Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-03T05:34:07.189Z Has data issue: false hasContentIssue false

8 - Coherent Systems: a Brief Survey

Published online by Cambridge University Press:  07 September 2011

S. B. Bradlow
Affiliation:
University of Illinois
Leticia Brambila-Paz
Affiliation:
Centro de Investigacíon en Matematicás (CIMAT), Mexico
Steven B. Bradlow
Affiliation:
University of Illinois, Urbana-Champaign
Oscar García-Prada
Affiliation:
Consejo Superior de Investigaciones Cientificas, Madrid
S. Ramanan
Affiliation:
Chennai Mathematical Institute, India
Get access

Summary

Dedicated to Peter Newstead on the occasion of his 65th birthday.

Introduction

A coherent system is a pair (E, V) where E is a holomorphic bundle and V is a linear subspace of its space of holomorphic sections. If E is a semistable bundle, then the existence of such objects is equivalent to the non-emptiness of a higher rank Brill-Noether locus. This connection to higher rank Brill-Noether theory provides one of the motivations for studying coherent systems. It certainly motivated Peter Newstead's guiding role in the development of the subject, and thus makes a volume in honor of his 65th birthday a fitting place for a survey.

Interest in coherent systems extends beyond Brill-Noether theory, mainly because there is a stability notion for a pair (E, V), distinct from the stability of the bundle E. The natural definition of such stability depends on a real parameter (denoted by α) and leads to a finite family of moduli spaces of α-stable coherent systems. These moduli spaces present a rich display of topological and geometric phenomena, most of which have yet to be fully explored.

This survey will be limited in scope because of space constraints and because of a survey in preparation by Peter Newstead based on his lectures at a Clay Institute workshop held in October 2006 ([N]).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×