Book contents
- Frontmatter
- Contents
- List of Contributors
- Dedication
- Preface
- Ode on Working Memory
- Acknowledgments
- 1 Models of Working Memory: An Introduction
- 2 Working Memory: The Multiple-Component Model
- 3 An Embedded-Processes Model of Working Memory
- 4 Individual Differences in Working Memory Capacity and What They Tell Us About Controlled Attention, General Fluid Intelligence, and Functions of the Prefrontal Cortex
- 5 Modeling Working Memory in a Unified Architecture: An ACT-R Perspective
- 6 Insights into Working Memory from the Perspective of the EPIC Architecture for Modeling Skilled Perceptual-Motor and Cognitive Human Performance
- 7 The Soar Cognitive Architecture and Human Working Memory
- 8 Long-Term Working Memory as an Alternative to Capacity Models of Working Memory in Everyday Skilled Performance
- 9 Interacting Cognitive Subsystems: Modeling Working Memory Phenomena Within a Multiprocessor Architecture
- 10 Working Memory in a Multilevel Hybrid Connectionist Control Architecture (CAP2)
- 11 A Biologically Based Computational Model of Working Memory
- 12 Models of Working Memory: Eight Questions and Some General Issues
- 13 Toward Unified Theories of Working Memory: Emerging General Consensus, Unresolved Theoretical Issues, and Future Research Directions
- Name Index
- Subject Index
11 - A Biologically Based Computational Model of Working Memory
Published online by Cambridge University Press: 05 June 2012
- Frontmatter
- Contents
- List of Contributors
- Dedication
- Preface
- Ode on Working Memory
- Acknowledgments
- 1 Models of Working Memory: An Introduction
- 2 Working Memory: The Multiple-Component Model
- 3 An Embedded-Processes Model of Working Memory
- 4 Individual Differences in Working Memory Capacity and What They Tell Us About Controlled Attention, General Fluid Intelligence, and Functions of the Prefrontal Cortex
- 5 Modeling Working Memory in a Unified Architecture: An ACT-R Perspective
- 6 Insights into Working Memory from the Perspective of the EPIC Architecture for Modeling Skilled Perceptual-Motor and Cognitive Human Performance
- 7 The Soar Cognitive Architecture and Human Working Memory
- 8 Long-Term Working Memory as an Alternative to Capacity Models of Working Memory in Everyday Skilled Performance
- 9 Interacting Cognitive Subsystems: Modeling Working Memory Phenomena Within a Multiprocessor Architecture
- 10 Working Memory in a Multilevel Hybrid Connectionist Control Architecture (CAP2)
- 11 A Biologically Based Computational Model of Working Memory
- 12 Models of Working Memory: Eight Questions and Some General Issues
- 13 Toward Unified Theories of Working Memory: Emerging General Consensus, Unresolved Theoretical Issues, and Future Research Directions
- Name Index
- Subject Index
Summary
FIVE CENTRAL FEATURES OF THE MODEL
We define working memory as controlled processing involving active maintenance and/or rapid learning, where controlled processing is an emergent property of the dynamic interactions of multiple brain systems, but the prefrontal cortex (PFC) and hippocampus (HCMP) are especially influential owing to their specialized processing abilities and their privileged locations within the processing hierarchy (both the PFC and HCMP are well connected with a wide range of brain areas, allowing them to influence behavior at a global level). The specific features of our model include:
(1) A PFC specialized for active maintenance of internal contextual information that is dynamically updated and self-regulated, allowing it to bias (control) ongoing processing according to maintained information (e.g., goals, instructions, partial products).
(2) An HCMP specialized for rapid learning of arbitrary information, which can be recalled in the service of controlled processing, whereas the posterior perceptual and motor cortex (PMC) exhibits slow, long-term learning that can efficiently represent accumulated knowledge and skills.
(3) Control that emerges from interacting systems (PFC, HCMP, and PMC).
(4) Dimensions that define continua of specialization in different brain systems: for example, robust active maintenance, fast versus slow learning.
(5) Integration of biological and computational principles.
Working memory is an intuitively appealing theoretical construct – perhaps deceptively so.
- Type
- Chapter
- Information
- Models of Working MemoryMechanisms of Active Maintenance and Executive Control, pp. 375 - 411Publisher: Cambridge University PressPrint publication year: 1999
- 120
- Cited by