from Part II - Computational neuroscience models
Published online by Cambridge University Press: 05 November 2011
Summary
The mammalian brain's decision mechanism may utilise a distributed network of positive feedback loops to integrate, over time, noisy sensory evidence for and against a particular choice. Such loops would mitigate the effects of noise and have the benefit of decoupling response size from the strength of evidence, which could assist animals in acting early at the first signs of opportunity or danger. This hypothesis is explored in the context of the sensorimotor control circuitry underlying eye movements, and in relation to the hypothesis that the basal ganglia serve as a central switch acting to control the competitive accumulation of sensory evidence in positive feedback loops representing alternative actions. Results, in support of these proposals, are presented from a systems-level computational model of the primate oculomotor control. This model is able to reproduce behavioural data relating strength of sensory evidence to response time and accuracy, while also demonstrating how the basal ganglia and related oculomotor circuitry might work together to manage the initiation, control, and termination of the decision process over time.
Introduction
Whether it is a cheetah deciding whether its prey is veering left or right, a rabbit deciding whether that movement in the bushes is friend or foe, or a poker player wondering if his opponent has a stronger hand, infinitesimally small variations in sensory input can give rise to vastly different behavioural outcomes: the cheetah veers left and not right, the rabbit flees or continues grazing, the card player bets a month's salary or folds. The outcome of such decisions can be critical, even a matter of life or death, which is why there will have been tremendous evolutionary pressure to develop decision-making mechanisms that can extract maximal utility from limited sensory information. In this chapter, using the oculomotor system as an exemplar, we argue that the vertebrate basal ganglia (BG) are one of the results of that evolutionary pressure and explore how these structures tame and exploit positive feedback loops (henceforth PFBLs) within the brain in order to make the most of limited information.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.