Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-03T16:00:52.629Z Has data issue: false hasContentIssue false

12 - Emulsions and microemulsions

from Part II - Self assembly

Published online by Cambridge University Press:  06 January 2011

Barry W. Ninham
Affiliation:
Australian National University, Canberra
Pierandrea Lo Nostro
Affiliation:
Università degli Studi di Firenze, Italy
Get access

Summary

Emulsions

When a third component, ‘oil’, is added to a mixture of surfactants and water, the system can form an emulsion. The ‘oil’ can be any predominantly hydrophobic solution or solid paraffin particles that phase-separate from ‘water’ without surfactant. The ‘surfactant’ can include any amphiphilic materials like proteins or long-chain alcohols. The hydrophilic part can be water or another liquid, and can contain salts, sugars, whatever. So the term emulsion, including foods, cosmetics, lubricants, drug delivery, etc., embraces if we like an entire major phylum in the Chemical Kingdom.

Here the ‘surfactant’ adsorbs at the water–oil interface to segregate ‘oil’ from ‘water’ into macroscopic pools. The surfactant adsorbed can be a monolayer, or it can consist of multiple layers. Because of their size, emulsions usually scatter light and appear opaque. The pools of water in oil, or of oil in water, often contain within them smaller oil–water–surfactant microstructures. Sometimes they are bicontinuous. Emulsions are mostly thermodynamically unstable. That is, the droplets will coalesce with time. It used to be thought that the formation of emulsions always required work, such as stirring or sonication, but this is not so. Some, as we shall see, form spontaneously and are thermodynamically stable systems that exist as an apparent single ‘phase’ with complicated microstructure.

With ionic surfactants, electrostatic double-layer forces act to oppose coalescence of droplets. Depletion forces (see Chapter 4) due to micelles in water are probably even more effective in stabilizing emulsions.

Type
Chapter
Information
Molecular Forces and Self Assembly
In Colloid, Nano Sciences and Biology
, pp. 329 - 347
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Pashley, R. M., Francis, M. J. and Rzechowicz, M., Curr. Op. Coll. Interface Sci. 13 (2008) 236–244.CrossRef
Kabalnov, A. S. and Wennerström, H., Langmuir 12 (1996), 276–292.CrossRef
Lissant, K. J., J. Coll. Interface Sci. 22 (1966), 462–468.CrossRef
Evans, D. F., Mitchell, D. J. and Ninham, B. W., J. Phys. Chem. 90 (1986), 2817–2825.CrossRef
Mitchell, D. J. and Ninham, B. W., J. Chem. Soc. Faraday Trans. II (1981), 601–629.CrossRef
Fontell, K., Ceglie, A., Lindman, B. and Ninham, B. W., Acta Chem. Scand. A 40 (1986), 247–256.CrossRef
Ninham, B. W., Chen, S. J. and Evans, D. F., J. Phys. Chem. 88 (1984), 5855–5857.CrossRef
Chen, S. J., Evans, D. F. and Ninham, B. W., J. Phys. Chem. 88 (1984), 1631–1634.CrossRef
Zemb, T. N., Hyde, S. T., Derian, P. J., Barnes, I. S. and Ninham, B. W., J. Phys. Chem. 91 (1987), 3814–3820.CrossRef
Ninham, B. W., Barnes, I. S., Hyde, S. T., Derian, P. J. and Zemb, T. N., Europhys. Lett. 4 (1987), 561–568.CrossRef
Barnes, I. S., Hyde, S. T., Ninham, B. W., Derian, P. J., Drifford, M. and Zemb, T. N., J. Phys. Chem. 92 (1988), 2286–2293.CrossRef
Hyde, S. T., Ninham, B. W. and Zemb, T. N., J. Phys. Chem. 93 (1989), 1464–1471.CrossRef
Zemb, T. N., Barnes, I. S., Derian, P. J. and Ninham, B. W., Coll. Polymer Sci. 81 (1990), 20–29.CrossRef
Barnes, I. S., Derian, P. J., Hyde, S. T., Ninham, B. W. and Zemb, T. N., J. Phys. France 51 (1990), 2605–2628.CrossRef
Zemb, T. N., Coll. Surf. A 129–130 (1997). 435–454.CrossRef
Barois, P., Hyde, S. T., Ninham, B. W. and Dowling, T., Langmuir 6 (1990), 1136–1140.CrossRef
Knackstedt, M. A. and Ninham, B. W., Phys. Rev. E 50 (1994), 2839–2843.CrossRef
Knackstedt, M. A. and Ninham, B. W., AIChE J. 41 (1995), 1295–1305.CrossRef
Monduzzi, M., Knackstedt, M. A. and Ninham, B. W., J. Phys. Chem. 99 (1995), 17772–17777.CrossRef
Knackstedt, M. A., Monduzzi, M. and Ninham, B. W., Phys. Rev. Lett. 75 (1995), 653–656.CrossRef
Allen, M., Evans, D. F., Ninham, B. W. and Mitchell, D. J., J. Phys. Chem. 91 (1987), 2320–2324.CrossRef
Olla, M., Semmler, A., Monduzzi, M. and Hyde, S. T., J. Phys. Chem. B 108 (2004), 12833–12841.CrossRef
Hyde, S. T., Coll. Surf. A 129–130 (1997), 207–225.CrossRef
Lindman, B. and Ninham, B. W., Self assembly: a biassed random walk through the literature. In Proceedings from Ettore Majorana School of Microemulsion in Progress in Microemulsions, ed. Martellucci, S. and Chester, A. N.. Plenum Press (1989), 85–111.Google Scholar
Ninham, B. W., In search of microstructure. In Structure and Reactivity of Reverse Micelles, ed. Pileni, M. P.. Elsevier (1989), 3–13.Google Scholar
Chen, V., Evans, D. F. and Ninham, B. W., J. Phys. Chem. 91 (1987), 1823–182.CrossRef
Nydén, M. and Söderman, O., Langmuir 11 (1995), 1537–1545.CrossRef
Murgia, S., Portesani, F., Ninham, B. W. and Monduzzi, M., Chem. Eur. J. 12 (2006), 7889–7898.CrossRef
Caboi, F., Nylander, T., Razumas, V., Talaikyté, Z., Monduzzi, M. and Larsson, K., Langmuir 13 (1997), 5476–5483.CrossRef
Pashley, R. M., McGuiggan, P. M., Ninham, B. W., Evans, D. F. and Brady, J., J. Phys. Chem. 90 (1986), 5841–5845.CrossRef
Pinna, M. C., Bauduin, P., Touraud, D., Monduzzi, M., Ninham, B. W. and Kunz, W., J. Phys. Chem. B 109 (2005), 16511–16514.CrossRef
Ninham, B. W. and Evans, D. F., Faraday Disc. Chem. Soc. 81 (1986), 1–17.CrossRef
André, P., Ninham, B. W. and Pileni, M. P., New J. Chem. 25 (2001), 563–571.CrossRef
Pileni, M. P., Ninham, B. W., Gulik-Krzywicki, T., Tanori, J., Lisiecki, I. and Filankembo, A., Adv. Mater. 11 (1999), 1358–1362.3.0.CO;2-#>CrossRef
Lisiecki, I., André, P., Filankembo, A., Petit, C., Tanori, J., Gulik-Krzywicki, T., Ninham, B. W. and Pileni, M. P., J. Phys. Chem. B 103 (1999), 9168–9175.CrossRef
Lisiecki, I., André, P., Filankembo, A., Petit, C., Tanori, J., Gulik-Krzywicki, T., Ninham, B. W. and Pileni, M. P., J. Phys. Chem. B 103 (1999), 9176–9189.CrossRef
Filankembo, A., André, P., Lisiecki, I., Petit, C., Gulik-Krzywicki, T., Ninham, B. W. and Pileni, M. P., Coll. Surf. A 174 (2000), 221–232.CrossRef
André, P., Filankembo, A., Lisiecki, I., Petit, C., Gulik-Krzywicki, T., Ninham, B. W. and Pileni, M. P., Adv. Mater. 12 (2000), 119–123.3.0.CO;2-Y>CrossRef
Olla, M., Monduzzi, M. and Ambrosone, L., Coll. Surf. A 160 (1999), 23–36.CrossRef
Co, C. C., Vries, R. and Kaler, E. W., Macromolecules 34 (2001), 3224–3232.CrossRef
Vries, R., Co, C. C. and Kaler, E. W., Macromolecules 34 (2001), 3233–3244.CrossRef
Corkery, R. W., Coll. Surf. B 26 (2002), 3–20.CrossRef
Ninham, B. W. and Evans, D. F., J. Phys. Chem. 87 (1983), 5025–5032.CrossRef
Ninham, B. W. and Mitchell, D. J., J. Phys. Chem. 87 (1983), 2996–2998.CrossRef
Evans, D. F., Allen, M., Ninham, B. W. and Fouda, A., J. Sol. Chem. 13 (1984), 87–101.CrossRef
Mitchell, D. J., Ninham, B. W. and Evans, D. F., J. Phys. Chem. 88 (1984), 6344–6348.CrossRef
Mohanty, U., Ninham, B. W. and Oppenheim, I., Proc. Natl. Acad. Sci. USA 93 (1996), 4342–4344.CrossRef
Pashley, R. M., McGuiggan, P. M., Ninham, B. W., Evans, D. F. and Brady, J., J. Phys. Chem. 90 (1986), 1637–1642.CrossRef
Brady, J. E., Evans, D. F., Warr, G., Grieser, F. and Ninham, B. W., J. Phys. Chem. 90 (1986), 1853–1859.CrossRef
Parsons, D. F. and Ninham, B. W., J. Phys. Chem. A 113 (2009), 1141–1150.CrossRef
Parsons, D. F. and Ninham, B. W., Langmuir (2009), DOI: 10.1021/1a902533x.
Salis, A., Parsons, D. F., Boström, M., Medda, L., Barse, B., Ninham, B. W. and Monduzzi, M., Langmuir (2009), DOI: 101021/1a902721a.
Parsons, D. F., Boström, M., Maceina, T. J., Salis, A. and Ninham, B. W., Langmuir (2009), DOI: 10.1021/1a903061h.CrossRef

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×