Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-06T08:19:26.308Z Has data issue: false hasContentIssue false

15 - Ultraviolet radiation in molecular clouds

Published online by Cambridge University Press:  10 December 2009

W. G. Roberge
Affiliation:
Department of Physics, Rensselaer Polytechnic Institute, USA
T. W. Hartquist
Affiliation:
Max-Planck-Institut für Astrophysik, Garching, Germany
Get access

Summary

Introduction

Ultraviolet radiation is a crucial ingredient in any theory of interstellar chemistry. In the interplay of molecule formation and destruction processes, ultraviolet photons adopt a multiple role, destroying neutral species on the one hand, while creating chemically reactive ions and depositing thermal energy on the other. It has long been recognized (e.g. Stief et al. (1972)), that dust in a cloud's outer layers attenuates ambient Galactic ultraviolet starlight, thereby enhancing the survival of molecules against photodestruction. Unfortunately, however, the degree of attenuation is sensitive to the grain scattering properties, which are not well determined at ultraviolet wavelengths (Sandell and Mattila 1975, Leung 1975, Whitworth 1975, Bernes and Sandqvist 1977, Sandell 1978, Flannery, Roberge, and Rybicki 1980). Since even a small amount of ultraviolet radiation has profound consequences in dark regions, the chemical and ionization balance of such regions has remained uncertain.

The early studies of dust shielding may have been overly pessimistic about uncertainties, however, as noted by Chlewicki and Greenberg (1984a,b). This is due in part to the existence of strong constraints on grain properties that follow from secure observational data, and also to the discovery of the chemical consequences of the ultraviolet emission associated with gas-cosmic ray interactions (Prasad and Tarafdar (1983); see also Chapter 16). The interaction produces an ultraviolet field in clouds which, at great depths, destroys molecules more rapidly than cosmic rays or attenuated starlight. As a result, the role of starlight is restricted to a relatively narrow region near a cloud's surface, where the effects of uncertainties in grain properties are moderate.

Type
Chapter
Information
Molecular Astrophysics
A Volume Honouring Alexander Dalgarno
, pp. 288 - 304
Publisher: Cambridge University Press
Print publication year: 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×