Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-02T20:28:52.472Z Has data issue: false hasContentIssue false

4 - Early Experience and Stress Regulation in Human Development

Published online by Cambridge University Press:  03 May 2011

Megan R. Gunnar
Affiliation:
University of Minnesota
Michelle M. Loman
Affiliation:
University of Minnesota.
Daniel P. Keating
Affiliation:
University of Michigan, Ann Arbor
Get access

Summary

Since the work of Hans Selye (1973), the idea that stress can be detrimental to health has become common knowledge. Less commonly known is the evidence that stress may have detrimental effects on development (De Bellis, 2001; Gunnar & Vazquez, 2006; Heim, Plotsky, & Nemeroff, 2004). In this chapter, we describe what is known about the physiology of stress and its potential influence on young children. We then turn to studies of human development to examine the ways that stress is regulated early in life and the evidence that the stress system is responsive to adverse conditions during infancy and early childhood.

Stress results when demands exceed immediately available resources (Lazarus & Folkman, 1984). These demands may be physical or psychological. Regardless, the imbalance in demands and resources requires that resources need to be found to meet the demands (Gunnar, 2000). These resources may be external, such as the help and support provided by parents and friends, or internal, such as a novel solution to a problem. Obtaining resources requires energy. Finding the energy needed for action and tuning the brain and body to meet the demands of the moment are the jobs of the stress system (Sapolsky, 1994). The stress system finds the energy we need to deal with immediate demands by putting future-oriented processes on hold. If there is an immediate threat to our survival, we do not need to put energy into fighting off a virus, digesting our lunch, or growing an extra inch.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahnert, L., Gunnar, M., Lamb, M., & Barthel, M. (2004). Transition to child care: Associations with infant-mother attachment, infant negative emotion, and cortisol elevations. Child Development 75, 639–50.CrossRefGoogle Scholar
Barbazanges, A., Piazza, P. V., Moal, M. L., & Maccari, S. (1996). Maternal glucocorticoid secretion mediates long-term effects of prenatal stress. The Journal of Neuroscience, 16(12), 3943–9.Google Scholar
Barr, R. G. (1990). The early crying paradox: A modest proposal. Human Nature, 1(4), 355–89.CrossRefGoogle Scholar
Bennett, A. J., Lesch, K. P., Heils, A., Long, J. C., Lorenz, J. G., Shoal, S. E., et al. (2002). Early experience and serotonin transporter gene variation interact to influence primate CNS function. Molecular Psychiatry, 7, 118–22.CrossRefGoogle Scholar
Belsky, J., Lowe Vandell, D., Burchinal, M., Clarke-Stewart, K. A., McCartney, K., Tresch Owen, M., et al. (2007) Are there long-term effects of early child care? Child Development, 78, 681–701.Google Scholar
Blass, E. M., & Watt, L. B. (1999). Suckling- and sucrose-induced analgesia in human newborns. Pain, 83, 611–12.CrossRefGoogle Scholar
Born, J., Kern, W., Fehm-Wolfsdorf, G., & Fehm, H. L. (1987). Cortisol effects on attentional processes in man as indicated by event-related potentials. Psychophysiology, 24(3), 286–92.CrossRefGoogle Scholar
Bremner, J. D., Vythilingam, N., Vermetten, E., Southwick, S. M., McGlashan, T., Nazeer, A., et al. (2003). MRI and PET study of deficits in hippocampal structure and function in women with childhood sexual abuse and posttraumatic stress disorder. American Journal of Psychiatry, 160, 924–32.CrossRefGoogle Scholar
Caldji, C., Tannenbaum, B., Sharma, S., Francis, D., Plotsky, P. M., & Meaney, M. J. (1998). Maternal care during infancy regulates the development of neural systems mediating the expression of fearfulness in the rat. Proceedings of the National Academy of Sciences of the United States of America, 95(9), 5335–40.CrossRefGoogle Scholar
Carrion, V. G., Weems, C. F., & Reiss, A. L. (2007). Stress predicts brain changes in children: A pilot longitudinal study on youth stress, posttraumatic stress disorder, and the hippocampus. Pediatrics, 119, 509–16.CrossRefGoogle Scholar
Cicchetti, D., & Rogosch, F. A. (2001). Diverse patterns of neuroendocrine activity in maltreated children. Development and Psychopathology, 13, 677–93.CrossRefGoogle Scholar
Cicchetti, D., & Valentino, K. (2006). An ecological transactional perspective on child maltreatment: Failure of the average expectable environment and its influence upon child development. In Cicchetti, D. & Cohen, D. J. (Eds.), Developmental Psychopathology, 2nd ed. (Vol. 3, pp. 129–201). New York: Wiley.
Cirulli, F., Berry, A., & Alleva, E. (2003). Early disruption of the mother-infant relationship: Effects on brain plasticity and implications for psychopathology. Neuroscience and Biobehavioral Reviews, 27, 73–82.CrossRefGoogle Scholar
Clarke, A. S., Wittwer, D. J., Abbott, D. H., & Schneider, M. L. (1994). Long-term effects of prenatal stress on HPA axis activity in juvenile rhesus monkeys. Developmental Psychobiology, 27, 257–70.CrossRefGoogle Scholar
Dahl, R. E. (1996). The regulation of sleep and arousal: Development and psychopathology. Development and Psychopathology, 8, 3–27.CrossRefGoogle Scholar
Davis, E. P., Glynn, L. M., Schetter, C. D., Hobel, C., Chicz-Demet, A., & Sandman, C.A. (2007). Prenatal exposure to maternal depression and cortisol influences infant temperament. Journal of American Academy of Child and Adolescent Psychiatry, 46,(6), 737–46.CrossRefGoogle Scholar
Bellis, M. (2001). Developmental traumatology: the psychobiological development of maltreated children and its implications for research, treatment, and policy. Development & Psychopathology, 13, 539–64.CrossRefGoogle Scholar
Bellis, M. D., Baum, A. S., Birmaher, B., Keshavan, M. S., Eccard, C. H., Boring, A. M., et al. (1999). Developmental traumatology, Part 1: Biological stress systems. Biological Psychiatry, 45, 1259–70.CrossRefGoogle Scholar
Bellis, M. D., Keshavan, M. S., Clark, D. B., Casey, B. J., Giedd, J. N., Boring, A. M., et al. (1999). Developmental traumatology, Part 2: Brain development. Biological Psychiatry, 45, 1271–84.CrossRefGoogle Scholar
Kloet, E. R., & Wied, D. (1980). The brain as target tissue for hormones of pituitary origin: Behavioral and biochemical studies. In Martini, L. & Ganong, W. F. (Eds.), Frontiers in Neuroendocrinology (Vol. 6, pp. 157–201). New York: Raven.
Kloet, E. R., Rots, N. Y., & Cools, A. R.(1996). Brain-corticosteroid hormone dialogue: Slow and persistent. Cellular and Molecular Neurobiology, 16(3), 345–56.CrossRef
Wied, D., & Croiset, G. (1991). Stress modulation of learning and memory processes. In Jasmin, G. & Proschek, L. (Eds.), Stress Revisited. 2. Systemic Effects of Stress (Vol. 15, pp. 167–99). New York: Basel.
Dettling, A., Fielding, J., & Pryce, C. R. (2002). Repeated parental deprivation in the infant common marmoset (Callithrix Jacchus, Primates) and analysis of its effects on early development. Biological Psychiatry, 52, 1037–46.CrossRefGoogle Scholar
Dettling, A., Gunnar, M. R., & Donzella, B. (1999). Cortisol levels of young children in full-day childcare centers: Relations with age and temperament. Psychoneuroendocrinology, 24(5), 505–18.CrossRefGoogle Scholar
Dettling, A. C., Parker, S. W., Lane, S. K., Sebanc, A. M., & Gunnar, M. R. (2000). Quality of care and temperament determine whether cortisol levels rise over the day for children in full-day childcare. Psychoneuroendocrinology, 25, 819–36.CrossRefGoogle Scholar
Diamond, D. M., & Rose, G. M. (1994). Stress impairs LTP and hippocampal-dependent memory. Annals of the New York Academy of Sciences, 746, 411–14.Google Scholar
DiPietro, J. A., Caulfield, L. E., Costigan, K. A., Merialdi, M., Nguyen, R. H., & Zavaleta, N. (2004). Fetal neurobehavioral development: A tale of two cities. Developmental Psychology, 40, 443–56.CrossRefGoogle Scholar
DiPietro, J. A., Costigan, K. A., Shupe, A. K., Pressman, E. K., & Johnson, T. R. (1998). Fetal neurobehavioral development associated with social class and fetal sex. Developmental Psychobiology, 33, 79–81.3.0.CO;2-P>CrossRefGoogle Scholar
DiPietro, J. A., Hodgson, D. M., Costigan, K. A., Hilton, S. C., & Johnson, T. R. (1996). Fetal neurobehavioral development. Child Development, 67, 2553–67.CrossRefGoogle Scholar
Dozier, M., Manni, M., Gordon, M. K., Peloso, E., Gunnar, M. R., Stovall-McClough, K. C. et al. (2006). Foster children's diurnal production of cortisol: An exploratory study. Child Maltreatment, 11, 189–97.CrossRefGoogle Scholar
Fahlke, C., Lorenz, J. G., Long, J., Champoux, M., Suomi, S. J., & Higley, J. D. (2000). Rearing experiences and stress-induced plasma cortisol as early risk factors for excessive alcohol consumption in nonhuman primates. Alcoholism, Clinical & Experimental Research, 24(5), 644–50.CrossRefGoogle Scholar
Giannakoulpoulous, X., Sepulveda, W., Kourtis, P., Glover, V., & Fisk, N. M. (1994). Fetal plasma and beta-endorphin response to intrauterine needling. Lancet, 344, 77–81.CrossRefGoogle Scholar
Goenjian, A. K., Yehuda, R., Pynoos, R. S., Steinberg, A. M., Tashjian, M., Yang, R. et al. (1996). Basal cortisol, dexamethasone suppression of cortisol, and MHPG in adolescents after the 1988 earthquake in Armenia. American Journal of Psychiatry, 153, 929–34.CrossRefGoogle Scholar
Gould, E., & Cameron, H. A. (1996). Regulation of neuronal birth, migration, and death in the rat dentate gyrus. Developmental Neuroscience, 18(1–2), 22–35.Google Scholar
Graham, Y. P., Heim, C., Goodman, S. H., Miller, A. H., & Nemeroff, C. B. (1999). The effects of neonatal stress on brain development: Implications for psychopathology. Development and Psychopathology, 11, 545–65.CrossRefGoogle Scholar
Gunnar, M. R. (1992). Reactivity of the hypothalamic-pituitary-adrenocortical system to stressors in normal infants and children. Pediatrics, 90(3), 491–97.Google Scholar
Gunnar, M. R. (2000). Early adversity and the development of stress reactivity and regulation. In Nelson, C. A. (Ed.), The Effects of Adversity on Neurobehavioral Development. The Minnesota Symposia on Child Psychology (Vol. 31, pp. 163–200). Mahwah, NJ: Erlbaum.
Gunnar, M. R., Bruce, J., & Donzella, B. (2000). Stress physiology, health, and behavioral development. In Thornton, A. (Ed.), Family and Child Well-Being: Research and Data Needs. Ann Arbor, MI: University ofMichigan Press.
Gunnar, M., & Donzella, B., 2002. Social regulation of cortisol levels in early human development. Psychoneuoendocrinology, 27, 199–220.Google Scholar
Gunnar, M. R., Fisch, R., Korsvik, S., & Donhowe, J. (1981). The effect of circumcision on serum cortisol and behavior. Psychoneuroendocrinology, 6(3), 269–76.CrossRefGoogle Scholar
Gunnar, M., Fisher, P., & the Early Experience, Stress, and Prevention Network. (2006). Bringing basic research on early experience and stress neurobiology to bear on preventive interventions for neglected and maltreated children. Development and Psychopathology, 18, 651–77.CrossRefGoogle Scholar
Gunnar, M. R., Malone, S., & Fisch, R. O. (1985). Coping with aversive stimulation in the neonatal period: Quiet sleep and plasma cortisol levels during recovery from circumcision in newborns. Child Development, 56, 824–34.CrossRefGoogle Scholar
Gunnar, M. R., Morison, S. J., Chisholm, K., & Schuder, M. (2001). Salivary cortisol levels in children adopted from Romanian orphanages. Development and Psychopathology, 13, 611–28.CrossRefGoogle Scholar
Gunnar, M. R., Porter, F., Wolf, C., & Rigatuso, J. (1995). Neonatal stress reactivity: Predictions to later emotional temperament. Child Development, 66, 1–14.CrossRefGoogle Scholar
Gunnar, M. R. & Quevedo, K. (2007). The neurobiology of stress and development. Annual Review of Psychology, 58, 145–73.CrossRefGoogle Scholar
Gunnar, M. R., Sebanc, A. M., Tout, K., Donzella, B., & Dulmen, M. M. H. (2003). Peer rejection, temperament, and cortisol activity in preschoolers. Developmental Psychobiology, 43, 346–58.CrossRefGoogle Scholar
Gunnar, M. R., & Vazquez, D. M. (2001). Low cortisol and a flattening of the expected daytime rhythm: Potential indices of risk in human development. Development and Psychopathology, 13, 516–38.CrossRefGoogle Scholar
Gunnar, M., & Vazquez, D. (2006). Stress neurobiology and developmental psychopathology. In Cicchetti, D. & Cohen, D. J. (Eds.), Developmental Psychopathology, 2nd ed., (Vol. 2, pp. 533–77). New York: Wiley.
Hartup, W. W. (1992). Peer relations in early and middle childhood. In Hasselt, V. B. & Herson, M. (Eds.), Handbook of Social Development: A Lifespan Perspective (pp. 257–81). New York: Plenum.
Heim, C., Newport, D. J., Heit, S., Graham, Y. P., Wilcox, M.Bonsall, R., et al. (2000). Pituitary-adrenal and autonomic responses to stress in women after sexual and physical abuse in childhood. Journal of the American Medical Association, 284(5), 592–97.CrossRefGoogle Scholar
Heim, C., Owen, M. J., Plotsky, P. M., & Nemeroff, C. B. (1997). The role of early adverse life events in the etiology of depression and posttraumatic stress disorder: Focus on corticotropin-releasing factor. Annals of the New York Academy of Sciences, 821, 194–207.CrossRefGoogle Scholar
Heim, C., Plotsky, P., & Nemeroff, C. B. (2004). The importance of studying the contributions of early adverse experiences to the neurobiological findings in depression. Neuropsychopharmacology, 29, 641–48.CrossRefGoogle Scholar
Hofer, M. (1987). Shaping forces within early social relationships. In Krasnegar, N. A. (Ed.), Perinatal Development: A Psychobiological Perspective (pp. 251–74). Orlando, FL: Academic.
Hrdy, S. B. (1999). Mother Nature. New York: Pantheon.
Huizink, A. C., Medina, P. G. R., Mulder, E. J. H., Visser, G. H. A., & Buitelaar, J. K. (2000a). Prenatal psychosocial and endocrinologic predictors of infant temperament. In Huizink, A. C. (Ed.), Prenatal Stress and its Effects on Infant Development (pp. 171–200). Hoorn, Netherlands: Drukkerij Van Vliet.
Huizink, A. C., Medina, R., Mulder, E. J. H., Visser, G. H. A., & Buitelaar, J. K. (2000b). Psychosocial and endocrinologic measures of prenatal stress as predictors of mental and motor development in infancy. In Huizink, A. (Ed.), Prenatal Stress and Its Effects on Infant Development (pp. 147–70). Hoorn, Netherlands: Drukkerij Van Vliet.
Johnson, E. O., Kamilaris, T. C., Chrousos, G. P., & Gold, P. W. (1992). Mechanisms of stress: A dynamic overview of hormonal and behavioral homeostasis. Neuroscience and Biobehavioral Reviews, 16, 115–30.CrossRefGoogle Scholar
Kertes, D. A., Gunnar, M. R., Madsen, N. J., & Long, J. (2008). Early deprivation and home basal cortisol levels: A study of internationally adopted children. Development & Psychopathology, 20(2), 473–91.CrossRefGoogle Scholar
Larson, M., White, B. P., Cochran, A., Donzella, B., & Gunnar, M. R. (1998). Dampening of the cortisol response to handling at 3 months in human infants and its relation to sleep, circadian cortisol activity, and behavioral distress. Developmental Psychobiology, 33(4), 327–37.3.0.CO;2-S>CrossRefGoogle Scholar
Lazarus, R. S., & Folkman, S. (1984). Stress, Appraisal, and Coping. New York: Springer.
Levine, S. (1994). The ontogeny of the hypothalamic-pituitary-adrenal axis: The influence of maternal factors. Annals of the New York Academy of Sciences, 746, 275–88.CrossRefGoogle Scholar
Liu, D., Diorio, J., Day, J. C., Francis, D. D., & Meaney, M. J. (2000). Maternal care, hippocampal synaptogenesis and cognitive development in rats. Nature Neuroscience, 3(8), 799–806.CrossRefGoogle Scholar
Liu, D., Diorio, J., Tannenbaum, B., Caldji, C., Francis, D., Freedman, A., et al. (1997). Maternal care, hippocampal glucocorticoid receptors, and hypothalamic-pituitary-adrenal responses to stress. Science, 227, 1659–62.CrossRef
Lopez, J. F., Chalmers, D. T., Little, K. Y., & Watson, S. J. (1998). Regulation of serotonin 1A, glucocorticoid, and mineralocorticoid receptor in rat and human hippocampus: Implications for the neurobiology of depression. Biological Psychiatry, 43, 547–73.CrossRefGoogle Scholar
McCormack, K., Newman, T., Higley, J., Maestripieri, D., & Sanchez, M. (2009). Serotonin transporter gene variation, infant abuse, and responsiveness to stress in rhesus macaque mothers and infants. Hormones and Behavior, 55(4), 538–47.CrossRefGoogle Scholar
McEwen, B. (1998). Protective and damaging effects of stress mediators. New England Journal of Medicine, 338, 171–79.CrossRefGoogle Scholar
McGaugh, J. L. (1983). Hormonal influences on memory. Annual Review of Psychology, 34, 297–323.CrossRefGoogle Scholar
Meaney, M. J., Diorio, J., Francis, D., LaRocque, S., O'Donnell, D., Smythe, J. W., et al. (1994). Environmental regulation of the development of glucocorticoid receptor systems in the rat forebrain: The role of serotonin. Annals of the New York Academy of Sciences, 746, 260–74.CrossRefGoogle Scholar
Meaney, M. & Szyf, M. (2005). Environmental programming of stress responses through DNA methylation: Life at the interface between a dynamic environment and a fixed genome. Dialogues in Clinical Neuroscience, 7, 103–23.Google Scholar
Nachmias, M., Gunnar, M. R., Mangelsdorf, S., Parritz, R., & Buss, K. (1996). Behavioral inhibition and stress reactivity: Moderating role of attachment security. Child Development, 67(2), 508–22.CrossRefGoogle Scholar
,National Research Council and Institute of Medicine (2000). From Neurons to Neighborhoods: The Science of Early Child Development. Committee on Integrating the Science of Early Childhood Development. Shonkoff, J. P. & Phillips, D. A., (Eds.) Board on Children, Youth, and Families, Commission on Behavioral and Social Sciences and Education. Washington, DC: National Academy Press.
Nemeroff, C. B. (1998). The neurobiology of depression. Scientific American, June, 42–9.CrossRef
,NICHD Early Child Care Research Network (2001). Childcare and children's peer relationships at 24 and 36 months: The NICHD Study of Early Child Care. Child Development, 72(5), 1478–1500.CrossRefGoogle Scholar
Palkovits, M. (1987). Organization of the stress response at the anatomical level. In Kloet, E. R., Wiegant, V. M. & Wied, D. (Eds.), Progress in Brain Research (Vol. 72, pp. 47–55). Amsterdam, Holland: Elsevier.
Peisner-Feinberg, E. S., Burchinal, M. R., Clifford, R. M., Culkin, M. L., Howes, C., Kagan, S. L. et al. (2001) The relation of preschool childcare quality to children's cognitive and social developmental trajectories through second grade. Child Development, 72, 1534–53.CrossRefGoogle Scholar
Porges, S. W. (1995). Cardiac vagal tone: A physiological index of stress. Neuroscience and Biobehavioral Reviews, 19(2), 225–33.CrossRefGoogle Scholar
Porter, F. L., Porges, S. W., & Marshall, R. E. (1988). Newborn pain cries and vagal tone: Parallel changes in response to circumcision. Child Development, 59, 495–505.CrossRefGoogle Scholar
Pynoos, R. S., Steinberg, A. M., & Wraith, R. (1995). A developmental model of childhood traumatic stress. In Cicchetti, D. & Cohen, D. J. (Eds.), Developmental psychopathology (Vol. 2, pp. 72–95). New York: Wiley.
Rosen, J. B., & Schulkin, J. (1998). From normal fear to pathological anxiety. Psychological Review, 105(2), 325–50.CrossRefGoogle Scholar
Rosenblum, L. A., & Andrews, M. W. (1994). Influences of environmental demand on maternal behavior and infant development. Acta Paediatrica, Supplement 397, 57–63.CrossRefGoogle Scholar
Rosenblum, L. A., Coplan, J. D., Friedman, S., Bassoff, T., Gorman, J. M., & Andrews, M. W. (1994). Adverse early experiences affect noradrenergic and serotonergic functioning in adult primates. Biological Psychiatry, 35(4), 221–27.CrossRefGoogle Scholar
Sanchez, M., 2006. The impact of early adverse care on HPA axis development: Nonhuman primate models. Hormones and Behavior, 50, 623–31.Google Scholar
Sanchez, M. M., Aguado, F., Sanchez-Toscano, F., & Saphier, D. (1998). Neuroendocrine and immunocytochemical demonstrations of decreased hypothalamo-pituitary-adrenal axis responsiveness to restraint stress after long-term social isolation. Endocrinology, 139(2), 579–87.CrossRefGoogle Scholar
Sanchez, M., Noble, P., Lyon, C., Plotsky, P., Davis, M., Nemorff, C., et al. (2005). Alterations of diurnal cortisol rhythm and acoustic startle response in nonhuman primates with adverse rearing. Biological Psychiatry, 57, 373–81.CrossRefGoogle Scholar
Sanchez, M. M., Young, L. J., Plotsky, P. M., & Insel, T. R. (2000). Distribution of corticosteroid receptors in the Rhesus brain: Relative absence of glucocorticoid receptors in the hippocampal formation. The Journal of Neuroscience, 20, 4657–68.Google Scholar
Sapolsky, R. (1994). Why Zebras Don't Get Ulcers: A Guide to Stress, Stress-Related Diseases, and Coping. New York: Freeman.
Sapolsky, R. M., Krey, L. C., & McEwen, B. S. (1986). The neuroendocrinology of stress and aging: The glucocorticoid cascade hypothesis. Endocrine Reviews, 7(3), 284–301.CrossRefGoogle Scholar
Schneider, M. L., Coe, C. L., & Lubach, G. R. (1992). Endocrine activation mimics the adverse effects of prenatal stress on the neuromotor development of the infant primate. Developmental Psychobiology, 25(6), 427–39.CrossRefGoogle Scholar
Schulkin, J. (1999). Corticotropin-releasing hormone signals adversity in both the placenta and the brain: Regulation by glucocorticoids and allostatic overload. Journal of Endocrinology, 161(3), 349–56.CrossRefGoogle Scholar
Schulkin, J., McEwen, B. S., & Gold, P. S. (1994). Allostasis, amygdala, and anticipatory angst. Neuroscience and Behavioral Reviews, 18(3), 385–96.CrossRefGoogle Scholar
Selye, H. (1973). The evolution of the stress concept. American Scientist, 61(6), 692–99.Google Scholar
Strand, F. L. (1999). Chapter 10: Hypophysiotropic neuropeptides: TRH, CRH, GnRH, GHRH, SS, PACAP, DSIP. In Neuropeptides: Regulators of Physiological Processes (pp. 179–228). Cambridge, MA: MIT Press.
Taddio, A., Katz, J., Ilarslch, A. L., & Koren, G. (1997). Effects of neonatal circumcision on pain response during subsequent routine vaccination. The Lancet, 340(March 1), 599–603.CrossRefGoogle Scholar
Talge, N. M., Neal, C., Glover, V., & the Early Stress, Translational Research and Prevention Science Network (2007). Fetal and neonatal experience on child and adolescent mental health. Journal of Child Psychology and Psychiatry, 48, 245–61.CrossRefGoogle Scholar
Tarullo, A. R., & Gunnar, M. R. (2006). Child maltreatment and the developing HPA axis. Hormones and Behavior, 50, 632–39.CrossRefGoogle Scholar
Teicher, M. H., Anderson, S. L., Polcari, A., Anderson, C. M., Navalta, C. P., & Kim, D. M. (2003). Neuroscience and Biobehavioral Reviews, 27, 33–44.
Tout, K., Haan, M., Kipp-Campbell, E., & Gunnar, M. R. (1998). Social behavior correlates of adrenocortical activity in daycare: Gender differences and time-of-day effects. Child Development, 69(5), 1247–62.CrossRefGoogle Scholar
Oers, H. J. J., Kloet, E. R., & Levine, S. (1997). Persistent, but paradoxical, effects on HPA regulation of infants maternally deprived at different ages. Stress: The International Journal on the Biology of Stress, 1(4), 249–63.CrossRefGoogle Scholar
Veenema, A. H., Blume, A., Niederle, D., Buwalda, B., & Neuman, I. D. (2006). Effects of early life stress on male aggression and hypothalamic vasopressin and serotonin. European Journal of Neuroscience, 24, 1711–20.CrossRefGoogle Scholar
Vythilingam, M., Anderson, G. M., Owens, M. J., Halaszynski, T. M., Bremner, J. D., Carpenter, L. L. et al. (2000). Cerebrospinal fluid corticotropin-releasing hormone in healthy humans: Effects of yohimbine and naloxone. Journal of Clinical Endocrinology and Metabolism, 85, 4138–45.CrossRefGoogle Scholar
Wadhwa, P. D., Porto, M., Garite, T. J., Chica-DeMet, A., & Sandman, C. A. (1998). Maternal corticotropin-releasing hormone levels in the third trimester predict length of gestation in human pregnancy. American Journal of Obstetrics and Gynecology, 179, 1079–85.CrossRefGoogle Scholar
Wadhwa, P. D., Sandman, C. A., & Garite, T. J. (2001). The neurobiology of stress in human pregnancy: Implications for prematurity and development of the fetal central nervous system. Progress in Brain Research, 30, 131–42.CrossRefGoogle Scholar
Watamura, S. E., Donzella, B., Alwin, J., & Gunnar, M. (2003). Morning to afternoon increases in cortisol concentrations for infants and toddlers at childcare: Age differences and behavioral correlates. Child Development, 74, 1006–20.CrossRefGoogle Scholar
Watamura, S. E., Sebanc, A. M., & Gunnar, M., 2002. Rising cortisol at childcare: Relations with nap, rest, and temperament. Developmental Psychobiology, 40, 33–42.Google Scholar
Weinstock, M. (1997). Does prenatal stress impair coping and regulation of the hypothalamic-pituitary-adrenal axis? Biobehavioral Review, 21, 1–10.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×