Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-09T13:05:23.425Z Has data issue: false hasContentIssue false

8 - Canopy architecture and multitrophic interactions

Published online by Cambridge University Press:  08 August 2009

Teja Tscharntke
Affiliation:
Georg-August-Universität, Göttingen, Germany
Bradford A. Hawkins
Affiliation:
University of California, Irvine
Get access

Summary

Introduction

Predator–prey, parasitoid–host, and other arthropod interactions do not occur in a vacuum, nor in a featureless world, but in a highly structured and complex environment. This basic observation has triggered numerous theoretical and empirical studies at the population level. Many are centered on the dynamics of populations occupying different patches (summarized in Hassell, 2000). A metapopulation framework implies a spatial arrangement of patches and movement of predators between them. However, once in a patch, a homogeneous spatial situation is again assumed, and predators search at random. In fact, we know of very few examples of arthropod predator–prey or host–parasitoid studies which do incorporate the geometry of the environment at a smaller scale than a patch. In particular, we do not know any study that satisfactorily quantifies the architecture of the plant canopies and its influences on the outcomes of the interactions. This is surprising given that a great majority of predator–prey and parasitoid–host interactions occur in vegetation. Filling this gap is the thrust of this chapter.

The disregard for the architecture of the environment, in particular plant architecture, has two explanations. First, concepts and methods for mapping and modeling plant architecture have been developed only recently, i.e., mainly from the 1980s. Plant architecture, in particular tree architecture, has been the subject of intense research for quite some time (see for example Halle and Oldeman, 1970; Halle et al., 1978), but this work was of a qualitative nature.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×