Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T02:13:46.008Z Has data issue: false hasContentIssue false

Hilbert's Tenth Problem for function fields of characteristic zero

Published online by Cambridge University Press:  04 August 2010

Kirsten Eisenträger
Affiliation:
The Pennsylvania State University
Zoé Chatzidakis
Affiliation:
Centre National de la Recherche Scientifique (CNRS), Paris
Dugald Macpherson
Affiliation:
University of Leeds
Anand Pillay
Affiliation:
University of Leeds
Alex Wilkie
Affiliation:
University of Manchester
Get access

Summary

Summary

In this article we outline the methods that are used to prove undecidability of Hilbert's Tenth Problem for function fields of characteristic zero. Following Denef we show how rank one elliptic curves can be used to prove undecidability for rational function fields over formally real fields. We also sketch the undecidability proofs for function fields of varieties over the complex numbers of dimension at least 2.

Introduction

Hilbert's Tenth Problem in its original form was to find an algorithm to decide, given a polynomial equation f(x1,…, xn) = 0 with coefficients in the ring ℤ of integers, whether it has a solution with x1,…, xn ∈ ℤ. Matijasevič ([Mat70]), based on work by Davis, Putnam and Robinson ([DPR61]), proved that no such algorithm exists, i.e. Hilbert's Tenth Problem is undecidable. Since then, analogues of this problem have been studied by asking the same question for polynomial equations with coefficients and solutions in other commutative rings R. We will refer to this as Hilbert's Tenth Problem over R. Perhaps the most important unsolved question in this area is the case R = ℚ. There has been recent progress by Poonen ([Poo03]) who proved undecidability for large subrings of . The function field analogue, namely Hilbert's Tenth Problem for the function field k of a curve over a finite field, is undecidable.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×