Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-03T17:19:45.489Z Has data issue: false hasContentIssue false

11 - Imaging Cell Trafficking and Immune Cell Activation Using PET Reporter Genes

Published online by Cambridge University Press:  07 September 2010

Sanjiv Sam Gambhir
Affiliation:
Stanford University School of Medicine, California
Shahriar S. Yaghoubi
Affiliation:
Stanford University School of Medicine, California
Get access

Summary

MAJOR IMMUNE CELL TYPES AND THEIR FUNCTIONS

Pathogen invasion of an immunocompetent host induces a coordinated response from a network of diverse immune cell types. The interactions between these various immune cell types are spatially and temporally regulated to facilitate the acquisition of effector mechanisms that ensure pathogen clearance. This section briefly summarizes the major components of the immune network and their actions during an immune response. A more detailed description of the development and function of specific immune cell types can be found in.

The immune network has two major components: the innate and adaptive immune systems. Cells of the innate immune system such as macrophages and dendritic cells generally make first contact with pathogens. Pathogen-derived molecules activate specific receptors on innate immune cells leading to the release of chemo-attractant molecules and recruitment of other inflammatory cells such as neutrophils. Furthermore, macrophages and dendritic cells ingest foreign proteins (or antigens) and migrate to nearby lymph nodes where they serve as antigen-presenting cells (APCs) in the initiation of the adaptive immune response.

T and B lymphocytes are the key cell types of the adaptive immune system. Both B and T cells express dedicated and highly variable cell surface receptors for antigen. Exposure to antigen together with help from T cells activates B cells to proliferate and differentiate into plasma cells that secrete antigen-specific antibodies that, by various effector mechanisms participate in antigen clearance. Once the invading pathogen has been cleared, the expanded antigen-specific B cell population contracts through apoptosis.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Murphy, K. P., Travers, P., Walport, M., Janeway, C. (2008). Janeway's Immunobiology. New York: Garland Science.
Goldrath, A. W., Bevan, M. J. (1999). Selecting and maintaining a diverse T-cell repertoire. Nature 402: 255–262.Google Scholar
Clay, T. M., Hobeika, A. C., Mosca, P. J., Lyerly, H. K., Morse, M. A. (2001). Assays for monitoring cellular immune responses to active immunotherapy of cancer. Clin Cancer Res 7: 1127–1135.Google Scholar
Massoud, T. F., Gambhir, S. S. (2003). Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 17: 545–580.Google Scholar
Hildebrandt, I. J., Gambhir, S. S. (2004). Molecular imaging applications for immunology. Clin Immunol (Orlando, Fla) 111: 210–224.Google Scholar
Costa, G. L., Sandora, M. R., Nakajima, A., Nguyen, E. V., Taylor-Edwards, C., Slavin, A. J., Contag, C. H., Fathman, C. G., Benson, J. M. (2001). Adoptive immunotherapy of experimental autoimmune encephalomyelitis via T cell delivery of the IL-12 p40 subunit. J Immunol 167: 2379–2387.Google Scholar
Yaghoubi, S. S., Creusot, R. J., Ray, P., Fathman, C. G., Gambhir, S. S. (2007). Multimodality imaging of T-cell hybridoma trafficking in collagen-induced arthritic mice: image-based estimation of the number of cells accumulating in mouse paws. J Biomed Opt 12: 064025.Google Scholar
Rabinovich, B. A., Ye, Y., Etto, T., Chen, J. Q., Levitsky, H. I., Overwijk, W. W., Cooper, L. J., Gelovani, J., Hwu, P. (2008). Visualizing fewer than 10 mouse T cells with an enhanced firefly luciferase in immunocompetent mouse models of cancer. Proc Natl Acad Sci U S A 105: 14342–14346.Google Scholar
Tannous, B. A., Kim, D. E., Fernandez, J. L., Weissleder, R., Breakefield, X. O. (2005). Codon-optimized Gaussia luciferase cDNA for mammalian gene expression in culture and in vivo. Mol Ther 11: 435–443.Google Scholar
Santos, E. B., Yeh, R., Lee, J., Nikhamin, Y., Punzalan, B., Perle, K., Larson, S. M., Sadelain, M., Brentjens, R. J. (2009). Sensitive in vivo imaging of T cells using a membrane-bound Gaussia princeps luciferase. Nat Med 15: 338–344.Google Scholar
Sumen, C., Mempel, T. R., Mazo, I. B., Andrian, U. H. (2004). Intravital microscopy: visualizing immunity in context. Immunity 21: 315–329.Google Scholar
Shu, X., Royant, A., Lin, M. Z., Aguilera, T. A., Lev-Ram, V., Steinbach, P. A., Tsien, R. Y. (2009). Mammalian expression of infrared fluorescent proteins engineered from a bacterial phytochrome. Science (New York, N.Y) 324: 804–807.Google Scholar
Strijkers, G. J., Mulder, W. J., Tilborg, G. A., Nicolay, K. (2007). MRI contrast agents: current status and future perspectives. Anticancer Agents Med Chem 7: 291–305.Google Scholar
Bellin, M. F. (2006). MR contrast agents, the old and the new. Anticancer Agents Med Chem 60: 314–323.Google Scholar
Kirsch, J. E. (1991). Basic principles of magnetic resonance contrast agents. Top Magn Reson Imaging 3: 1–18.Google Scholar
Hoehn, M., Wiedermann, D., Justicia, C., Ramos-Cabrer, P., Kruttwig, K., Farr, T., Himmelreich, U. (2007). Cell tracking using magnetic resonance imaging. J Physiol 584: 25–30.Google Scholar
Rogers, W. J., Meyer, C. H., Kramer, C. M. (2006). Technology insight: in vivo cell tracking by use of MRI. Nature Clinical Practice 3: 554–562.Google Scholar
Arbab, A. S., Liu, W., Frank, J. A. (2006). Cellular magnetic resonance imaging: current status and future prospects. Expert Rev Med Devices 3: 427–439.Google Scholar
Vries, I. J., Lesterhuis, W. J., Barentsz, J. O., Verdijk, P., Krieken, J. H., Boerman, O. C., Oyen, W. J., Bonenkamp, J. J., Boezeman, J. B., Adema, G. J., et al. (2005). Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy. Nat Biotechnol 23: 1407–1413.Google Scholar
Yeh, T. C., Zhang, W., Ildstad, S. T., Ho, C. (1995). In vivo dynamic MRI tracking of rat T-cells labeled with superparamagnetic iron-oxide particles. Magn Reson Med 33: 200–208.Google Scholar
Kircher, M. F., Allport, J. R., Graves, E. E., Love, V., Josephson, L., Lichtman, A. H., Weissleder, R. (2003). In vivo high resolution three-dimensional imaging of antigen-specific cytotoxic T-lymphocyte trafficking to tumors. Cancer Res 63: 6838–6846.Google Scholar
Mulder, W. J., Strijkers, G. J., Vucic, E., Cormode, D. P., Nicolay, K., Fayad, Z. A. (2007). Magnetic resonance molecular imaging contrast agents and their application in atherosclerosis. Top Magn Reson Imaging 18: 409–417.Google Scholar
Ye, Q., Yang, D., Williams, M., Williams, D. S., Pluempitiwiriyawej, C., Moura, J. M., Ho, C. (2002). In vivo detection of acute rat renal allograft rejection by MRI with USPIO particles. Kidney Int 61: 1124–1135.Google Scholar
Dousset, V., Delalande, C., Ballarino, L., Quesson, B., Seilhan, D., Coussemacq, M., Thiaudiere, E., Brochet, B., Canioni, P., & Caille, J. M. (1999). In vivo macrophage activity imaging in the central nervous system detected by magnetic resonance. Magn Reson Med 41: 329–333.Google Scholar
Pirko, I., Johnson, A., Ciric, B., Gamez, J., Macura, S. I., Pease, L. R., Rodriguez, M. (2004). In vivo magnetic resonance imaging of immune cells in the central nervous system with superparamagnetic antibodies. Faseb J 18: 179–182.Google Scholar
Gilad, A. A., Winnard, P. T.., Zijl, P. C., Bulte, J. W. (2007). Developing MR reporter genes: promises and pitfalls. NMR in Biomed 20: 275–290.Google Scholar
Genove, G., DeMarco, U., Xu, H., Goins, W. F., Ahrens, E. T. (2005). A new transgene reporter for in vivo magnetic resonance imaging. Nat Med 11: 450–454.Google Scholar
Cohen, B., Ziv, K., Plaks, V., Israely, T., Kalchenko, V., Harmelin, A., Benjamin, L. E., Neeman, M. (2007). MRI detection of transcriptional regulation of gene expression in transgenic mice. Nat Med 13: 498–503.Google Scholar
Sherry, A. D., Woods, M. (2008). Chemical exchange saturation transfer contrast agents for magnetic resonance imaging. Ann Rev Biomed Eng 10: 391–411.Google Scholar
Gilad, A. A., McMahon, M. T., Walczak, P., Winnard, P. T.., Raman, V., Laarhoven, H. W., Skoglund, C. M., Bulte, J. W., Zijl, P. C. (2007). Artificial reporter gene providing MRI contrast based on proton exchange. Nat Biotechnol 25: 217–219.Google Scholar
McMahon, M. T., Gilad, A. A., DeLiso, M. A., Berman, S. M., Bulte, J. W., Zijl, P. C. (2008). New “multicolor” polypeptide diamagnetic chemical exchange saturation transfer (DIACEST) contrast agents for MRI. Magn Reson Med 60: 803–812.Google Scholar
Phelps, M. (2000). Inaugural article: positron emission tomography provides molecular imaging of biological processes. PNAS 97: 9226–9233.Google Scholar
Phelps, M. E., Hoffman, E. J., Mullani, N. A., Ter-Pogossian, M. M. (1975). Application of annihilation coincidence detection to transaxial reconstruction tomography. J Nucl Med 16: 210–224.Google Scholar
Cherry, S., Gambhir, S. (2001). Use of positron emission tomography in animal research. ILAR J 42: 219–232.Google Scholar
Chatziioannou, A., Tai, Y., Doshi, N., Cherry, S. (2001). Detector development for microPET II: a 1 microl resolution PET scanner for small animal imaging. Phys Med Biol 46: 2899–2910.Google Scholar
Chatziioannou, A. F., Cherry, S. R., Shao, Y., Silverman, R. W., Meadors, K., Farquhar, T. H., Pedarsani, M., Phelps, M. E. (1999). Performance evaluation of microPET: a high-resolution lutetium oxyorthosilicate PET scanner for animal imaging. J Nucl Med 40: 1164–1175.Google Scholar
Dahlbom, M., Hoffman, E., Hoh, C., Schiepers, C., Rosenqvist, G. (1992). Whole-body positron emission tomography: Part I. Methods and performance characteristics. J Nucl Med 33: 1191–1199.Google Scholar
Cherry, S. R., Gambhir, S. S. (2001). Use of positron emission tomography in animal research. ILAR Journal/National Research Council, Institute of Laboratory Animal Resources 42: 219–232.Google Scholar
Ridolfi, R., Riccobon, A., Galassi, R., Giorgetti, G., Petrini, M., Fiammenghi, L., Stefanelli, M., Ridolfi, L., Moretti, A., Migliori, G., et al. (2004). Evaluation of in vivo labelled dendritic cell migration in cancer patients. J Transl Med 2: 27.Google Scholar
Paik, J. Y., Lee, K. H., Byun, S. S., Choe, Y. S., Kim, B. T. (2002). Use of insulin to improve [18 F]fluorodeoxyglucose labelling and retention for in vivo positron emission tomography imaging of monocyte trafficking. Nucl Med Commun 23: 551–557.Google Scholar
Matsui, K., Wang, Z., McCarthy, T. J., Allen, P. M., Reichert, D. E. (2004). Quantitation and visualization of tumor-specific T cells in the secondary lymphoid organs during and after tumor elimination by PET. Nucl Med Biol 31: 1021–1031.Google Scholar
Adonai, N., Nguyen, K. N., Walsh, J., Iyer, M., Toyokuni, T., Phelps, M. E., McCarthy, T., McCarthy, D. W., Gambhir, S. S. (2002). Ex vivo cell labeling with 64Cu-pyruvaldehyde-bis(N4-methylthiosemicarbazone) for imaging cell trafficking in mice with positron-emission tomography. Proc Natl Acad Sci U S A 99: 3030–3035.Google Scholar
Pittet, M. J., Grimm, J., Berger, C. R., Tamura, T., Wojtkiewicz, G., Nahrendorf, M., Romero, P., Swirski, F. K., Weissleder, R. (2007). In vivo imaging of T cell delivery to tumors after adoptive transfer therapy. Proc Natl Acad Sci U S A 104: 12457–12461.Google Scholar
Botti, C., Negri, D. R. M., Seregni, E., Ramakrishna, V., Arienti, F., Maffioli, L., Lombardo, C., Bogni, A., Pascali, C., Crippa, F., et al. (1997). Comparison of three different methods for radiolabelling human▒activated T lymphocytes. Eur J Nucl Med Mol Imaging 24: 497–504.Google Scholar
Balaban, E. P., Simon, T. R., Sheehan, R. G., Frenkel, E. P. (1986). Effect of the radiolabel mediator tropolone on lymphocyte structure and function. J Lab Clin Med 107: 306–314.Google Scholar
Balaban, E. P., Simon, T. R., Frenkel, E. P. (1987). Toxicity of indium-111 on the radiolabeled lymphocyte. J Nucl Med 28: 229–233.Google Scholar
Signore, A., Picarelli, A., Annovazzi, A., Britton, K. E., Grossman, A. B., Bonanno, E., Maras, B., Barra, D., Pozzilli, P. (2003). 123I-Interleukin-2: biochemical characterization and in vivo use for imaging autoimmune diseases. Nucl Med Commun 24: 305–316.Google Scholar
Annovazzi, A., D'Alessandria, C., Bonanno, E., Mather, S. J., Cornelissen, B., Wiele, C., Dierckx, R. A., Mattei, M., Palmieri, G., Scopinaro, F., et al. (2006). Synthesis of 99mTc-HYNIC-interleukin-12, a new specific radiopharmaceutical for imaging T lymphocytes. Eur J Nucl Med Mol Imaging: 1–9.Google Scholar
Cao, Q., Cai, W., Li, Z. B., Chen, K., He, L., Li, H. C., Hui, M., Chen, X. (2007). PET imaging of acute and chronic inflammation in living mice. Eur J Nucl Med Mol Imaging 34: 1832–1842.Google Scholar
Malviya, G., Conti, F., Chianelli, M., Scopinaro, F., Dierckx, R. A., Signore, A. (2009). Molecular imaging of rheumatoid arthritis by radiolabelled monoclonal antibodies: new imaging strategies to guide molecular therapies. Eur J Nucl Med.
Malviya, G., D'Alessandria, C., Bonanno, E., Vexler, V., Massari, R., Trotta, C., Scopinaro, F., Dierckx, R., Signore, A. (2009). Radiolabeled humanized anti-CD3 monoclonal antibody visilizumab for imaging human T-lymphocytes. J Nucl Med 50: 1683–1691.Google Scholar
Kanwar, B., Gao, D. W., Hwang, A. B., Grenert, J. P., Williams, S. P., Franc, B., McCune, J. M. (2008). In vivo imaging of mucosal CD4+ T cells using single photon emission computed tomography in a murine model of coli. J Immunol Methods 329: 21–30.Google Scholar
Gambhir, S. S., Barrio, J. R., Herschman, H. R., Phelps, M. E. (1999). Assays for noninvasive imaging of reporter gene expression. Nucl Med Biol 26: 481–490.Google Scholar
Beilhack, A., Schulz, S., Baker, J., Beilhack, G. F., Wieland, C. B., Herman, E. I., Baker, E. M., Cao, Y. A., Contag, C. H., Negrin, R. S. (2005). In vivo analyses of early events in acute graft-versus-host disease reveal sequential infiltration of T-cell subsets. Blood 106: 1113–1122.Google Scholar
Shu, C. J., Guo, S., Kim, Y. J., Shelly, S. M., Nijagal, A., Ray, P., Gambhir, S. S., Radu, C. G., Witte, O. N. (2005). Visualization of a primary anti-tumor immune response by positron emission tomography. Proc Natl Acad Sci U S A 102: 17412–17417.Google Scholar
Pfeifer, A., Kessler, T., Yang, M., Baranov, E., Kootstra, N., Cheresh, D., Hoffman, R., Verma, I. (2001). Transduction of liver cells by lentiviral vectors: analysis in living animals by fluorescence imaging. Mol Ther 3: 319–322.Google Scholar
Lee, G. R., Fields, P. E., Griffin, T. J., Flavell, R. A. (2003). Regulation of the Th2 cytokine locus by a locus control region. Immunity 19: 145–153.Google Scholar
Reinhardt, R. L., Hong, S., Kang, S. J., Wang, Z. E., Locksley, R. M. (2006). Visualization of IL-12/23p40 in vivo reveals immunostimulatory dendritic cell migrants that promote Th1 differentiation. J Immunol 177: 1618–1627.Google Scholar
Halin, C., Rodrigo Mora, J., Sumen, C., Andrian, U. H. (2005). In vivo imaging of lymphocyte trafficking. Ann Rev Cell Dev Biol 21: 581–603.Google Scholar
Germain, R. N., Bajenoff, M., Castellino, F., Chieppa, M., Egen, J. G., Huang, A. Y., Ishii, M., Koo, L. Y., Qi, H. (2008). Making friends in out-of-the-way places: how cells of the immune system get together and how they conduct their business as revealed by intravital imaging. Immunol Rev 221: 163–181.Google Scholar
Boissonnas, A., Fetler, L., Zeelenberg, I. S., Hugues, S., Amigorena, S. (2007). In vivo imaging of cytotoxic T cell infiltration and elimination of a solid tumor. J Exp Med 204: 345–356.Google Scholar
Liang, Q., Gotts, J., Satyamurthy, N., Barrio, J., Phelps, M. E., Gambhir, S. S., Herschman, H. R. (2002). Noninvasive, repetitive, quantitative measurement of gene expression from a bicistronic message by positron emission tomography, following gene transfer with adenovirus. Mol Ther 6: 73–82.Google Scholar
Liang, Q., Nguyen, K., Satyamurthy, N., Barrio, J. R., Phelps, M. E., Gambhir, S. S., Herschman, H. R. (2002). Monitoring adenoviral DNA delivery, using a mutant herpes simplex virus type 1 thymidine kinase gene as a PET reporter gene. Gene Ther 9: 1659–1666.Google Scholar
Xiong, Z., Cheng, Z., Zhang, X., Patel, M., Wu, J. C., Gambhir, S. S., Chen, X. (2006). Imaging chemically modified adenovirus for targeting tumors expressing integrin alphavbeta3 in living mice with mutant herpes simplex virus type 1 thymidine kinase PET reporter gene. J Nucl Med 47: 130–139.Google Scholar
Yang, L., Yang, H., Rideout, K., Cho, T., Joo, K. I., Ziegler, L., Elliot, A., Walls, A., Yu, D., Baltimore, D., et al. (2008). Engineered lentivector targeting of dendritic cells for in vivo immunization. Nat Biotechnol 26: 326–334.Google Scholar
Ziegler, L., Yang, L., Joo, K., Yang, H., Baltimore, D., Wang, P. (2008). Targeting lentiviral vectors to antigen-specific immunoglobulins. Hum Gene Ther 19: 861–872.Google Scholar
Rettig, G. R., Rice, K. G. (2007). Non-viral gene delivery: from the needle to the nucleus. Expert Opin Biol Ther 7: 799–808.Google Scholar
Black, M. E., Newcomb, T. G., Wilson, H.-M. P., Loeb, L. A. (1996). Creation of drug-specific herpes simplex virus type 1 thymidine kinase mutants for gene therapy. Proc Natl Acad Sci U S A 93: 3525–3529.Google Scholar
Gambhir, S. S., Bauer, E., Black, M. E., Liang, Q., Kokoris, M. S., Barrio, J. R., Iyer, M., Namavari, M., Phelps, M. E., Herschman, H. R. (2000). A mutant herpes simplex virus type 1 thymidine kinase reporter gene shows improved sensitivity for imaging reporter gene expression with positron emission tomography. Proc Natl Acad Sci U S A 97: 2785–2790.Google Scholar
Likar, Y., Dobrenkov, K., Olszewska, M., Shenker, L., Cai, S., Hricak, H., Ponomarev, V. (2009). PET imaging of HSV1-tk mutants with acquired specificity toward pyrimidine- and acycloguanosine-based radiotracers. Eur J Nucl Med 36: 1273–1282.Google Scholar
Koehne, G., Doubrovin, M., Doubrovina, E., Zanzonico, P., Gallardo, H. F., Ivanova, A., Balatoni, J., Teruya-Feldstein, J., Heller, G., May, C., et al. (2003). Serial in vivo imaging of the targeted migration of human HSV-TK-transduced antigen-specific lymphocytes. Nat Biotechnol 21: 405–413.Google Scholar
Dubey, P., Su, H., Adonai, N., Du, S., Rosato, A., Braun, J., Gambhir, S. S., Witte, O. N. (2003). Quantitative imaging of the T cell antitumor response by positron-emission tomography. Proc Natl Acad Sci U S A 100: 1232–1237.Google Scholar
Milan, G., Zambon, A., Cavinato, M., Zanovello, P., Rosato, A., Collavo, D. (1999). Dissecting the immune response to moloney murine sarcoma/leukemia virus-induced tumors by means of a DNA vaccination approach. J Virol 73: 2280–2287.Google Scholar
Su, H., Chang, D. S., Gambhir, S. S., Braun, J. (2006). Monitoring the antitumor response of naive and memory CD8 T cells in RAG1-/- mice by positron-emission tomography. J Immunol 176: 4459–4467.Google Scholar
Ray, P., De, A., Min, J. J., Tsien, R. Y., Gambhir, S. S. (2004). Imaging tri-fusion multimodality reporter gene expression in living subjects. Cancer Res 64: 1323–1330.Google Scholar
Su, H., Forbes, A., Gambhir, S. S., Braun, J. (2004). Quantitation of cell number by a positron emission tomography reporter gene strategy. Mol Imaging Biol 6: 139–148.Google Scholar
Shu, C. J., Radu, C. G., Shelly, S. M., Vo, D. D., Prins, R., Ribas, A., Phelps, M. E., Witte, O. N. (2009). Quantitative PET reporter gene imaging of CD8+ T cells specific for a melanoma-expressed self-antigen. Int Immunol 21: 155–165.Google Scholar
Overwijk, W. W., Theoret, M. R., Finkelstein, S. E., Surman, D. R., Jong, L. A., Vyth-Dreese, F. A., Dellemijn, T. A., Antony, P. A., Spiess, P. J., Palmer, D. C., et al. (2003). Tumor regression and autoimmunity after reversal of a functionally tolerant state of self-reactive CD8+ T cells. J Exp Med 198: 569–580.Google Scholar
Ponomarev, V., Doubrovin, M., Shavrin, A., Serganova, I., Beresten, T., Ageyeva, L., Cai, C., Balatoni, J., Alauddin, M., Gelovani, J. (2007). A human-derived reporter gene for noninvasive imaging in humans: mitochondrial thymidine kinase type 2. J Nucl Med 48: 819–826.Google Scholar
Serganova, I., Doubrovin, M., Vider, J., Ponomarev, V., Soghomonyan, S., Beresten, T., Ageyeva, L., Serganov, A., Cai, S., Balatoni, J., et al. (2004). Molecular imaging of temporal dynamics and spatial heterogeneity of hypoxia-inducible factor-1 signal transduction activity in tumors in living mice. Cancer Res 64: 6101–6108.Google Scholar
Alauddin, M. M., Shahinian, A., Park, R., Tohme, M., Fissekis, J. D., Conti, P. S. (2007). In vivo evaluation of 2′-deoxy-2′-[(18)F]fluoro-5-iodo-1-beta-D-arabinofuranosyluracil ([18F]FIAU) and 2′-deoxy-2′-[18F]fluoro-5-ethyl-1-beta-D-arabinofuranosyluracil ([18F]FEAU) as markers for suicide gene expression. Eur J Nucl Med 34: 822–829.Google Scholar
Tseng, J. C., Zanzonico, P. B., Levin, B., Finn, R., Larson, S. M., Meruelo, D. (2006). Tumor-specific in vivo transfection with HSV-1 thymidine kinase gene using a Sindbis viral vector as a basis for prodrug ganciclovir activation and PET. J Nucl Med 47: 1136–1143.Google Scholar
Buursma, A. R., Rutgers, V., Hospers, G. A., Mulder, N. H., Vaalburg, W., Vries, E. F. (2006). 18F-FEAU as a radiotracer for herpes simplex virus thymidine kinase gene expression: in-vitro comparison with other PET tracers. Nucl Med Commun 27: 25–30.Google Scholar
Yaghoubi, S. S., Jensen, M. C., Satyamurthy, N., Budhiraja, S., Paik, D., Czernin, J., Gambhir, S. S. (2009). Noninvasive detection of therapeutic cytolytic T cells with 18F-FHBG PET in a patient with glioma. Nat Clin Pract Oncol 6: 53–58.Google Scholar
Bonini, C., Ferrari, G., Verzeletti, S., Servida, P., Zappone, E., Ruggieri, L., Ponzoni, M., Rossini, S., Mavilio, F., Traversari, C., et al. (1997). HSV-TK gene transfer into donor lymphocytes for control of allogeneic graft-versus-leukemia. Science (New York, N.Y.) 276: 1719–1724.Google Scholar
Berger, C., Flowers, M. E., Warren, E. H., Riddell, S. R. (2006). Analysis of transgene-specific immune responses that limit the in vivo persistence of adoptively transferred HSV-TK-modified donor T cells after allogeneic hematopoietic cell transplantation. Blood 107: 2294–2302.Google Scholar
Liang, Q., Satyamurthy, N., Barrio, J. R., Toyokuni, T., Phelps, M. P., Gambhir, S. S., Herschman, H. R. (2001). Noninvasive, quantitative imaging in living animals of a mutant dopamine D2 receptor reporter gene in which ligand binding is uncoupled from signal transduction. Gene Ther 8: 1490–1498.Google Scholar
Rogers, B. E., Parry, J. J., Andrews, R., Cordopatis, P., Nock, B. A., Maina, T. (2005). MicroPET imaging of gene transfer with a somatostatin receptor-based reporter gene and (94m)Tc-Demotate 1. J Nucl Med 46: 1889–1897.Google Scholar
Che, J., Doubrovin, M., Serganova, I., Ageyeva, L., Zanzonico, P., Blasberg, R. (2005). hNIS-IRES-eGFP dual reporter gene imaging. Mol Imaging 4: 128–136.Google Scholar
Doubrovin, M. M., Doubrovina, E. S., Zanzonico, P., Sadelain, M., Larson, S. M., O'Reilly, R. J. (2007). In vivo imaging and quantitation of adoptively transferred human antigen-specific T cells transduced to express a human norepinephrine transporter gene. Cancer Res 67: 11959–11969.Google Scholar
Wei, L. H., Olafsen, T., Radu, C., Hildebrandt, I. J., McCoy, M. R., Phelps, M. E., Meares, C., Wu, A. M., Czernin, J., Weber, W. A. (2008). Engineered antibody fragments with infinite affinity as reporter genes for PET imaging. J Nucl Med 49: 1828–1835.Google Scholar
Kenanova, V., Barat, B., Olafsen, T., Chatziioannou, A., Herschman, H. R., Braun, J., Wu, A. M. (2009). Recombinant carcinoembryonic antigen as a reporter gene for molecular imaging. Eur J Nucl Med 36: 104–114.Google Scholar
Phelps, M. E. (2000). PET: the merging of biology and imaging into molecular imaging. J Nucl Med 41: 661–681.Google Scholar
Mankoff, D. A., Shields, A. F., Krohn, K. A. (2005). PET imaging of cellular proliferation. Radiol Clin North Am 43: 153–167.Google Scholar
Radu, C. G., Shu, C. J., Shelly, S. M., Phelps, M. E., Witte, O. N. (2007). Positron emission tomography with computed tomography imaging of neuroinflammation in experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 104: 1937–1942.Google Scholar
Radu, C. G., Shu, C. J., Nair-Gill, E., Shelly, S. M., Barrio, J. R., Satyamurthy, N., Phelps, M. E., Witte, O. N. (2008). Molecular imaging of lymphoid organs and immune activation by positron emission tomography with a new [18F]-labeled 2′-deoxycytidine analog. Nat Med 14: 783–788.Google Scholar
Gambhir, S. S., Barrio, J. R., Wu, L., Iyer, M., Namavari, M., Satyamurthy, N., Bauer, E., Parrish, C., MacLaren, D. C., Borghei, A. R., et al. (1998). Imaging of adenoviral-directed herpes simplex virus type 1 thymidine kinase reporter gene expression in mice with radiolabeled ganciclovir. J Nucl Med 39: 2003–2011.Google Scholar
Tjuvajev, J. G., Avril, N., Oku, T., Sasajima, T., Miyagawa, T., Joshi, R., Safer, M., Beattie, B., DiResta, G., Daghighian, F., et al. (1998). Imaging herpes virus thymidine kinase gene transfer and expression by positron emission tomography. Cancer Res 58: 4333–4341.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×