Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-25T14:18:32.764Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  27 August 2018

Michael D. Graham
Affiliation:
University of Wisconsin, Madison
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alder, B. J. & Wainwright, T. E. (1970), “Decay of the Velocity Autocorrelation Function,” Phys. Rev. A 1(1), 1821.CrossRefGoogle Scholar
Allen, M. P. & Tildesley, D. J. (1987), Computer Simulation of Liquids, Oxford University Press, Oxford.Google Scholar
Alvarez, A. & Soto, R. (2005), “Dynamics of a Suspension Confined in a Thin Cell,” Phys. Fluids 17(9), 093103.CrossRefGoogle Scholar
Ando, T., Chow, E., Saad, Y. & Skolnick, J. (2012), “Krylov Subspace Methods for Computing Hydrodynamic Interactions in Brownian Dynamics Simulations,” J. Chem. Phys. 137(6), 064106.CrossRefGoogle ScholarPubMed
Anekal, S. & Bevan, M. (2005), “Interpretation of Conservative Forces from Stokesian Dynamic Simulations of Interfacial and Confined Colloids,” J. Chem. Phys. 122(3), 034903.CrossRefGoogle ScholarPubMed
Aris, R. (1989), Vectors, Tensors and the Basic Equations of Fluid Mechanics, Dover, New York.Google Scholar
Balboa Usabiaga, F., Delmotte, B. & Donev, A. (2017), “Brownian Dynamics of Confined Suspensions of Active Microrollers,” J. Chem. Phys. 146(13), 134104.CrossRefGoogle ScholarPubMed
Balducci, A., Mao, P., Han, J. & Doyle, P. S. (2006), “Double-Stranded DNA Diffusion in Slitlike Nanochannels,” Macromolecules 39(18), 62736281.CrossRefGoogle Scholar
Ball, R. C. & Richmond, P. (1980), “Dynamics of Colloidal Dispersions,” Physics and Chemistry of Liquids 9(2), 99116.CrossRefGoogle Scholar
Banchio, A. & Brady, J. (2003), “Accelerated Stokesian Dynamics: Brownian Motion,” J. Chem. Phys. 118(22), 1032310332.CrossRefGoogle Scholar
Barthes-Biesel, D. & Rallison, J. M. (1981), ‘The Time-Dependent Deformation of a Capsule Freely Suspended in a Linear Shear-Flow’, J. Fluid Mech. 113, 251267.CrossRefGoogle Scholar
Batchelor, G. K. (1967), An Introduction to Fluid Dynamics, Cambridge University Press, Cambridge.Google Scholar
Batchelor, G. K. (1970a), “Slender-Body Theory for Particles of Arbitrary Cross-Section in Stokes Flow,” J. Fluid Mech. 44, 419440.CrossRefGoogle Scholar
Batchelor, G. K. (1970b), “The Stress System in a Suspension of Force-Free Particles,” J. Fluid Mech. 41(3), 545570.CrossRefGoogle Scholar
Batchelor, G. K. & Green, J. T. (1972), “Determination of Bulk Stress in a Suspension of Spherical-Particles to Order C-2,” J. Fluid Mech. 56, 401427.CrossRefGoogle Scholar
Beams, N. N., Olson, L. N. & Freund, J. B. (2016), “A Finite Element Based P3 M Method for N-Body Problems,” SIAM J. Sci. Comput. 38(3), A1538A1560.CrossRefGoogle Scholar
Berg, H. C. (1993), Random Walks in Biology, Princeton University Press, Princeton.Google Scholar
Bergeron, V., Bonn, D., Martin, J. & Vovelle, L. (2000), “Controlling Droplet Deposition with Polymer Additives,” Nature 405(6788), 772775.CrossRefGoogle ScholarPubMed
Berne, B. J. & Pecora, R. (1976), Dynamic Light Scattering, Wiley-Interscience, New York.Google Scholar
Bird, R. B., Armstrong, R. C. & Hassager, O. (1987), Dynamics of Polymeric Liquids, Vol. 1 of Fluid Mechanics, 2 edn, Wiley-Interscience, New York.Google Scholar
Bird, R. B., Curtiss, C. F., Armstrong, R. C. & Hassager, O. (1987), Dynamics of Polymeric Liquids, Vol. 2 of Kinetic Theory, 2 edn, Wiley-Interscience, New York.Google Scholar
Bird, R. B., Stewart, W. E. & Lightfoot, E. N. (2002), Transport Phenomena, 2nd edn, Wiley, New York.Google Scholar
Blake, J. R. (1971a), “Note on the Image System for a Stokeslet in a No-Slip Boundary,” Proc. Camb. Philos. S.-M 70, 303310.CrossRefGoogle Scholar
Blake, J. R. (1971b), “Spherical Envelope Approach to Ciliary Propulsion,” J. Fluid Mech. 46(01), 199208.CrossRefGoogle Scholar
Blawzdziewicz, J. (2007), “Boundary Integral Methods for Stokes Flows,” in Prosperetti, A. & Tryggvason, G., eds, Computational Methods for Multiphase Flow, Cambridge University Press, Cambridge.Google Scholar
Bocquet, L. (2004), “High Friction Limit of the Kramers Equation: The Multiple Time-Scale Approach,” Am. J. Phys. 65(2), 140144.CrossRefGoogle Scholar
Brady, J. F. & Bossis, G. (1988), “Stokesian Dynamics,” Annu. Rev. Fluid Mech. 20, 111157.CrossRefGoogle Scholar
Chaikin, P. M. & Lubensky, T. C. (1995), Principles of Condensed Matter Physics, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Chan, P. & Leal, L. G. (1979), “The Motion of a Deformable Drop in a Second-Order Fluid,” J. Fluid Mech. 92, 131170.CrossRefGoogle Scholar
Chwang, A. T. & Wu, T. Y.-T. (1975), “Hydromechanics of Low-Reynolds-Number Flow. 2. Singularity Method for Stokes Flows,” J. Fluid Mech. 67, 787815.CrossRefGoogle Scholar
Cortez, R., Fauci, L. & Medovikov, A. (2005), “The Method of Regularized Stokeslets in Three Dimensions: Analysis, Validation, and Application to Helical Swimming,” Phys. Fluids 17(3), 031504.CrossRefGoogle Scholar
Cui, B., Diamant, H., Lin, B. & Rice, S. (2004), “Anomalous Hydrodynamic Interaction in a Quasi-Two-Dimensional Suspension,” Phys. Rev. Lett. 92(25), 258301.CrossRefGoogle Scholar
Darnton, N. C., Turner, L., Rojevsky, S. & Berg, H. C. (2007), “On Torque and Tumbling in Swimming Escherichia Coli,” J. Bact. 189(5), 17561764.CrossRefGoogle ScholarPubMed
de Gennes, P. G. (1979), Scaling Concepts in Polymer Physics, Cornell University Press, Ithaca, NY.Google Scholar
Deen, W. M. (2012), Analysis of Transport Phenomena, 2nd edn, Oxford University Press, Oxford.Google Scholar
Dhont, J. K. G. & Briels, W. J. (2003), “Viscoelasticity of Suspensions of Long, Rigid Rods,” Colloid Surface A 213, 131156.CrossRefGoogle Scholar
Di Carlo, D. (2009), “Inertial Microfluidics,” Lab Chip 9(21), 3038.CrossRefGoogle ScholarPubMed
Doi, M. & Edwards, S. F. (1986), The Theory of Polymer Dynamics, Oxford University Press, New York.Google Scholar
Doyle, P. S., Shaqfeh, E. & Gast, A. P. (1997), “Dynamic Simulation of Freely Draining Flexible Polymers in Steady Linear Flows,” J. Fluid Mech. 334, 251291.CrossRefGoogle Scholar
Drazin, P. G. & Reid, W. H. (1981), Hydrodynamic Stability, Cambridge Monographs on Mechanics and Applied Mathematics, Cambridge University Press, Cambridge.Google Scholar
Dufresne, E., Squires, T., Brenner, M. & Grier, D. (2000), “Hydrodynamic Coupling of Two Brownian Spheres to a Planar Surface,” Phys. Rev. Lett. 85(15), 33173320.CrossRefGoogle ScholarPubMed
Durlofsky, L. & Brady, J. F. (1987), “Analysis of the Brinkman Equation as a Model for Flow in Porous Media,” Phys. Fluids 30(11), 33293341.CrossRefGoogle Scholar
Durlofsky, L., Brady, J. F. & Bossis, G. (1987), “Dynamic Simulation of Hydrodynamically Interacting Particles,” J. Fluid Mech. 180, 2149.CrossRefGoogle Scholar
Einstein, A. (1998), Einstein’s Miraculous Year: Five Papers That Changed the Face of Physics, Princeton University Press, Princeton.CrossRefGoogle Scholar
Ermak, D. L. & McCammon, J. A. (1978), “Brownian Dynamics with Hydrodynamic Interactions,” J. Chem. Phys. 69(4), 13521360.CrossRefGoogle Scholar
Fiore, A. M., Balboa Usabiaga, F., Donev, A. & Swan, J. W. (2017), “Rapid Sampling of Stochastic Displacements in Brownian Dynamics Simulations,” J. Chem. Phys. 146(12), 124116.CrossRefGoogle ScholarPubMed
Fixman, M. (1978), “Simulation of Polymer Dynamics. 1. General Theory,” J. Chem. Phys. 69(4), 15271537.CrossRefGoogle Scholar
Fixman, M. (1986), “Construction of Langevin Forces in the Simulation of Hydrodynamic Interaction,” Macromolecules 19(4), 12041207.CrossRefGoogle Scholar
Fox, R. F. & Uhlenbeck, G. E. (1970), “Contributions to Non-Equilibrium Thermodynamics. I. Theory of Hydrodynamical Fluctuations,” Phys. Fluids 13, 18931901.CrossRefGoogle Scholar
Franosch, T., Grimm, M., Belushkin, M., Mor, F. M., Foffi, G., Forró, L. & Jeney, S. (2011), “Resonances Arising from Hydrodynamic Memory in Brownian Motion,” Nature 478(7367), 8588.CrossRefGoogle ScholarPubMed
Fuller, G. G. & Leal, L. G. (1981), “The Effects of Conformation-Dependent Friction and Internal Viscosity on the Dynamics of the Nonlinear Dumbbell Model for a Dilute Polymer Solution,” J. Non-Newton. Fluid Mech. 8(3), 271310.CrossRefGoogle Scholar
Gardiner, C. W. (1985), Handbook of Stochastic Methods, Springer, Berlin.Google Scholar
Gasquet, C. & Witomski, P. (1998), Fourier Analysis and Applications: Filtering, Numerical Computation, Wavelets, Springer, New York.Google Scholar
Gimbutas, Z., Greengard, L. & Veerapaneni, S. (2015), “Simple and Efficient Representations for the Fundamental Solutions of Stokes Flow in a Half-Space,” J. Fluid Mech. 776, R1–10.CrossRefGoogle Scholar
Goldstein, H. (1980), Classical Mechanics, 2nd edn, Addison Wesley, Reading, MA.Google Scholar
Gonzalez, O. & Stuart, A. M. (2008), A First Course in Continuum Mechanics, Cambridge University Press, Cambridge.Google Scholar
Götz, T. (2000), Interactions of Fibers and Flow: Asymptotics, Theory and Numerics, PhD thesis, Universität Kaiserslautern.Google Scholar
Graham, M. D. (2003), “Interfacial Hoop Stress and Instability of Viscoelastic Free Surface Flows,” Phys. Fluids 15(6), 17021710.CrossRefGoogle Scholar
Graham, M. D. (2011), “Fluid Dynamics of Dissolved Polymer Molecules in Confined Geometries,” Annu. Rev. Fluid Mech. 43(1), 273298.CrossRefGoogle Scholar
Graham, M. D. (2014), “Drag Reduction and the Dynamics of Turbulence in Simple and Complex Fluids,” Phys. Fluids 26, 101301.CrossRefGoogle Scholar
Graham, M. D. & Rawlings, J. B. (2013), Modeling and Analysis Principles for Chemical and Biological Engineers, Nob Hill Publishing, Madison.Google Scholar
Gray, J. & Hancock, G. J. (1955), “The Propulsion of Sea-Urchin Spermatozoa,” J. Experimental Biol. 32(4), 802814.CrossRefGoogle Scholar
Greenberg, M. D. (1978), Foundations of Applied Mathematics, Prentice Hall, Englewood Cliffs.Google Scholar
Guazzelli, E. & Morris, J. F. (2012), A Physical Introduction to Suspension Dynamics, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge.Google Scholar
Guyon, E., Hulin, J.-P., Petit, L. & Mitescu, C. D. (2001), Physical Hydrodynamics, Oxford University Press, Oxford.CrossRefGoogle Scholar
Happel, J. & Brenner, H. (1965), Low Reynolds Number Hydrodynamics, Prentice Hall, Englewood Cliffs.Google Scholar
Harden, J. L. & Doi, M. (1992), “Diffusion of Macromolecules in Narrow Capillaries,” J. Phys. Chem. 96(10), 40464052.CrossRefGoogle Scholar
Hasimoto, H. (1959), “On the Periodic Fundamental Solutions of the Stokes Equations and Their Application to Viscous Flow Past a Cubic Array of Spheres,” J. Fluid Mech. 5(2), 317328.CrossRefGoogle Scholar
Hernández-Ortiz, J. P., de Pablo, J. J. & Graham, M. D. (2007), “Fast Computation of Many-Particle Hydrodynamic and Electrostatic Interactions in a Confined Geometry,” Phys. Rev. Lett. 98(14), 140602.CrossRefGoogle Scholar
Hernández-Ortiz, J. P., Ma, H., de Pablo, J. J. & Graham, M. D. (2006), “Cross-Stream-line Migration in Confined Flowing Polymer Solutions: Theory and Simulation,” Phys. Fluids 18(12), 123101.CrossRefGoogle Scholar
Hernández-Ortiz, J. P., Ma, H., de Pablo, J. J. & Graham, M. D. (2008), “Concentration Distributions during Flow of Confined Flowing Polymer Solutions at Finite Concentration: Slit and Grooved Channel,” Korea-Aust. Rheol. J. 20(3), 143152.Google Scholar
Hiemenz, P. C. & Rajagopalan, R. (1997), Principles of Colloid and Surface Chemistry, 3rd edn, Marcel Dekker, New York.Google Scholar
Hinch, E. J. (1975), “Application of the Langevin Equation to Fluid Suspensions,” J. Fluid Mech. 72(03), 499511.CrossRefGoogle Scholar
Hinch, E. J. (1977), “An Averaged-Equation Approach to Particle Interactions in a Fluid Suspension,” J. Fluid Mech. 83(04), 695720.CrossRefGoogle Scholar
Hinch, E. J. & Leal, L. G. (1972), “The Effect of Brownian Motion on the Rheological Properties of a Suspension of Non-Spherical Particles,” J. Fluid Mech. 52(04), 683712.CrossRefGoogle Scholar
Ho, B. P. & Leal, L. G. (1974), “Inertial Migration of Rigid Spheres in 2-Dimensional Unidirectional Flows,” J. Fluid Mech. 65, 365400.CrossRefGoogle Scholar
Howells, I. D. (2006), “Drag Due to the Motion of a Newtonian Fluid through a Sparse Random Array of Small Fixed Rigid Objects,” J. Fluid Mech. 64(03), 449.CrossRefGoogle Scholar
Indei, T., Schieber, J. D., Córdoba, A. & Pilyugina, E. (2012), “Treating Inertia in Passive Microbead Rheology,” Phys. Rev. E 85(2), 021504.CrossRefGoogle ScholarPubMed
Jeffery, G. B. (1922), “The Motion of Ellipsoidal Particles Immersed in a Viscous Fluid,” Proc. Roy. Soc. London A 102, 161179.Google Scholar
Jendrejack, R., de Pablo, J. & Graham, M. D. (2002), “Stochastic Simulations of DNA in Flow: Dynamics and the Effects of Hydrodynamic Interactions,” J. Chem. Phys. 116(17), 77527759.CrossRefGoogle Scholar
Jendrejack, R., Graham, M. D. & de Pablo, J. (2000), “Hydrodynamic Interactions in Long Chain Polymers: Application of the Chebyshev Polynomial Approximation in Stochastic Simulations,” J. Chem. Phys. 113(7), 28942900.CrossRefGoogle Scholar
Jendrejack, R. M., Schwartz, D. C., de Pablo, J. J. & Graham, M. D. (2004), “Shear-Induced Migration in Flowing Polymer Solutions: Simulation of Long-Chain Deoxyribose Nucleic Acid in Microchannels,” J. Chem. Phys. 120(5), 25132529.CrossRefGoogle Scholar
Jendrejack, R., Schwartz, D., Graham, M. D. & de Pablo, J. (2003), “Effect of Confinement on DNA Dynamics in Microfluidic Devices,” J. Chem. Phys. 119(2), 11651173.CrossRefGoogle Scholar
Johnson, D. W. (1975), “A Fourier Series Method for Numerical Kramers–Kronig Analysis,” J. Phys. A-Math. Gen. 8(4), 490495.CrossRefGoogle Scholar
Johnson, R. E. (1980), “An Improved Slender-Body Theory for Stokes Flow,” J. Fluid Mech. 99(2), 411431.CrossRefGoogle Scholar
Joo, Y. L. & Shaqfeh, E. S. G. (1992), “A Purely Elastic Instability in Dean and Taylor–Dean Flow,” Phys. Fluids A 4(3), 524543.CrossRefGoogle Scholar
Kawaguchi, S., Imai, G., Suzuki, J., Miyahara, A. & Kitano, T. (1997), “Aqueous Solution Properties of Oligo- and Poly(ethylene Oxide) by Static Light Scattering and Intrinsic Viscosity,” Polymer 38(12), 28852891.CrossRefGoogle Scholar
Kaye, A., Stepko, R. F. T., Work, W. J., Aleman, J. V. & Malkin, A. Y. (1998), “Definition of Terms Relating to the Non-Ultimate Mechanical Properties of Polymers,” Pure and Appl. Chem. 70(3), 701754.CrossRefGoogle Scholar
Keller, J. B. & Rubinow, S. I. (1976), “Slender-Body Theory for Slow Viscous-Flow,” J. Fluid Mech. 75, 705714.CrossRefGoogle Scholar
Kim, S. & Karrila, S. J. (1991), Microhydrodynamics: Principles and Selected Applications, Butterworth-Heinemann, Boston.Google Scholar
Kim, S., Ong, P. K., Yalcin, O., Intaglietta, M. & Johnson, P. C. (2009), “The Cell-Free Layer in Microvascular Blood Flow,” Biorheology 46(3), 181189.CrossRefGoogle ScholarPubMed
Kim, S. & Russel, W. B. (1985), “Modelling of Porous Media by Renormalization of the Stokes Equations,” J. Fluid Mech. 154, 269286.CrossRefGoogle Scholar
Kloeden, P. E. & Platen, E. (1992), Numerical Solution of Stochastic Differential Equations, Springer, Berlin.CrossRefGoogle Scholar
Kubo, R. (1966), “The Fluctuation–Dissipation Theorem,” Reports on Progress in Physics 29(1), 255284.CrossRefGoogle Scholar
Kubo, R., Toda, M. & Hashitsume, N. (1991), Statistical Physics II: Nonequilibrium Statistical Mechanics, Vol. 31 of Springer Series in Solid State Sciences, 2nd edn, Springer-Verlag, Berlin.CrossRefGoogle Scholar
Kumar, A. & Graham, M. D. (2012), “Accelerated Boundary Integral Method for Multiphase Flow in Non-Periodic Geometries,’ J. Comput. Phys. 231(20), 66826713.CrossRefGoogle Scholar
Kumar, S. & Larson, R. G. (2001), “Brownian Dynamics Simulations of Flexible Polymers with Spring–Spring Repulsions,” J. Chem. Phys. 114(15), 69376941.CrossRefGoogle Scholar
Ladyzhenskaya, O. A. (1969), The Mathematical Theory of Viscous Incompressible Flow, revised 2nd edn, Gordon and Breach, New York.Google Scholar
Lamb, H. (1932), Hydrodynamics, 6th edn, Cambridge University Press, Cambridge.Google Scholar
Landau, L. D. & Lifschitz, E. M. (1959), Fluid Mechanics, Pergamon, London.Google Scholar
Landau, L. D. & Lifschitz, E. M. (1980), Statistical Physics, Pergamon, New York.Google Scholar
Landau, L. D. & Lifschitz, E. M. (1984), Fluid Mechanics, Vol. 6 of Course of Theoretical Physics, 2nd edn, Pergamon, Oxford.Google Scholar
Larson, R. G. (1988), Constitutive Equations for Polymer Melts and Solutions, Butterworths, Boston.Google Scholar
Larson, R. G. (1999), The Structure and Rheology of Complex Fluids, Oxford University Press, New York.Google Scholar
Larson, R. G., Shaqfeh, E. S. G. & Muller, S. J. (1990), “A Purely Elastic Instability in Taylor–Couette Flow,” J. Fluid Mech. 218, 573600.CrossRefGoogle Scholar
Lasota, A. & Mackey, M. C. (1994), Chaos, Fractals and Noise: Stochastic Aspects of Dynamics, 2nd edn, Springer, New York.CrossRefGoogle Scholar
Lauga, E. & Powers, T. R. (2009), “The Hydrodynamics of Swimming Microorganisms,” Reports on Progress in Physics 72(9), 096601.CrossRefGoogle Scholar
Lax, M. (1966), “Classical Noise IV: Langevin Methods,” Rev. Mod. Phys. 38(3), 541566.CrossRefGoogle Scholar
Leal, L. G. (2007), Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Lesnicki, D., Vuilleumier, R., Carof, A. & Rotenberg, B. (2016), “Molecular Hydrodynamics from Memory Kernels,” Phys. Rev. Lett. 116(14), 147804–5.CrossRefGoogle ScholarPubMed
Lighthill, M. J. (1952), “On the Squirming Motion of Nearly Spherical Deformable Bodies through Liquids at Very Small Reynolds Numbers,” Comm. Pure Appl. Math. 5, 109118.CrossRefGoogle Scholar
Liron, N. & Mochon, S. (1976), “Stokes Flow for a Stokes-let between 2 Parallel Flat Plates,” J. Eng. Math. 10(4), 287303.CrossRefGoogle Scholar
Liu, B. & Dünweg, B. (2003), “Translational Diffusion of Polymer Chains with Excluded Volume and Hydrodynamic Interactions by Brownian Dynamics Simulation,” J. Chem. Phys. 118(17), 80618072.CrossRefGoogle Scholar
Lovalenti, P. M. & Brady, J. F. (1993), “The Hydrodynamic Force on a Rigid Particle Undergoing Arbitrary Time-Dependent Motion at Small Reynolds Number,” J. Fluid Mech. 256, 561605.CrossRefGoogle Scholar
Ma, H. & Graham, M. D. (2005), “Theory of Shear-Induced Migration in Dilute Polymer Solutions Near Solid Boundaries,” Phys. Fluids 17(8), 083103.CrossRefGoogle Scholar
Malvern, L. E. (1969), Introduction to the Mechanics of a Continuous Medium, Prentice Hall, Englewood Cliffs.Google Scholar
Marko, J. F. & Siggia, E. D. (1994), “Bending and Twisting Elasticity of DNA,” Macromolecules 27(4), 981988.CrossRefGoogle Scholar
Marko, J. F. & Siggia, E. D. (1995), “Stretching DNA,” Macromolecules 28(26), 87598770.CrossRefGoogle Scholar
Mason, T. & Weitz, D. (1995), “Optical Measurements of Frequency-Dependent Linear Viscoelastic Moduli of Complex Fluids,” Phys. Rev. Lett. 74(7), 12501253.CrossRefGoogle ScholarPubMed
McQuarrie, D. A. (2000), Statistical Mechanics, University Science Books, Sausalito.Google Scholar
Metsi, E. (2000), Large Scale Simulations of Bidisperse Emulsions and Foams, PhD thesis, University of Illinois at Urbana–Champaign.Google Scholar
Misiunas, K., Pagliara, S., Lauga, E., Lister, J. R. & Keyser, U. F. (2015), “Nondecaying Hydrodynamic Interactions along Narrow Channels,” Phys. Rev. Lett. 115(3), 038301.CrossRefGoogle ScholarPubMed
Morozov, A. N. & Spagnolie, S. E. (2015), “Introduction to Complex Fluids,” in Spagnolie, S. E., ed., Complex Fluids in Biological Systems, Springer, New York.Google Scholar
Mucha, P., Tee, S., Weitz, D., Shraiman, B. & Brenner, M. (2004), “A Model for Velocity Fluctuations in Sedimentation,” J. Fluid Mech. 501, 71104.CrossRefGoogle Scholar
Nguyen, H. N. & Cortez, R. (2014), “Reduction of the Regularization Error of the Method of Regularized Stokeslets for a Rigid Object Immersed in a Three-Dimensional Stokes Flow,” Commun. Comput. Phys. 15(1), 126152.CrossRefGoogle Scholar
Oldroyd, J. G. (1950), “On the Formulation of Rheological Equations of State,” Proc. Roy. Soc. A 200(1063), 523541.Google Scholar
Onishi, Y. & Jeffrey, D. J. (1984), “Calculation of the Resistance and Mobility Functions for 2 Unequal Rigid Spheres in Low-Reynolds-Number Flow,” J. Fluid Mech. 139, 261290.Google Scholar
Öttinger, H. C. (1988), “A Note on Rigid Dumbbell Solutions at High Shear Rates,” J. Rheol. 32(2), 135143.CrossRefGoogle Scholar
Öttinger, H. C. (1996), Stochastic Processes in Polymeric Fluids, Springer, Berlin.CrossRefGoogle Scholar
Perrin, J. (1916), Atoms, 4th edn., Constable & Company Ltd., London.Google Scholar
Phillips, R. J., Brady, J. F. & Bossis, G. (1988), “Hydrodynamic Transport Properties of Hard-Sphere Dispersions. I. Suspensions of Freely Mobile Particles,” Phys. Fluids 31(12), 3462.CrossRefGoogle Scholar
Phillips, R., Kondev, J. & Theriot, J. A. (2009), Physical Biology of the Cell, Garland Science Publishers, New York.Google Scholar
Poole, R. J. (2012), “The Deborah and Weissenberg Numbers,” British Society of Rheology, Rheology Bulletin, 53(2), 3239.Google Scholar
Pozrikidis, C. (1992), Boundary Integral and Singularity Methods for Linearized Viscous Flow, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Pozrikidis, C. (1997), Theoretical and Computational Fluid Dynamics, Oxford University Press, Oxford.Google Scholar
Prosperetti, A. & Tryggvason, G., eds (2007), Computational Methods for Multphase Flow, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Proudman, I. & Pearson, J. (1957), “Expansions at Small Reynolds Numbers for the Flow Past a Sphere and a Circular Cylinder,” J. Fluid Mech. 2, 237262.CrossRefGoogle Scholar
Purcell, E. M. (1977), “Life at Low Reynolds Number,” Am. J. Phys. 45(1), 311.CrossRefGoogle Scholar
Reichl, L. E. (1998), A Modern Course in Statistical Physics, 2nd edn, Wiley-Interscience, New York.Google Scholar
Robertson, H. S. (1993), Statistical Thermophysics, PTR Prentice Hall, Englewood Cliffs.Google Scholar
Rotne, J. & Prager, S. (1969), “Variational Treatment of Hydrodynamic Interaction in Polymers,” J. Chem. Phys. 50(11), 48314837.CrossRefGoogle Scholar
Rubinstein, M. & Colby, R. H. (2003), Polymer Physics, Oxford University Press, Oxford.CrossRefGoogle Scholar
Russel, W. B., Saville, D. A. & Schowalter, W. R. (1989), Colloidal Dispersions, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Saintillan, D., Darve, E. & Shaqfeh, E. S. G. (2005), “A Smooth Particle-Mesh Ewald Algorithm for Stokes Suspension Simulations: The Sedimentation of Fibers,” Phys. Fluids 17(3), 033301.CrossRefGoogle Scholar
Schieber, J. D., Córdoba, A. & Indei, T. (2013), “The Analytic Solution of Stokes for Time-Dependent Creeping Flow around a Sphere: Application to Linear Viscoelasticity as an Ingredient for the Generalized Stokes–Einstein Relation and Microrheology Analysis,” J. Non-Newton. Fluid Mech. 200(C), 38.CrossRefGoogle Scholar
Schmidt, J. & Skinner, J. (2003), “Hydrodynamic Boundary Conditions, the Stokes–Einstein Law, and Long-Time Tails in the Brownian Limit,” J. Chem. Phys. 119(15), 80628068.CrossRefGoogle Scholar
Schmidt, J. & Skinner, J. (2004), “Brownian Motion of a Rough Sphere and the Stokes–Einstein Law,” J. Phys. Chem. B 108(21), 67676771.CrossRefGoogle Scholar
Schuss, Z. (2010), Theory and Applications of Stochastic Processes: An Analytical Approach, Vol. 170 of Applied Mathematical Sciences, Springer, New York.CrossRefGoogle Scholar
Segel, L. A. (1987), Mathematics Applied to Continuum Mechanics, Dover, New York.Google Scholar
Segre, G. & Silberberg, A. (1962), “Behaviour of Macroscopic Rigid Spheres in Poiseuille Flow Part 2. Experimental Results and Interpretation,” J. Fluid Mech. 14(1), 136157.CrossRefGoogle Scholar
Shaqfeh, E. S. G. (1996), “Purely Elastic Instabilities in Viscometric Flows,” Annu. Rev. Fluid Mech. 28, 129185.CrossRefGoogle Scholar
Shaqfeh, E. S. G. (2005), “The Dynamics of Single-Molecule DNA in Flow,” J. Non-Newton. Fluid Mech. 130, 128.CrossRefGoogle Scholar
Sierou, A. & Brady, J. F. (2001), “Accelerated Stokesian Dynamics Simulations,” J. Fluid Mech. 448, 115146.CrossRefGoogle Scholar
Smart, J. R. & Leighton, D. T. (1991), “Measurement of the Drift of a Droplet Due to the Presence of a Plane,” Phys Fluids A 3(1), 2128.CrossRefGoogle Scholar
Smith, D. E., Perkins, T. T. & Chu, S. (1996), “Dynamical Scaling of DNA Diffusion Coefficients,” Macromolecules 29(4), 13721373.CrossRefGoogle Scholar
Smith, S. B., Cui, Y. J. & Bustamante, C. (1996), “Overstretching B-DNA: The Elastic Response of Individual Double-Stranded and Single-Stranded DNA Molecules,” Science 271(5250), 795799.CrossRefGoogle ScholarPubMed
Snook, I. (2007), The Langevin and Generalised Langevin Approach to the Dynamics of Atomic, Polymeric and Colloidal Systems, Elsevier Science, Amsterdam.Google Scholar
Squires, T. M. & Mason, T. G. (2010), “Fluid Mechanics of Microrheology,” Annu. Rev. Fluid Mech. 42(1), 413438.CrossRefGoogle Scholar
Stakgold, I. (1998), Green’s Functions and Boundary Value Problems, 2nd edn, Wiley-Interscience, New York.Google Scholar
Stoltz, C., de Pablo, J. & Graham, M. D. (2006), “Concentration Dependence of Shear and Extensional Rheology of Polymer Solutions: Brownian Dynamics Simulations,” J. Rheol. 50(2), 137167.CrossRefGoogle Scholar
Stone, H. A. & Samuel, A. (1996), “Propulsion of Microorganisms by Surface Distortions,” Phys. Rev. Lett. 77(19), 41024104.CrossRefGoogle ScholarPubMed
Strobl, G. (1996), The Physics of Polymers, Springer, Berlin.CrossRefGoogle Scholar
Taylor, G. I. (1922), “Diffusion by Continuous Movements,” Proceedings of the London Mathematical Society s220(1), 196212.CrossRefGoogle Scholar
Tlusty, T. (2006), “Screening by Symmetry of Long-Range Hydrodynamic Interactions of Polymers Confined in Sheets,” Macromolecules 39(11), 39273930.CrossRefGoogle Scholar
Tornberg, A. & Shelley, M. (2004), “Simulating the Dynamics and Interactions of Flexible Fibers in Stokes Flows,” J. Comput. Phys. 196(1), 840.CrossRefGoogle Scholar
von Kármán, T. (1934), “Some Aspects of the Turbulence Problem,” in Collected Works of Theodore von Kármán, Vol. III (1955), Butterworths Scientific Publications, London, pp. 120155.Google Scholar
White, C. M. & Mungal, M. G. (2008), “Mechanics and Prediction of Turbulent Drag Reduction with Polymer Additives,” Annu. Rev. Fluid Mech. 40, 235256.CrossRefGoogle Scholar
Wiener, N. (1976), Norbert Wiener: Collected Works with Commentaries, Vol. 1of Mathematicians of Our Time, MIT Press, Cambridge.Google Scholar
Xu, K., Forest, M. & Klapper, I. (2007), “On the Correspondence between Creeping Flows of Viscous and Viscoelastic Fluids,” J. Non-Newton. Fluid Mech. 145(2–3), 150172.CrossRefGoogle Scholar
Yamakawa, H. (1970), “Transport Properties of Polymer Chains in Dilute Solution: Hydrodynamic Interaction,” J. Chem. Phys. 53(1), 436443.CrossRefGoogle Scholar
Zhang, Y., de Pablo, J. J. & Graham, M. D. (2012), “An Immersed Boundary Method for Brownian Dynamics Simulation of Polymers in Complex Geometries: Application to DNA Flowing through a Nanoslit with Embedded Nanopits,” J. Chem. Phys. 136(1), 014901014901.CrossRefGoogle ScholarPubMed
Zhu, L., Rorai, C., Mitra, D. & Brandt, L. (2014), “A Microfluidic Device to Sort Capsules by Deformability: A Numerical Study,” Soft Matter 10(39), 77057711.CrossRefGoogle ScholarPubMed
Zwanzig, R. (2001), Nonequilibrium Statistical Mechanics, Oxford University Press, Oxford.CrossRefGoogle Scholar
Zwanzig, R. & Bixon, M. (1970), “Hydrodynamic Theory of the Velocity Correlation Function,” Phys. Rev. A 2(5), 20052012.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Michael D. Graham, University of Wisconsin, Madison
  • Book: Microhydrodynamics, Brownian Motion, and Complex Fluids
  • Online publication: 27 August 2018
  • Chapter DOI: https://doi.org/10.1017/9781139175876.012
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Michael D. Graham, University of Wisconsin, Madison
  • Book: Microhydrodynamics, Brownian Motion, and Complex Fluids
  • Online publication: 27 August 2018
  • Chapter DOI: https://doi.org/10.1017/9781139175876.012
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Michael D. Graham, University of Wisconsin, Madison
  • Book: Microhydrodynamics, Brownian Motion, and Complex Fluids
  • Online publication: 27 August 2018
  • Chapter DOI: https://doi.org/10.1017/9781139175876.012
Available formats
×