Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-23T04:01:02.423Z Has data issue: false hasContentIssue false

5 - Migration of Disease

Dengue and Zika across Continents, around Cities, and within the Human Host

Published online by Cambridge University Press:  25 March 2020

Johannes Knolle
Affiliation:
Imperial College London
James Poskett
Affiliation:
University of Warwick
Chandran Kukathas
Affiliation:
London School of Economics and Political Science
Khadija von Zinnenburg Carroll
Affiliation:
University of Birmingham
Filippo Grandi
Affiliation:
United Nations Refugee Agency
Eva Harris
Affiliation:
University of California, Berkeley
Kavita Puri
Affiliation:
BBC
Venki Ramakrishnan
Affiliation:
University of Cambridge
Iain Couzin
Affiliation:
Universität Konstanz, Germany
Get access

Summary

Dengue virus, the cause of tens of millions of cases of dengue annually, and Zika virus, the cause of recent explosive epidemics across Latin America associated with congenital defects and microcephaly, are pathogens with a significant burden on human health and well-being. Beyond their toll on health, these flaviviruses, as the genus is called, share a common evolutionary origin, have each adapted to replicate efficiently in the human host, and are spread by similar species of mosquitoes. These commonalities belie important clinical, epidemiological, and immunological differences between them that necessitate continued research into their respective biology. Moreover, these commonalities and differences have real consequences for control efforts in affected areas around the world.

Type
Chapter
Information
Migration , pp. 96 - 130
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Al Awaidy, S. T., Al Obeidani, I., Bawikar, S., et al. (2014). ‘Dengue epidemiological trend in Oman: a 13-year national surveillance and strategic proposition of imported cases’. Trop. Doct., 44(4), 190–5. https://doi.org/10.1177/0049475514541650Google Scholar
Andersson, N., Nava-Aguilera, E., Arosteguí, J., et al. (2015). ‘Evidence based community mobilization for dengue prevention in Nicaragua and Mexico (Camino Verde, the Green Way): cluster randomized controlled trial’. BMJ, 351, h3267. https://doi.org/10.1136/BMJ.H3267Google Scholar
Arosteguí, J., Ledogar, R. J., Coloma, J., et al. (2017). ‘The Camino Verde intervention in Nicaragua, 2004–2012’. BMC Public Health, 17(S1), 406. https://doi.org/10.1186/s12889-017-4299-3Google Scholar
Aubry, M., Teissier, A., Huart, M., et al. (2017). ‘Zika virus seroprevalence, French Polynesia, 2014–2015’. Emerg. Infect. Dis., 23(4), 669–72. https://doi.org/10.3201/eid2304.161549Google Scholar
Balmaseda, A., Stettler, K., Medialdea-Carrera, R., et al. (2017). ‘Antibody-based assay discriminates Zika virus infection from other flaviviruses’. Proc. Natl Acad. Sci. U.S.A., 114(31), 8384–9. https://doi.org/10.1073/pnas.1704984114Google Scholar
Balmaseda, A., Zambrana, J. V., Collado, D., et al. (2018). ‘Comparison of four serological methods and two reverse transcription–PCR assays for diagnosis and surveillance of Zika virus infection’. J. Clin. Microbiol., 56(3), e01785-17. https://doi.org/10.1128/JCM.01785-17Google Scholar
Barba-Spaeth, G., Dejnirattisai, W., Rouvinski, A., et al. (2016). ‘Structural basis of potent Zika–dengue virus antibody cross-neutralization’. Nature, 536(7614), 4853. https://doi.org/10.1038/nature18938Google Scholar
Beatty, P. R., Puerta-Guardo, H., Killingbeck, S. S., et al. (2015). ‘Dengue virus NS1 triggers endothelial permeability and vascular leak that is prevented by NS1 vaccination’. Sci. Transl. Med., 7(304), 304ra141. https://doi.org/10.1126/scitranslmed.aaa3787CrossRefGoogle ScholarPubMed
Bhatt, S., Gething, P. W., Brady, O. J., et al. (2013). ‘The global distribution and burden of Dengue’. Nature, 496(7446), 504–7.Google Scholar
Blackman, A., and Palma, A. (2002). ‘Scrap tires in Ciudad Juárez and El Paso: ranking the risks’, https://ideas.repec.org/p/ags/rffdps/10583.html (accessed 9 October 2019).Google Scholar
Burger-Calderon, R., Gonzalez, K., Ojeda, S., et al. (2018). ‘Zika virus infection in Nicaraguan households’. PLoS Negl. Trop. Dis., 12(5), e0006518. https://doi.org/10.1371/journal.pntd.0006518Google Scholar
Cao-Lormeau, V.-M., Roche, C., Teissier, A., et al. (2014). ‘Zika virus, French Polynesia, South Pacific, 2013’. Emerg. Infect. Dis., 20(6), 1084–6. https://doi.org/10.3201/eid2006.140138CrossRefGoogle ScholarPubMed
Centers for Disease Control and Prevention. (2012). ‘Life cycle: the mosquito’, www.cdc.gov/dengue/resources/factSheets/MosquitoLifecycleFINAL.pdf (accessed 9 October 2019).Google Scholar
Centers for Disease Control and Prevention. (2018). ‘Congenital Zika syndrome & other birth defects’, www.cdc.gov/pregnancy/zika/testing-follow-up/zika-syndrome-birth-defects.html (accessed 3 April 2018).Google Scholar
Darwin, C. (1859). On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life. London: John Murray.Google Scholar
Delatorre, E., Mir, D., and Bello, G. (2017). ‘Tracing the origin of the NS1 A188V substitution responsible for recent enhancement of Zika virus Asian genotype infectivity’. Mem. Inst. Oswaldo Cruz, 112(11), 793–5. https://doi.org/10.1590/0074-02760170299Google Scholar
Dick, G. W. A., Kitchen, S. F., and Haddow, A. J. (1952). ‘Zika virus. I. Isolations and serological specificity’. Trans. R. Soc. Trop. Med. Hyg., 46(5), 509–20.Google Scholar
Domingo, E., Martin, V., Perales, C., et al. (2006). ‘Viruses as quasispecies: biological implications’. Curr. Top. Microbiol. Immunol., 299, 5182. www.ncbi.nlm.nih.gov/pubmed/16568896Google Scholar
Duffy, M. R., Chen, T.-H., Hancock, W. T., et al. (2009). ‘Zika virus outbreak on Yap Island, Federated States of Micronesia’. N. Engl. J. Med., 360(24), 2536–43. https://doi.org/10.1056/NEJMoa0805715Google Scholar
Ehrenkranz, N. J., Ventura, A. K., Cuadrado, R. R., Pond, W. L., and Porter, J. E. (1971). ‘Pandemic dengue in Caribbean countries and the Southern United States – past, present and potential problems’. N. Engl. J. Med., 285(26), 1460–9. https://doi.org/10.1056/NEJM197112232852606CrossRefGoogle ScholarPubMed
Fagbami, A. H. (1979). ‘Zika virus infections in Nigeria: virological and seroepidemiological investigations in Oyo State’. J. Hyg. (Lond.), 83(2), 213219. www.ncbi.nlm.nih.gov/pubmed/489960Google Scholar
Faria, N. R., Quick, J., Claro, I. M., et al. (2017). ‘Establishment and cryptic transmission of Zika virus in Brazil and the Americas’. Nature, 546(7658), 406–10. https://doi.org/10.1038/nature22401CrossRefGoogle ScholarPubMed
Glasner, D. R., Puerta-Guardo, H., Beatty, P. R., and Harris, E. (2018). ‘The good, the bad, and the shocking: the multiple roles of dengue virus nonstructural protein 1 in protection and pathogenesis’. Annu. Rev. Virol., 5(1), 101416-041848. https://doi.org/10.1146/annurev-virology-101416-041848CrossRefGoogle ScholarPubMed
Guzman, M. G., Gubler, D. J., Izquierdo, A., Martinez, E., and Halstead, S. B. (2016). ‘Dengue infection’. Nat. Rev. Dis. Prim., 2, 16055. https://doi.org/10.1038/nrdp.2016.55Google Scholar
Guzman, M. G., Halstead, S. B., Artsob, H., et al. (2010). ‘Dengue: a continuing global threat’. Nat. Rev. Microbiol., 8(12), S7S16. https://doi.org/10.1038/nrmicro2460Google Scholar
Guzmán, M. G., and Kourí, G. (2002). ‘Dengue: an update’. Lancet. Infect. Dis., 2(1), 3342. www.ncbi.nlm.nih.gov/pubmed/11892494CrossRefGoogle ScholarPubMed
Halstead, S. B., Nimmannitya, S., Yamarat, C., and Russell, P. K. (1967). ‘Hemorrhagic fever in Thailand; recent knowledge regarding etiology’. Jpn J. Med. Sci. Biol., 20 Suppl., 96103. www.ncbi.nlm.nih.gov/pubmed/5301574Google ScholarPubMed
Hawley, W. A., Reiter, P., Copeland, R. S., Pumpuni, C. B., and Craig, G. B. (1987). ‘Aedes albopictus in North America: probable introduction in used tires from northern Asia’. Science, 236(4805), 1114–16. www.ncbi.nlm.nih.gov/pubmed/3576225Google Scholar
Kambhampati, S., Black, W. C., and Rai, K. S. (1991). ‘Geographic origin of the US and Brazilian Aedes albopictus inferred from allozyme analysis’. Heredity (Edinb.), 67(1), 8594. https://doi.org/10.1038/hdy.1991.67Google Scholar
Kouri, G. P., Guzmán, M. G., and Bravo, J. R. (1987). ‘Why dengue haemorrhagic fever in Cuba? An integral analysis’. Trans. R. Soc. Trop. Med. Hyg., 81(5), 821–3. www.ncbi.nlm.nih.gov/pubmed/3450005Google Scholar
Kraemer, M. U. G., Sinka, M. E., Duda, K. A., et al. (2015). ‘The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus’. eLife, 4, e08347. https://doi.org/10.7554/eLife.08347Google Scholar
Kuan, G., Gordon, A., Avilés, W., et al. (2009). ‘The Nicaraguan Pediatric Dengue Cohort Study: study design, methods, use of information technology, and extension to other infectious diseases’. Am. J. Epidemiol., 170(1), 120–9. https://doi.org/10.1093/aje/kwp092CrossRefGoogle ScholarPubMed
Lai, C.-Y., Tsai, W.-Y., Lin, S.-R., et al. (2008). ‘Antibodies to envelope glycoprotein of dengue virus during the natural course of infection are predominantly cross-reactive and recognize epitopes containing highly conserved residues at the fusion loop of domain II’. J. Virol., 82(13), 6631–43. https://doi.org/10.1128/JVI.00316-08Google Scholar
Lednicky, J., Madsen Beau De Rochars, V., El Badry, M., et al. (2016). ‘Zika virus outbreak in Haiti in 2014: molecular and clinical data’. PLoS Negl. Trop. Dis., 10(4), e0004687. https://doi.org/10.1371/journal.pntd.0004687Google Scholar
Ledogar, R. J., Arosteguí, J., Hernández-Alvarez, C., et al. (2017). ‘Mobilising communities for Aedes aegypti control: the SEPA approach’. BMC Public Health, 17(Suppl. 1), 403. https://doi.org/10.1186/s12889-017-4298-4Google Scholar
Liu, Y., Liu, J., Du, S., et al. (2017). ‘Evolutionary enhancement of Zika virus infectivity in Aedes aegypti mosquitoes’. Nature, 545(7655), 482–6. https://doi.org/10.1038/nature22365CrossRefGoogle ScholarPubMed
McBride, C. S., Baier, F., Omondi, A. B., et al. (2014). ‘Evolution of mosquito preference for humans linked to an odorant receptor’. Nature, 515(7526), 222–7. https://doi.org/10.1038/nature13964Google Scholar
Metsky, H. C., Matranga, C. B., Wohl, S., et al. (2017). ‘Zika virus evolution and spread in the Americas’. Nature, 546(7658), 411–15. https://doi.org/10.1038/nature22402Google Scholar
Modhiran, N., Watterson, D., Muller, D. A., et al. (2015). ‘Dengue virus NS1 protein activates cells via Toll-like receptor 4 and disrupts endothelial cell monolayer integrity’. Sci. Transl. Med., 7(304), 304ra142. https://doi.org/10.1126/scitranslmed.aaa3863Google Scholar
Murray, N. E. A., Quam, M. B., and Wilder-Smith, A. (2013). ‘Epidemiology of dengue: past, present and future prospects’. Clin. Epidemiol., 5, 299309. https://doi.org/10.2147/CLEP.S34440Google Scholar
Pan American Health Organization. (1971). ‘Guide for the reports on the Aedes Aegypti eradication campaign in the Americas’, http://iris.paho.org/xmlui/handle/123456789/18650 (accessed 9 October 2019).Google Scholar
Parameswaran, P., Charlebois, P., Tellez, Y., et al. (2012). ‘Genome-wide patterns of intrahuman dengue virus diversity reveal associations with viral phylogenetic clade and interhost diversity’. J. Virol., 86(16), 8546–58. https://doi.org/10.1128/JVI.00736-12Google Scholar
Parameswaran, P., Wang, C., Trivedi, S. B., et al. (2017). ‘Intrahost selection pressures drive rapid dengue virus microevolution in acute human infections’. Cell Host Microbe, 22(3), 400–10. https://doi.org/10.1016/j.chom.2017.08.003CrossRefGoogle ScholarPubMed
Pettersson, J. H.-O., Eldholm, V., Seligman, S. J., et al. (2016). How did Zika virus emerge in the Pacific islands and Latin America?mBio, 7(5), 01239-16. https://doi.org/10.1128/mBio.01239-16CrossRefGoogle ScholarPubMed
Pierson, T. C., and Diamond, M. S. (2012). ‘Degrees of maturity: the complex structure and biology of flaviviruses’. Curr. Opin. Virol., 2(2), 168–75. https://doi.org/10.1016/j.coviro.2012.02.011Google Scholar
Pompon, J., Morales-Vargas, R., Manuel, M., et al. (2017). ‘A Zika virus from America is more efficiently transmitted than an Asian virus by Aedes aegypti mosquitoes from Asia’. Sci. Rep., 7(1), 1215. https://doi.org/10.1038/s41598-017-01282-6CrossRefGoogle ScholarPubMed
ProMED (2015). ‘Doença misteriosa assusta população de Camaçari’, www.promedmail.org/direct.php?id=20150325.3253769 (accessed 3 April 2018).Google Scholar
Puerta-Guardo, H., Glasner, D. R., and Harris, E. (2016). ‘Dengue virus NS1 disrupts the endothelial glycocalyx, leading to hyperpermeability’. PLOS Pathog., 12(7), e1005738. https://doi.org/10.1371/journal.ppat.1005738Google Scholar
Russell, T. L., Govella, N. J., Azizi, S., et al. (2011). ‘Increased proportions of outdoor feeding among residual malaria vector populations following increased use of insecticide-treated nets in rural Tanzania’. Malar. J., 10(1), 80. https://doi.org/10.1186/1475-2875-10-80Google Scholar
Saluzzo, J. F., Ivanoff, B., Languillat, G., and Georges, A. J. (1982). ‘Enquête sérologique sur l’incidence des arbovirus parmi les populations humaines et simiennes du sud-est de la République Gabonaise [Serological survey for arbovirus antibodies in the human and simian populations of the south-east of Gabon]’. Bull. Soc. Pathol. Exot. Filiales, 75(3), 262–6. English abstract www.ncbi.nlm.nih.gov/pubmed/6809352Google Scholar
Sangkawibha, N., Rojanasuphot, S., Ahandrik, S., et al. (1984). ‘Risk factors in dengue shock syndrome: a prospective epidemiologic study in Rayong, Thailand. I. The 1980 outbreak’. Am. J. Epidemiol., 120(5), 653–69. www.ncbi.nlm.nih.gov/pubmed/6496446Google Scholar
Smithburn, K. C. (1952). ‘Neutralizing antibodies against certain recently isolated viruses in the sera of human beings residing in East Africa’. J. Immunol., 69(2), 223–34. www.ncbi.nlm.nih.gov/pubmed/14946416Google Scholar
Sprenger, D., and Wuithiranyagool, T. (1986). ‘The discovery and distribution of Aedes albopictus in Harris County, Texas’. J. Am. Mosq. Control Assoc., 2(2), 217–19.Google Scholar
Tabata, T., Petitt, M., Puerta-Guardo, H., et al. (2016). ‘Zika virus targets different primary human placental cells, suggesting two routes for vertical transmission’. Cell Host Microbe, 20(2), 155–66. https://doi.org/10.1016/j.chom.2016.07.002Google Scholar
Tabata, T., Petitt, M., Puerta-Guardo, H., et al. (2018). ‘Zika virus replicates in proliferating cells in explants from first-trimester human placentas, potential sites for dissemination of infection’. J. Infect. Dis., 217(8), 1202–13. https://doi.org/10.1093/infdis/jix552Google Scholar
Thein, S., Aung, M. M., Shwe, T. N., et al. (1997). ‘Risk factors in dengue shock syndrome’. Am. J. Trop. Med. Hyg., 56(5), 566–72. www.ncbi.nlm.nih.gov/pubmed/9180609Google Scholar
Thézé, J., Li, T., du Plessis, L., et al. (2018). ‘Genomic epidemiology reconstructs the introduction and spread of Zika virus in Central America and Mexico’. Cell Host Microbe, 23(6), 855–64. https://doi.org/10.1016/j.chom.2018.04.017CrossRefGoogle ScholarPubMed
Tognarelli, J., Ulloa, S., Villagra, E., et al. (2016). ‘A report on the outbreak of Zika virus on Easter Island, South Pacific, 2014’. Arch. Virol., 161(3), 665–8. https://doi.org/10.1007/s00705-015-2695-5Google Scholar
Vieira de Souza, W., de Fátima Pessoa Militão de Albuquerque, M., Vazquez, E., et al. (2018). ‘Microcephaly epidemic related to the Zika virus and living conditions in Recife, northeast Brazil’. BMC Public Health, 18(1), 130. https://doi.org/10.1186/s12889-018-5039-zGoogle Scholar
Wilder-Smith, A., and Gubler, D. J. (2008). ‘Geographic expansion of dengue: the impact of international travel’. Med. Clin. North Am., 92(6), 1377–90. https://doi.org/10.1016/j.mcna.2008.07.002Google Scholar
Wilson, M., and Chen, L. (2002). ‘Dengue in the Americas’. Dengue Bull., 26, 4461.Google Scholar
World Health Organization (1997). Dengue Haemorrhagic Fever: Diagnosis, Treatment, Prevention, and Control , 2nd edn. Geneva: World Health Organization, www.who.int/csr/resources/publications/dengue/Denguepublication/en/ (accessed 10 October 2019).Google Scholar
World Health Organization (2016a). ‘WHO Director-General summarizes the outcome of the Emergency Committee regarding clusters of microcephaly and Guillain–Barré syndrome’. www.who.int/en/news-room/detail/01-02-2016-who-director-general-summarizes-the-outcome-of-the-emergency-committee-regarding-clusters-of-microcephaly-and-guillain-barré-syndrome (accessed 2 August 2018).Google Scholar
World Health Organization (2016b). ‘Zika virus and complications: questions and answers’, www.who.int/features/qa/zika/en/ (accessed 9 October 2019).Google Scholar
World Health Organization (2016c). ‘Fifth meeting of the Emergency Committee under the International Health Regulations (2005) regarding microcephaly, other neurological disorders and Zika virus’, www.who.int/en/news-room/detail/18-11-2016-fifth-meeting-of-the-emergency-committee-under-the-international-health-regulations-(2005)-regarding-microcephaly-other-neurological-disorders-and-zika-virus (accessed 2 August 2018).Google Scholar
Xia, H., Luo, H., Shan, C., et al. (2018). ‘An evolutionary NS1 mutation enhances Zika virus evasion of host interferon induction’. Nat. Commun., 9(1), 414. https://doi.org/10.1038/s41467-017-02816-2Google Scholar
Yuan, L., Huang, X.-Y., Liu, Z.-Y., et al. (2017). ‘A single mutation in the prM protein of Zika virus contributes to fetal microcephaly’. Science, 358(6365), 933–6. https://doi.org/10.1126/science.aam7120Google Scholar
Zambrana, J. V., Bustos Carrillo, F., Collado, D., et al. (2018). ‘Seroprevalence, risk factor, and spatial analysis of Zika virus infection after the 2016 epidemic in Managua, Nicaragua’. Proc. Natl. Acad. Sci., 115(37), 9294–9. www.pnas.org/content/115/37/9294Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×