M., Lamvik, J., Moe, P. J.Congenital hypoplastic thrombocytopenia and cerebral malformations in two brothers. Acta Paediatr Scand 1970; 59: 185–191CrossRefGoogle ScholarPubMed
Khabbaze, Y., Karayalcin, G., Paley, C., et al.Thrombocytopenia absent corpus callosum syndrome: third case of a distinct clinical entity. J Pediatr Hematol Oncol 2001; 23: 469–471CrossRefGoogle ScholarPubMed
Gardner, R. J. M., Morrison, P. S., Abbott, G. D.A syndrome of congenital thrombocytopenia with multiple malformations and neurologic dysfunction. J Pediatr 1983; 102: 600–602CrossRefGoogle ScholarPubMed
Salvesen, D. R., Brudenell, M. J., Nicolaides, K. H.Fetal polycythemia and thrombocytopenia in pregnancies complicated by maternal diabetes mellitus. Am J Obstet Gynecol 1992; 166: 1287–1293CrossRefGoogle ScholarPubMed
Oppenheimer, E. H., Esterly, J. R.Thrombosis in the newborn: comparison between infants of diabetic and nondiabetic mothers. J Pediatr 1965; 67: 549–556CrossRefGoogle ScholarPubMed
Gamsu, H. R.Neonatal morbidity in infants of diabetic mothers. J R Soc Med 1978; 71: 211–222CrossRefGoogle ScholarPubMed
Ozand, P. T., Rashed, M., Gascon, G. G., et al.Unusual presentations of propionic acidemia. Brain Dev 1994; 16 (Suppl): 46–57CrossRefGoogle ScholarPubMed
Branski, D., Gale, R., Gross-Kieselstein, E., Abrahamov, A.Propionic acidemia and anorectal anomalies in three siblings. Am J Dis Child 1977; 131: 1379–1381Google ScholarPubMed
Kruger, C., Dorr, H. G., Becker, W., Wolf, F., Harms, D.Neonatal hyperthyroidism in non-diagnosed Basedow's disease of the mother: problems of diagnosis and therapy illustrated by a case history. Dtsch Med Wochenschr 1994; 119: 1346–1350Google Scholar
Geraghty, M. T., Perlman, E. J., Martin, L. S., et al.Cobalamin C defect associated with hemolytic-uremic syndrome. J Pediatr 1992; 120: 934–937CrossRefGoogle ScholarPubMed
Lewis, A., Cowen, P., Rodda, C., Dyall-Smith, D.Subcutaneous fat necrosis of the newborn complicated by hypercalcaemia and thrombocytopenia. Australas J Dermatol 1992; 33: 141–144CrossRefGoogle ScholarPubMed
Klerk, J. B., Duran, M., Dorland, L., et al.A patient with mevalonic aciduria presenting with hepatosplenomegaly, congenital anaemia, thrombocytopenia and leukocytosis. J Inherit Metab Dis 1988; 11 (Suppl 2): 233–236CrossRefGoogle ScholarPubMed
Reimold, E. W., Wittel, R. A.Renal venous thrombosis in children: changes in management. South Med J 1983; 76: 1277–1284CrossRefGoogle ScholarPubMed
Jones, J. E., Reed, J. F. Jr.Renal vein thrombosis and thrombocytopenia in a newborn infant. J Pediatr 1965; 67: 681–682CrossRefGoogle Scholar
Mocan, H., Beattie, T. J., Murphy, A. V.Renal venous thrombosis in infancy: long-term follow-up. Pediatr Nephrol 1991; 5: 45–49CrossRefGoogle ScholarPubMed
Zigman, A., Yazbeck, S., Emil, S., Nguyen, L.Renal vein thrombosis: a 10-year review. J Pediatr Surg 2000; 35: 1540–1542CrossRefGoogle ScholarPubMed
Favara, B. E., Franciosi, R. A., Butterfield, L. J.Disseminated intravascular and cardiac thrombosis of the neonate. Am J Dis Child 1974; 127: 197–204Google ScholarPubMed
Berman, W. Jr, Fripp, R. R., Yabek, S. M., Wernly, J., Corlew, S.Great vein and right atrial thrombosis in critically ill infants and children with central venous lines. Chest 1991; 99: 963–967CrossRefGoogle ScholarPubMed
Wolfman, W. L., Purohit, D. M., Self, S. E.Umbilical vein thrombosis at 32 weeks' gestation with delivery of a living infant. Am J Obstet Gynecol 1983; 146: 468–470CrossRefGoogle ScholarPubMed
Bhat, R., Fisher, E., Doshi, U., et al.Neonatal abdominal aortic thrombosis. Crit Care Med 1981; 9: 858–861CrossRefGoogle ScholarPubMed
Nachman, R. L., Thomas, M., Patel, D., Gottbrath, E.Thrombocytopenia as evidence of local thrombus: the umbilical arterial catheter. Pediatrics 1972; 50: 825–826Google ScholarPubMed
Sartori, P. C., Enayat, M. S., Darbyshire, P. J.Congenital microangiopathic haemolytic anemia: a variant of thrombotic thrombocytopenic purpura?Pediatr Hematol Oncol 1993; 10: 271–277CrossRefGoogle ScholarPubMed
Kinoshita, S., Yoshioka, A., Park, Y. D., et al.Upshaw–Schulman syndrome revisited: a concept of congenital thrombotic thrombocytopenic purpura. Int J Hematol 2001; 74: 101–108CrossRefGoogle ScholarPubMed
Cohen, I. J., Amir, J., Gedaliah, A., et al.Thrombocytopenia of neonatal cold injury. J Pediatr 1984; 104: 620–622CrossRefGoogle ScholarPubMed
Katz, J., Rodriguez, E., Mandani, G., Branson, H. E.Normal coagulation findings, thrombocytopenia, and peripheral hemoconcentration in neonatal polycythemia. J Pediatr 1982; 101: 99–102CrossRefGoogle ScholarPubMed
Shuper, A., Mimouni, F., Merlob, P., Zaizov, R., Reisner, S. H.Thrombocytopenia in small-for-gestational-age infants. Acta Paediatr Scand 1983; 72: 139–140CrossRefGoogle ScholarPubMed
Peters, M., ten Cate, J. W., Koo, L. H., Breederveld, C.Persistent antithrombin III deficiency: risk factor for thromboembolic complications in neonates small for gestational age. J Pediatr 1984; 105: 310–314CrossRefGoogle ScholarPubMed
Ilic, S., , Grubacic V.Hematologic changes in children small for gestational age. Srp Arh Celok Lek 1989; 117: 285–290Google ScholarPubMed
Minior, V. K., Divon, M. Y.Fetal growth restriction at term: myth or reality?Obstet Gynecol 1998; 92: 57–60CrossRefGoogle ScholarPubMed
Segall, M. L., Goetzman, B. W., Schick, J. B.Thrombocytopenia and pulmonary hypertension in the perinatal aspiration syndromes. J Pediatr 1980; 96: 727–730CrossRefGoogle ScholarPubMed
Chessells, J. M., Wigglesworth, J. S.Coagulation studies in severe birth asphyxia. Arch Dis Child 1971; 46: 253–256CrossRefGoogle ScholarPubMed
Chadd, M. A., Elwood, P. C., Gray, O. P., Muxworthy, S. M.Coagulation defects in hypoxic full-term newborn infants. Br Med J 1971; 4: 516–518CrossRefGoogle ScholarPubMed
Chevuru, S. C., Sola, M. C., Theriaque, D. W., et al.Multicenter analysis of platelet transfusion usage among neonates on extracorporeal membrane oxygenation. Pediatrics 2002; 109: e89CrossRefGoogle ScholarPubMed
Pyle, R. B., Helton, W. C., Johnson, F. W., et al.Clinical use of the membrane oxygenator. Arch Surg 1975; 110: 966–970CrossRefGoogle ScholarPubMed
Gross, S., Keefer, V., Liebman, J.The platelets in cyanotic congenital heart disease. Pediatrics 1968; 42: 651–658Google ScholarPubMed
Titlestad, K., Georgsen, J., Jorgensen, J., Kristensen, T.Monitoring transfusion practices at two university hospitals. Vox Sang 2001; 80: 40–47CrossRefGoogle ScholarPubMed
Bussel, J. B.Thrombocytopenia in newborns, infants, and children. Pediatr Ann 1990; 19: 181–185CrossRefGoogle ScholarPubMed
McDonald, M. M., Johnson, M. L., Rumack, C. M., et al.Role of coagulopathy in newborn intracranial hemorrhage. Pediatrics 1984; 74: 26–31Google ScholarPubMed
Calhoun, D. A., Christensen, R. D., Edstrom, C. S., et al.Consistent approaches to procedures and practices in neonatal hematology. Clin Perinatol 2000; 27: 733–753CrossRefGoogle ScholarPubMed
Strauss, R. G., Levy, G. J., Sotelo-Avila, C., et al.National survey of neonatal transfusion practices: II. Blood component therapy. Pediatrics 1993; 91: 530–536Google ScholarPubMed
Roberts, I. A. G., Murray, N. A.Management of thrombocytopenia in neonates. Br J Haematol 1999; 105: 864–870CrossRefGoogle ScholarPubMed
Blanchette, V. S., Rand, M. L.Platelet disorders in newborn infants: diagnosis and management. Semin Perinatol 1997; 21: 53–62CrossRefGoogle ScholarPubMed
Effiong, C. E., Usanga, E. A., Mellits, E. D.Platelet count in healthy full-term Nigerian neonates. Trop Geogr Med 1976; 28: 329–332Google ScholarPubMed
Lundstrom, U.Thrombocytosis in low birthweight infants: a physiological phenomenon in infancy. Arch Dis Child 1979; 54: 715–717CrossRefGoogle ScholarPubMed
Matsubara, K., Baba, K., Nigami, H., et al.Early elevation of serum thrombopoietin levels and subsequent thrombocytosis in healthy preterm infants. Br J Haematol 2001; 115: 963–968CrossRefGoogle ScholarPubMed
Halperin, D. S., Wacker, P., Lacourt, G., et al.Effects of recombinant human erythropoietin in infants with the anemia of prematurity: a pilot study. J Pediatr 1990; 116: 779–786CrossRefGoogle ScholarPubMed
Gunn, T., Reaman, G., Outerbridge, E. W., Colle, E.Peripheral total parenteral nutrition for premature infants with the respiratory distress syndrome: a controlled study. J Pediatr 1978; 92: 608–613CrossRefGoogle ScholarPubMed
Burstein, Y., Giardina, P. J., Rausen, A. R., et al.Thrombocytosis and increased circulating platelet aggregates in newborn infants of polydrug users. J Pediatr 1979; 94: 895–899CrossRefGoogle ScholarPubMed
Chambers, H. M., Haslam, R. R. Maternal narcotic abuse and neonatal thrombocytosis. Arch Dis Child 1989; 64: 426CrossRefGoogle Scholar
Garcia-Algar, O., Brichs, L. F., Garcia, E. S., et al.Methadone and neonatal thrombocytosis. Pediatr Hematol Oncol 2002; 19: 193–195CrossRefGoogle ScholarPubMed
Nako, Y., Tachibana, A., Fujiu, T., Tomomasa, T., Morikawa, A.Neonatal thrombocytosis resulting from the maternal use of non-narcotic antischizophrenic drugs during pregnancy. Arch Dis Child Fetal Neonatal Ed 2001; 84: F198–F200CrossRefGoogle ScholarPubMed
Lorber, J., Lilleyman, J. S., Peile, E. B.Acute infantile thrombocytosis and vitamin K deficiency associated with intracranial haemorrhage. Arch Dis Child 1979; 54: 471–472CrossRefGoogle ScholarPubMed
Ozsoylu, S.Acute infantile thrombocytosis and vitamin K deficiency associated with intracranial haemorrhage. Arch Dis Child 1980; 55: 84–85CrossRefGoogle ScholarPubMed
Miller, J. M., Sherrill, J. G., Hathaway, W. E.Thrombocythemia in the myeloproliferative disorder of Down's syndrome. Pediatrics 1967; 40: 847–850Google ScholarPubMed
Cairney, A. E., McKenna, R., Arthur, D. C., Nesbit, M. E. Jr, Woods, W. G.Acute megakaryoblastic leukaemia in children. Br J Haematol 1986; 63: 541–554Google ScholarPubMed
Lewis, D. S.Acute megakaryoblastic leukemia in childhood. Blood 1984; 63: 725Google ScholarPubMed
Sandstedt, B., Nilsson, H.Granulomatous giant cell arteritis in an infant. Acta Paediatr Scand 1982; 71: 863–868CrossRefGoogle ScholarPubMed
Gasparini, N., Franzese, A., Argenziano, A., Di, M., Tenore, A.Thrombocytosis in congenital adrenal hyperplasia at diagnosis. Clin Pediatr 1996; 35: 267–269CrossRefGoogle ScholarPubMed
Yohannan, M. D., Santhosh-Kumar, C. R.Thrombocytosis in congenital adrenal hyperplasia at diagnosis. Clin Pediatr 1997; 36: 186CrossRefGoogle ScholarPubMed
Alvarez, O., Miller, J. H., Coates, T. D.Thrombocytosis and hyposplenism in an infant with fetal hydantoin syndrome. Am J Pediatr Hematol Oncol 1992; 14: 62–65CrossRefGoogle Scholar
Mino, M.Use and safety of elevated dosages of vitamin E in infants and children. Int J Vitam Nutr Res Suppl 1989; 30: 69–80Google ScholarPubMed
Keeton, B. R.Vitamin E deficiency and thrombocytosis in Caffey's disease. Arch Dis Child 1976; 51: 393–395CrossRefGoogle ScholarPubMed
Willig, T. N., Gazda, H., Sieff, C. A.Diamond–Blackfan anemia. Curr Opin Hematol 2000; 7: 85–94CrossRefGoogle ScholarPubMed
Turba, F., Bianchi, C., Cella, D., Rondanini, G. F.Thrombocytosis and neonatal subcutaneous adiponecrosis. Minerva Pediatr 1994; 46(7–8): 343–346Google ScholarPubMed
Nielsen, I. M., Ornvold, K., Jacobsen, B. B., Ranek, L.Fatal familial cholestatic syndrome in Greenland Eskimo children. Acta Paediatr Scand 1986; 75: 1010–1016CrossRefGoogle ScholarPubMed
Yogev, R., Schreiber, M., Gardner, S., Shulman, S. T.Moxalactam in the treatment of pediatric infections. Am J Dis Child 1982; 136: 836–839Google ScholarPubMed
Reempts, P. J., Overmeire, B., Mahieu, L. M., Vanacker, K. J.Clinical experience with ceftriaxone treatment in the neonate. Chemotherapy 1995; 41: 316–322CrossRefGoogle ScholarPubMed
Yogev, R., Shulman, S. T., Chadwick, E. G., Davis, A. T., Glogowski, W.Once daily ceftriaxone for central nervous system infections and other serious pediatric infections. Pediatr Infect Dis 1986; 5: 298–303CrossRefGoogle ScholarPubMed
Bruel, H., Chabrolle, J. P., el Khoury, E., et al.Thrombocytosis and cholestasis in a newborn treated with zidovudine. Arch Pediatr 2001; 8: 893–894CrossRefGoogle Scholar
Hsu, H. L., Lu, C. Y., Tseng, H. Y., et al.Empirical monotherapy with meropenem in serious bacterial infections in children. J Microbiol Immunol Infect 2001; 34: 275–280Google ScholarPubMed
Koksal, N., Hacimustafaoglu, M., Bagci, S., Celebi, S.Meropenem in neonatal severe infections due to multiresistant gram-negative bacteria. Indian J Pediatr 2001; 68: 15–19CrossRefGoogle ScholarPubMed
Oral, R., Akisu, M., Kultursay, N., Vardar, F., Tansug, N.Neonatal Klebsiella pneumonia sepsis and imipenem/cilastatin. Indian J Pediatr 1998; 65: 121–129CrossRefGoogle ScholarPubMed
Meissner, H. C., Groothuis, J. R., Rodriguez, W. J., et al.Safety and pharmacokinetics of an intramuscular monoclonal antibody (SB 209763) against respiratory syncytial virus (RSV) in infants and young children at risk for severe RSV disease. Antimicrob Agents Chemother 1999; 43: 1183–1188Google ScholarPubMed
Addiego, J. E. Jr, Mentzer, W. C. Jr, Dallman, P. R.Thrombocytosis in infants and children. J Pediatr 1974; 85: 805–807CrossRefGoogle ScholarPubMed
Vora, A. J., Lilleyman, J. S.Secondary thrombocytosis. Arch Dis Child 1993; 68: 88–90CrossRefGoogle ScholarPubMed
Chan, K. W., Kaikov, Y., Wadsworth, L. D.Thrombocytosis in childhood: a survey of 94 patients. Pediatrics 1989; 84: 1064–1067Google ScholarPubMed
Heng, J. T., Tan, A. M.Thrombocytosis in childhood. Singapore Med J 1998; 39: 485–487Google ScholarPubMed
Sutor, A. H.Thrombocytosis in childhood. Semin Thromb Hemost 1995; 21: 330–339CrossRefGoogle ScholarPubMed
Randi, M. L., Rossi, C., Fabris, F., Girolami, A.Essential thrombocythemia in young adults: major thrombotic complications and complications during pregnancy: a follow-up study in 68 patients. Clin Appl Thromb Hemost 2000; 6: 31–35CrossRefGoogle ScholarPubMed
Dror, Y., Blanchette, V. S.Essential thrombocythaemia in children. Br J Haematol 1999; 107: 691–698CrossRefGoogle ScholarPubMed
Taksin, A. L., Le, C., Dusanter-Fourt, I., et al.Autonomous megakaryocyte growth in essential thrombocythemia and idiopathic myelofibrosis is not related to a c-mpl mutation or to an autocrine stimulation by Mpl-L. Blood 1999; 93: 125–139Google Scholar
Randi, M. L., Putti, M. C., Fabris, F., et al.Features of essential thrombocythaemia in childhood: a study of five children. Br J Haematol 2000; 108: 86–89CrossRefGoogle ScholarPubMed
Kapoor, G., Correa, H., Yu, L. C.Essential thrombocythemia in an infant. J Pediatr Hematol Oncol 1996; 18: 381–383CrossRefGoogle ScholarPubMed
Hays, R. M., Bartoshesky, L. E., Feingold, M.New features of thrombocytopenia and absent radius syndrome. Birth Defects Orig Artic Ser 1982; 18: 115–121Google ScholarPubMed
Haeringen, A., Veenstra, F., Maaswinkel-Mooij, P. D., Kamp, J. J.Intermittent thrombocytopenia and absent radii: report of a patient with additional unusual manifestations. Am J Med Genet 1989; 34: 202–206CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×