Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-17T13:20:04.782Z Has data issue: false hasContentIssue false

9 - Trajectory Generation

Published online by Cambridge University Press:  04 June 2024

Kevin M. Lynch
Affiliation:
Northwestern University, Illinois
Frank C. Park
Affiliation:
Seoul National University
Get access

Summary

During robot motion, the robot controller is provided with a steady stream of goal positions and velocities to track. This specification of the robot position as a function of time is called a trajectory. In some cases, the trajectory is completely specified by the task – for example, the end-effector may be required to track a known moving object. In other cases, as when the task is simply to move from one position to another in a given time, we have freedom to design the trajectory to meet these constraints. This is the domain of trajectory planning. The trajectory should be a sufficiently smooth function of time, and it should respect any given limits on joint velocities, accelerations, or torques.

In this chapter we consider a trajectory as the combination of a path, a purely geometric description of the sequence of configurations achieved by the robot, and a time scaling, which specifies the times when those configurations are reached. We consider three cases: point-to-point straight-line trajectories in both joint space and task space; trajectories passing through a sequence of timed via points; and minimum-time trajectories along specified paths taking actuator limits into consideration. Finding paths that avoid obstacles is left to Chapter 10.

Definitions

A path θ(s) maps a scalar path parameter s, assumed to be 0 at the start of the path and 1 at the end, to a point in the robot's configuration space _, θ : [0, 1] → _. As s increases from 0 to 1, the robot moves along the path. Sometimes s is taken to be time and is allowed to vary from time s = 0 to the total motion time s = T , but it is often useful to separate the role of the geometric path parameter s from the time parameter t. A time scaling s(t) assigns a value s to each time t ϵ [0, T ], s : [0, T ] → [0, 1].

Together, a path and a time scaling define a trajectory θ(s(t)), or θ(t) for short. Using the chain rule, the velocity and acceleration along the trajectory can be written as

Type
Chapter
Information
Modern Robotics
Mechanics, Planning, and Control
, pp. 282 - 305
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×