Book contents
- Frontmatter
- Contents
- Preface
- Conference participants
- Conference photograph / poster
- 1 Physics of H2 and HD
- 2 Formation - Destruction
- 3 Observations and Models
- Non Stationary C-shocks: H2 Emission in Molecular Outflows
- The Ortho/Para Ratio in C and J-type Shocks
- Theoretical Models of Photodissociation Fronts
- ISO Spectroscopy of H2 in Star Forming Regions
- Observations of the H2 Ortho-Para Ratio in Photodissociation Regions
- H2 Emission from CRL618
- Hydrogen in Photodissociation Regions: NGC2023 and NGC7023
- A Pre-FUSE View of H2
- H2 Absorption Line Measurements with ORFEUS
- Ultraviolet Observations of Molecular Hydrogen in Interstellar Space
- FUSE and Deuterated Molecular Hydrogen
- ISO-SWS Observations of H2 in Galactic Sources
- H2 in Molecular Supernova Remnants
- 3D Integral Field H2 Spectroscopy in Outflows
- Near-Infrared Imaging and [OI] Spectroscopy of IC443 using 2MASS and ISO
- ISOCAM Spectro-imaging of the Supernova Remnant IC443
- Spatial Structure of a Photo-Dissociation Region in Ophiucus
- Tracing H2 Via Infrared Dust Extinction
- The Small Scale Structure of H2 Clouds
- Hot Chemistry in the Cold Diffuse Medium: Spectral Signature in the H2 Rotational Lines
- H2 Observations of the OMC-1 Outflow with the ISO-SWS
- 4 Extragalactic and Cosmology
- 5 Outlook
- Author index
H2 Absorption Line Measurements with ORFEUS
from 3 - Observations and Models
Published online by Cambridge University Press: 04 August 2010
- Frontmatter
- Contents
- Preface
- Conference participants
- Conference photograph / poster
- 1 Physics of H2 and HD
- 2 Formation - Destruction
- 3 Observations and Models
- Non Stationary C-shocks: H2 Emission in Molecular Outflows
- The Ortho/Para Ratio in C and J-type Shocks
- Theoretical Models of Photodissociation Fronts
- ISO Spectroscopy of H2 in Star Forming Regions
- Observations of the H2 Ortho-Para Ratio in Photodissociation Regions
- H2 Emission from CRL618
- Hydrogen in Photodissociation Regions: NGC2023 and NGC7023
- A Pre-FUSE View of H2
- H2 Absorption Line Measurements with ORFEUS
- Ultraviolet Observations of Molecular Hydrogen in Interstellar Space
- FUSE and Deuterated Molecular Hydrogen
- ISO-SWS Observations of H2 in Galactic Sources
- H2 in Molecular Supernova Remnants
- 3D Integral Field H2 Spectroscopy in Outflows
- Near-Infrared Imaging and [OI] Spectroscopy of IC443 using 2MASS and ISO
- ISOCAM Spectro-imaging of the Supernova Remnant IC443
- Spatial Structure of a Photo-Dissociation Region in Ophiucus
- Tracing H2 Via Infrared Dust Extinction
- The Small Scale Structure of H2 Clouds
- Hot Chemistry in the Cold Diffuse Medium: Spectral Signature in the H2 Rotational Lines
- H2 Observations of the OMC-1 Outflow with the ISO-SWS
- 4 Extragalactic and Cosmology
- 5 Outlook
- Author index
Summary
We review recent H2 absorption line measurements in the diffuse interstellar medium, using FUV spectra from the Orbiting and Retrievable Far and Extreme Ultraviolet Spectrometer (ORFEUS). We investigate molecular hydrogen gas along lines of sight toward 5 stars in the Magellanic Clouds and toward 3 stars within the Milky Way. Molecular fractions in gas within the Magellanic Clouds are significantly lower than typically found in gas in the Milky Way, most likely caused by the lower dust content. The finding of H2 in a Galactic high-velocity cloud led us to speculate that the high-velocity gas in front of the Magellanic Clouds is part of the Galactic fountain. Sight lines toward the Galactic stars show well defined absorption by molecular hydrogen, deuterium and metals, allowing the study of physical and chemical conditions in the local interstellar gas in great detail.
Introduction
Molecular hydrogen is by far the most abundant molecule in the interstellar medium. Its measurement, however, is difficult: H2 has no permanent dipole moment and no radio emission is seen from H2, in striking contrast to the second most abundant molecule in the ISM, carbon monoxide (CO). For the study of the diffuse interstellar medium the FUV absorption spectroscopy is the only method to obtain information about the molecular hydrogen content, but satellites are required for this method, since the earth's atmosphere is opaque for radiation in the FUV domain.
- Type
- Chapter
- Information
- Molecular Hydrogen in Space , pp. 165 - 170Publisher: Cambridge University PressPrint publication year: 2000