Published online by Cambridge University Press: 07 October 2011
These notes will give some very basic definitions and results from model theory. They contain many examples, and in particular discuss extensively the various languages used to study valued fields. They are intended as giving the necessary background to read the papers by Cluckers-Loeser, Delon, Halupczok and Kowalski in this volume. We also mention a few recent results or directions of research in the model theory of valued fields, but omit completely those themes which will be discussed elsewhere in this volume. So for instance, we do not even mention motivic integration.
People interested in learning more model theory should consult standard model theory books. For instance: D. Marker, Model Theory: an Introduction, Graduate Texts in Mathematics 217, Springer-Verlag New York, 2002; C.C. Chang, H.J. Keisler, Model Theory, North-Holland Publishing Company, Amsterdam 1973; W. Hodges, A shorter model theory, Cambridge University Press, 1997.
Languages, structures, satisfaction
Languages and structures
Languages. A language is a collection ℒ, finite or infinite, of symbols. These symbols are of three kinds:
– function symbols,
– relation symbols,
– constant symbols.
To each function symbol f is associated a number n(f) ∈ ℕ>0, and to each relation symbol R a number n(R) ∈ ℕ>0. The numbers n(f) and n(R) are called the arities of the function f, resp., the relation R.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.