Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-20T16:37:14.908Z Has data issue: false hasContentIssue false

15 - Understanding Mercury’s Exosphere: Models Derived from MESSENGER Observations

Published online by Cambridge University Press:  10 December 2018

Sean C. Solomon
Affiliation:
Lamont-Doherty Earth Observatory, Columbia University, New York
Larry R. Nittler
Affiliation:
Carnegie Institution of Washington, Washington DC
Brian J. Anderson
Affiliation:
The Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland
Get access

Summary

Mercury is surrounded by a tenuous exosphere in which particles travel on ballistic trajectories under the influence of a combination of gravity and solar radiation pressure. The densities are so small that the surface forms the exobase, and particles in the exosphere are more likely to collide with it rather than with each other. During the three flybys of Mercury by the Mariner 10 spacecraft in 1974–1975, the probe's Ultraviolet Spectrometer made measurements of hydrogen and helium and a tentative detection of oxygen. These observations were followed a decade later by discoveries with Earth-based telescopes of exospheric sodium and potassium, and still later of calcium, aluminum, and iron. In addition to characterizing sodium, calcium, and hydrogen in Mercury’s exosphere, the Mercury Atmospheric and Surface Composition Spectrometer instrument on the MESSENGER spacecraft detected magnesium, ionized calcium, aluminum, and manganese. Thus, the total inventory of confirmed exospheric neutral species now includes H, He, Na, K, Ca, Mg, Al, Fe, and Mn. This chapter summarizes both ground-based and space-based observations of Mercury’s exosphere that have been made from its discovery by Mariner 10 through the four Earth years of nearly continuous orbital observations by the MESSENGER spacecraft.
Type
Chapter
Information
Mercury
The View after MESSENGER
, pp. 407 - 429
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Benna, M., Anderson, B. J., Baker, D. N., Boardsen, S. A., Gloeckler, G., Gold, R. E., Ho, G. C., Killen, R. M., Korth, H., Krimigis, S. M., Purucker, M. E., McNutt, R. L., Raines, J. M., McClintock, W. E., Sarantos, M., Slavin, J. A., Solomon, S. C. and Zurbuchen, T. H. (2010). Modeling of the magnetosphere of Mercury at the time of the first MESSENGER flyby, Icarus, 209, 310, doi:10.1016/j.icarus.2009.11.036.Google Scholar
Berezhnoy, A. A. (2013). Chemistry of impact events on the Moon. Icarus, 226, 205211, doi:10.1016/j.icarus.2013.05.030.Google Scholar
Berezhnoy, A. A. and Klumov, B. A. (2008). Impacts as sources of the exosphere on Mercury. Icarus, 195, 511522, doi:10.1016/j.icarus.2008.01.005.CrossRefGoogle Scholar
Bida, T. A. and Killen, R. M. (2011). Observations of Al, Fe and Ca+ in Mercury’s exosphere. EPSC-DPS Joint Meeting Abstracts and Program, 6, EPSC-DPS2011-1621. European Planetary Science Congress–Division for Planetary Sciences Joint Meeting, Nantes, France, October 2–7.Google Scholar
Bida, T. A. and Killen, R. M. (2017). Observations of the minor species Al and Fe in Mercury’s exosphere. Icarus, 289, 227238, doi:10.1016/j.icarus.2016.10.019.CrossRefGoogle Scholar
Bida, T. A., Killen, R. M. and Morgan, T. H. (2000). Discovery of calcium in Mercury’s atmosphere. Nature, 404, 159161.Google Scholar
Borin, P., Bruno, M., Cremonese, G. and Marzari, F. (2010). Estimate of the neutral atoms’ contribution to the Mercury exosphere caused by a new flux of micrometeoroids. Astron. Astrophys., 517, A89, doi:10.1051/0004-6361/201014312.Google Scholar
Burger, M. H., Killen, R. M., Vervack, R. J. Jr., Bradley, E. T., McClintock, W. E., Sarantos, M., Benna, M. and Mouawad, N. (2010). Monte Carlo modeling of sodium in Mercury’s exosphere during the first two MESSENGER flybys. Icarus, 209, 6374.Google Scholar
Burger, M. H., Killen, R. M., McClintock, W. E., Vervack, R. J. Jr., Merkel, A. W., Sprague, A. L. and Sarantos, M. (2012). Modeling MESSENGER observations of calcium in Mercury’s exosphere. J. Geophys. Res., 117, E0L11B, doi:10.1029/2012JE004158.CrossRefGoogle Scholar
Burger, M. H., Killen, R. M., McClintock, W. E., Merkel, A. W., Vervack, R. J. Jr., Cassidy, T. A. and Sarantos, M. (2014). Seasonal variations in Mercury’s dayside calcium exosphereIcarus2385158, doi:10.1016/j.icarus.2014.04.049.Google Scholar
Cassidy, T. A. and Johnson, R. E. (2005). Monte Carlo model of sputtering and other ejection processes within a regolith. Icarus, 176, 499507.CrossRefGoogle Scholar
Cassidy, T. A., Merkel, A. W., Burger, M. H., Sarantos, M., Killen, R. M., McClintock, W. E. and Vervack, R. J. Jr. (2015). Mercury’s seasonal sodium exosphere: MESSENGER orbital observations. Icarus, 248, 547559, doi:10.1016/j.icarus.2014.10.037.Google Scholar
Cassidy, T. A., McClintock, W. E., Killen, R. M., Sarantos, M., Merkel, A. W., Vervack, R. J. Jr. and Burger, M. H. (2016). A cold-pole enhancement in Mercury’s sodium exosphere. Geophys. Res. Lett., 43, 11,121–11,128.Google Scholar
Christou, A. A., Killen, R. M. and Burger, M. H. (2015). The meteoroid stream of comet Encke at Mercury: Implications for MErcury Surface, Space ENvironment, GEochemistry, and Ranging observations of the exosphere. Geophys. Res. Lett., 42, 73117318, doi:10.1002/2015GL065361.CrossRefGoogle Scholar
Cintala, M. J. (1992). Impact-induced thermal effects in the lunar and Mercurian regoliths. J. Geophys. Res., 97, 947973.Google Scholar
Combi, M. R., DiSanti, M. A. and Fink, U. (1997). The spatial distribution of gaseous atomic sodium in the comae of comets: Evidence for direct nucleus and extended plasma sources. Icarus, 130, 336354, doi:10.1006/icar.1997.5832.Google Scholar
Cremonese, G. and Verani, S. (1997). High resolution observations of the sodium emission from the Moon. Adv. Space Res., 19, 15611569, doi:10.1016/S0273-1177(97)00369-4.Google Scholar
Crider, D. H. and Vondrak, R. R. (2003). Space weathering effects on lunar cold trap deposits. J. Geophys. Res., 108 (E7), 5079, doi:10.1029/2002JE002030.CrossRefGoogle Scholar
Domingue, D. L., Chapman, C. R., Killen, R. M., Zurbuchen, T. H., Gilbert, J. A., Sarantos, M., Benna, M., Slavin, J. A., Schriver, D., Trávníček, P. M., Orlando, T. M., Sprague, A. L., Blewett, D. T., Gillis-Davis, J. J., Feldman, W. C., Lawrence, D. J., Ho, G. C., Ebel, D. S., Nittler, L. R., Vilas, F., Pieters, C. M., Solomon, S. C., Johnson, C. L., Winslow, R. M., Helbert, J., Peplowski, P. N., Weider, S. Z., Mouawad, N., Izenberg, N. R. and McClintock, W. E. (2014). Mercury’s weather-beaten surface: Understanding Mercury in the context of lunar and asteroidal space weathering studies. Space Sci. Rev., 181, 121214, doi:10.1007/s11214-014-0039-5.Google Scholar
Doressoundiram, A., Leblanc, F., Foellmi, C., Gicquel, A., Cremonese, G., Donati, J.-F. and Veillet, C. (2010). Spatial variations of the sodium/potassium ratio in Mercury’s exosphere uncovered by high-resolution spectroscopy. Icarus, 207, 18, doi:10.1016/j.icarus.2009.11.020.Google Scholar
Dzioba, S. and Kelly, R. (1980). On the kinetic energies of sputtered excited particles II. Theory and applications to group IIA fluorides. Surf. Sci., 100, 119134.Google Scholar
Farrell, W. M., Hurley, D. M. and Zimmerman, M. I. (2015). Solar wind implantation into lunar regolith: Hydrogen retention in a surface with defects. Icarus, 255, 116126, doi:10.1016/j.icarus.2014.09.014.Google Scholar
Farrell, W. M., Stubbs, T. J., Vondrak, R. R., Delory, G. T. and Halekas, J. S. (2007). Complex electric fields near the lunar terminator: The near-surface wake and accelerated dust. Geophys. Res. Lett., 34, L14201, doi:10.1029/2007GL029312.Google Scholar
Gerasimov, M. V., Dikov, Yu. P., Yakolev, O. I., Wlotzka, F. and Distler, V. V. (1999). The volatility of microelements during impact vaporization of meteorites. Meteorit. Planet. Sci., 34, Suppl., A42.Google Scholar
Hofer, W. O. (1991). Angular, energy, and mass distribution of sputtered particles. In Sputtering by Particle Bombardment III, ed. Behrisch, R. and Wittmaack, K., Topics in Applied Physics, Vol. 64. Berlin: Springer-Verlag, pp. 1590.Google Scholar
Holmlid, L. (2006). The alkali metal atmospheres on the Moon and Mercury: Explaining the stable exospheres by heavy Rydberg matter clusters. Planet. Space Sci., 54, 101112, doi:10.1016/j.pss.2005.10.005.CrossRefGoogle Scholar
Horanyi, M., Szalay, J. R., Kempf, S., Schmidt, J., Grun, E., Srama, R. and Sternovsky, Z. (2015). A permanent, asymmetric dust cloud around the Moon. Nature, 522, 324326, doi:10.1038/nature14479.CrossRefGoogle ScholarPubMed
Horanyi, M., Szalay, J. R., Grun, E., Glenar, D., Wang, X. and Zakharov, A. (2016). The dust environment of the Moon. New Views of the Moon, abstract 6005. Houston, TX: Lunar and Planetary Institute.Google Scholar
Hornung, K., Malama, Y. G. and Kestenboim, K. S. (2000). Impact vaporization and ionization of cosmic dust particles. Astrophys. Space Sci., 274, 355363.Google Scholar
Huebner, W. F. and Mukherjee, J. (2015). Photoionization and photodissociation rates in solar and blackbody radiation fields. Planet. Space Sci., 106, 1145, doi:10.1016/j.pss.2014.11.022.Google Scholar
Huebner, W. F., Keady, J. J. and Lyon, S. P. (1992). Solar photo rates for planetary atmospheres and atmospheric pollutants. Astrophys. Space Sci., 195, 1294.CrossRefGoogle Scholar
Hunten, D. M. and Sprague, A. L. (1997). Origin and character of the lunar and mercurian atmospheres. Adv. Space Res., 19, 15511560, doi:10.1111/j.1945-5100.2002.tb00888.x.CrossRefGoogle Scholar
Hunten, D. M. and Sprague, A. L. (2002). Diurnal variation of sodium and potassium at Mercury. Meteorit. Planet. Sci., 37, 11911195, doi:10.1111/j.1945-5100.2002.tb00888.x.Google Scholar
Hunten, D. M., Morgan, T. H. and Shemansky, D. E. (1988). The Mercury atmosphere. In Mercury, ed. Vilas, F., Chapman, C. R. and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 562612.Google Scholar
Ip, W.-H. (1986). The sodium exosphere and magnetosphere of Mercury. Geophys. Res. Lett., 13, 423426.CrossRefGoogle Scholar
Janches, D., Heinselman, C. J., Chau, J. L., Chandran, A. and Woodman, R. (2006). Modeling the global micrometeor input function in the upper atmosphere observed by high power and large aperture radars. J. Geophys. Res., 111, A07317, doi:10.1029/2006JA011628.Google Scholar
Jenniskens, P. (2006). Meteor Showers and Their Parent Comets. Cambridge: Cambridge University Press, 752 pp.CrossRefGoogle Scholar
Johnson, R. E. (1990). Energetic Charged‐Particle Interactions with Atmospheres and Surfaces. Berlin: Springer.Google Scholar
Johnson, R. E., Leblanc, F., Yakshinskiy, B. V. and Madey, T. E. (2002). Energy distributions for desorption of sodium and potassium from ice: The Na/K ratio at Europa. Icarus, 156, 136142.Google Scholar
Jurac, S., Baragiola, R. A., Johnson, R. E. and Sittler, E. C. (1995). Charging of ice grains by low-energy plasmas: Application to Saturn’s E-ring. J. Geophys. Res., 100, 14,821–14,831.Google Scholar
Kallio, E, Wurz, P., Killen, R. M., McKenna-Lawlor, S., Milillo, A., Mura, A., Massetti, S., Orsini, S., Lammer, H., Janhunen, P. and Ip, W.-H. (2008). On the impact of multiply charged heavy solar wind ions on the surface of Mercury, the Moon and Ceres. Planet. Space Sci., 56, 15061516.Google Scholar
Keller, L. P. and McKay, D. S. (1997). The nature and origin of rims on lunar soil grains. Geochim. Cosmochim. Acta, 61, 23312341, doi:10.1016/S0016-7037(97)00085-9.CrossRefGoogle Scholar
Killen, R. M. (2015). Processes producing the extremely hot Ca and Mg exospheres at Mercury. Presented at 2015 Fall Meeting, American Geophysical Union, abstract P53A–2090, San Francisco, CA, 14–18 December.Google Scholar
Killen, R. M. (2016). Pathways for energization of Ca and Mg in Mercury’s exosphere. Icarus, 268, 3236, doi:10.1016/j.icarus.2015.12.035.Google Scholar
Killen, R. M. and Hahn, J. M. (2015). Impact vaporization as a possible source of Mercury’s calcium exosphere. Icarus, 250, 230237, doi:10.1016/j.icarus.2014.11.035.Google Scholar
Killen, R. M., Sarantos, M., Potter, A. E. and Reiff, P. (2004). Source rates and ion recycling rates for Na and K in Mercury’s atmosphere. Icarus, 171, 119.Google Scholar
Killen, R. M., Bida, T. A. and Morgan, T. H. (2005). The calcium exosphere of Mercury, Icarus, 173, 300311.Google Scholar
Killen, R. M., Cremonese, G., Lammer, H., Orsini, S., Potter, A. E., Sprague, A. L., Wurz, P., Khodachenko, M. L., Lichtenegger, H. I. M., Milillo, A. and Mura, A. (2007). Processes that promote and deplete the exosphere of Mercury. Space Sci. Rev., 132, 433509, doi:10.1007/s11214-007-9232-0.Google Scholar
Killen, R. M., Shemansky, D. E. and Mouawad, N. (2009). Expected emission from Mercury’s exospheric species, and their UV-visible signatures. Astrophys. J. Suppl. Ser., 181, 351359.CrossRefGoogle Scholar
Killen, R. M., Potter, A. E., Vervack, R. J. Jr., Bradley, E. T., McClintock, W. E., Anderson, C. M. and Burger, M. H. (2010). Observations of metallic species in Mercury’s exosphere. Icarus, 209, 7587, doi:10.1016/j.icarus.2010.02.018.CrossRefGoogle Scholar
Killen, R. M., Burger, M. H., Hurley, D. M., Sarantos, M. and Farrell, W. M. (2014). Exospheres from asteroids to planets. In Asteroids, Comets, Meteors: Book of Abstracts, Helsinki, Finland, 2014. Helsinki: University of Helsinki, p. 285.Google Scholar
Kurosawa, K., Sugita, S., Kadono, T., Shigemori, K., Hironaka, Y., Ozaki, N., Shiroshita, A., Cho, Y., Sakaiya, T., Fujioka, S., Tachibana, S., Vinci, T., Kodama, R. and Matsui, T. (2010). Roles of shock-induced ionization due to > 10 km/s impacts on evolution of silicate vapor clouds. Lunar Planet. Sci., 41, abstract 1785.Google Scholar
Leblanc, F. and Johnson, R. E. (2003). Mercury’s sodium exosphere. Icarus, 164, 261281, doi:10.1016/S0019-1035(03)00147-7.CrossRefGoogle Scholar
Leblanc, F. and Johnson, R. E. (2010). Mercury exosphere I. Global circulation model of its sodium component. Icarus, 209, 280300.Google Scholar
Leblanc, F., Delcourt, D. and Johnson, R. E. (2003). Mercury’s sodium exosphere: Magnetospheric ion recycling. J. Geophys. Res., 108 (E12), 5136, doi:10.1029/2003JE002151.CrossRefGoogle Scholar
Madey, T. E., Yakshinskiy, B. V. and Ageev, V. N. (1998). Desorption of alkali atoms and ions from oxide surfaces: Relevance to origins of Na and K in atmospheres of Mercury and the Moon. J. Geophys. Res., 103, 58735887.CrossRefGoogle Scholar
Madey, T. E., Johnson, R. E. and Orlando, T. M. (2002). Far-out surface science: Radiation-induced surface processes in the Solar System. Surf. Sci., 500, 838858.Google Scholar
Mangano, V., Milillo, A., Mura, A., Orsini, S., DeAngelis, E., DiLellis, A. M. and Wurz, P. (2007). The contribution of impulsive meteoritic impact vapourization to the Hermean exosphere. Planet. Space Sci., 55, 15411556.Google Scholar
Mangano, V., Massetti, S., Milillo, A., Plainaki, C., Orsini, S., Rispoli, R. and Leblanc, F. (2015). THEMIS Na exosphere observations of Mercury and their correlation with in-situ magnetic field measurements by MESSENGER. Planet. Space Sci., 115, 102109, doi:10.1016/j.pss.2015.04.001.Google Scholar
Marchi, S., Morbidelli, A. and Cremonese, G. (2005). Flux of meteoroid impacts on Mercury. Astron. Astrophys., 431, 11231127.Google Scholar
McClintock, W. E., Vervack, R. J. Jr., Bradley, E. T., Killen, R. M., Mouawad, N., Sprague, A. L., Burger, M. H., Solomon, S. C. and Izenberg, N. R. (2009). Mercury’s exosphere during MESSENGER’s second flyby: Detection of magnesium and distinct distributions of neutral species. Science, 324, 610613.CrossRefGoogle Scholar
McCord, T. B., Taylor, L. A., Combe, J.-P., Kramer, G., Pieters, C. M., Sunshine, J. M. and Clark, R. N. (2011). Sources and physical processes responsible for OH/H2O in the lunar soil as revealed by the Moon Mineralogy Mapper (M3). J. Geophys. Res., 116, E00G05, doi:10.1029/2010JE003711.Google Scholar
McGrath, M. A., Johnson, R. E. and Lanzerotti, L. J. (1986). Sputtering of sodium on the planet Mercury. Nature, 323, 694696.Google Scholar
McLain, J. L., Sprague, A. L., Grieves, G. A., Schriver, D., Trávníček, P. M. and Orlando, T. M. (2011). Electron-stimulated desorption of silicates: A potential source for ions in Mercury’s space environment. J. Geophys. Res., 116, E03007, doi:10.1029/2010JE003714.CrossRefGoogle Scholar
Merkel, A. W., Cassidy, T. A., Vervack, R. J. Jr., McClintock, W. E., Sarantos, M., Burger, M. H. and Killen, R. M. (2017). Seasonal variations of Mercury’s magnesium dayside exosphere from MESSENGER observations. Icarus, 281, 4654, doi:10.1016/j.icarus.2016.08.032.Google Scholar
Merkel, A. W., Vervack, R. J. Jr., Killen, R. M., Cassidy, T. A., McClintock, W. E., Nittler, L. R. and Burger, M. H. (2018). Evidence connecting Mercury’s magnesium exosphere to its magnesium-rich surface terrane. Geophys. Res. Lett., 45, 67906797, doi:10.1029/2018GL078407.Google Scholar
Morgan, T. H., Zook, H. and Potter, A. E. (1988). Impact-driven supply of sodium and potassium to the atmosphere of Mercury. Icarus, 75, 156170.Google Scholar
Mouawad, N., Burger, M. H., Killen, R. M., Potter, A. E., McClintock, W. E., Vervack, R. J., Bradley, E. T., Benna, M. and Naidu, S. (2011). Constraints on Mercury’s Na exosphere: Combined MESSENGER and ground-based data. Icarus, 211, 2136, doi:10.1016/j.icarus.2010.10.019.Google Scholar
Mura, A. (2012). Loss rates and time scales for sodium at Mercury. Planet. Space Sci., 63–64, 27, doi:10.1016/j.pss.2011.08.012.Google Scholar
Mura, A., Milillo, A., Orsini, S. and Massetti, S. (2007). Numerical and analytical model of Mercury’s exosphere: Dependence on surface and external conditions. Planet. Space Sci., 55, 15691583.Google Scholar
Mura, A., Wurz, P., Lichtenegger, H. I. M., Schleicher, H., Lammer, H., Delcourt, D., Milillo, A., Orsini, S., Massetti, S. and Khodachenko, M. L. (2009). The sodium exosphere of Mercury: Comparison between observations during Mercury’s transit and model results. Icarus, 200, 111, doi:10.1016/j.icarus.2008.11.014Google Scholar
Noble, S. K., Keller, L. P. and Pieters, C. (2005). Evidence of space weathering in regolith breccias I: Lunar regolith breccias. Meteorit. Planet. Sci., 40, 397408.Google Scholar
Peplowski, P. N., Lawrence, D. J., Rhodes, E. A., Sprague, A. L., McCoy, T. J., Denevi, B. W., Evans, L. G., Head, J. W., Nittler, L. R., Solomon, S. C., Stockstill-Cahill, K. R. and Weider, S. Z. (2012). Variations in the abundances of potassium and thorium on the surface of Mercury: Results from the MESSENGER Gamma-Ray Spectrometer. J. Geophys. Res., 117, E00L04, doi:10.1029/2012JE004141.Google Scholar
Peplowski, P. N., Evans, L. G., Stockstill-Cahill, K. R., Lawrence, D. J., Goldsten, J. O., McCoy, T. J., Nittler, L. R., Solomon, S. C., Sprague, A. L., Starr, R. D. and Weider, S. Z. (2014). Enhanced sodium abundance in Mercury’s north polar region revealed by the MESSENGER Gamma-Ray Spectrometer. Icarus, 228, 8695, doi:10.1016/j.icarus.2013.09.007.Google Scholar
Pfleger, M., Lichtenegger, H. I. M., Wurz, P., Lammer, H., Kallio, E., Alho, M.., Mura, A., McKenna-Lawler, S. and Martin-Fernandez, J. A. (2015). 3D-modeling of Mercury’s solar wind sputtered surface-exosphere environment. Planet. Space Sci., 115, 90101, doi:10.1016/j.pss.2015.04.016.Google Scholar
Pifko, S., Janches, D., Close, S., Sparks, J., Nakamura, T. and Nesvorny, D. (2013). The Meteoroid Input Function and predictions of mid-latitude meteor observations by the MU radar. Icarus, 223, 444459, doi:10.1016/j.icarus.2012.12.014.Google Scholar
Poston, M. J., Grieves, G. A., Aleksandrov, A. B., Hibbitts, C. A., Dyar, M. D. and Orlando, T. M. (2015). Temperature programmed desorption studies of water interactions with Apollo lunar samples 12001 and 72501. Icarus, 255, 2429, doi:10.1016/j.icarus.2014.09.049Google Scholar
Potter, A. E. (1995). Chemical sputtering could produce sodium vapor and ice on Mercury. Geophys. Res. Lett., 22, 32893292.Google Scholar
Potter, A. E., Killen, R. M. and Morgan, T. H. (2002). The sodium tail of Mercury. Meteorit. Planet. Sci., 37, 11651172.Google Scholar
Potter, A. E., Killen, R. M. and Sarantos, M. (2006). Spatial distribution of sodium on Mercury. Icarus, 181, 112, doi:10.1016/j.icarus.2005.10.026.Google Scholar
Potter, A. E., Killen, R. M. and Morgan, T. H. (2007). Solar radiation acceleration effects on Mercury’s sodium emission. Icarus, 186, 571580, doi:10.1016/j.icarus.2006.09.025.Google Scholar
Press, W. H., Teukolsky, S. A., Vetterling, W. T. and Flannery, B. P. (2007). Numerical Recipes: The Art of Scientific Computing, 3rd edn. Cambridge: Cambridge University Press.Google Scholar
Raines, J. M., Gershman, D. J., Zurbuchen, T. H., Sarantos, M., Slavin, J. A., Gilbert, J. A., Korth, H., Anderson, B. J., Gloeckler, G., Krimigis, S. M., McNutt, R. L. Jr. and Solomon, S. C. (2013). Distribution and compositional variations of plasma ions in Mercury’s space environment: The first three Mercury years of MESSENGER observations. J. Geophys. Res. Space Physics, 118, 16041619, doi:10.1029/2012JA018073.Google Scholar
Roth, J. (1983). Chemical sputtering. In Sputtering by Particle Bombardment II, ed. Behrish, R., Topics in Applied Physics, Vol. 52. Berlin: Springer-Verlag, pp. 91146, doi:10.1007/3-540-12593-0_3.Google Scholar
Sarantos, M., Killen, R. M., McClintock, W. E., Bradley, E. T., Vervack, R. J. Jr., Benna, M. and Slavin, J. A. (2011). Limits to Mercury’s magnesium exosphere from MESSENGER second flyby observations. Planet. Space Sci., 59, 19922003, doi:10.1016/j.pss.2011.05.002.Google Scholar
Sarantos, M., Killen, R. M., McClintock, W. E., Vervack, R. J. Jr., Merkel, A. W., Burger, M. H., Cassidy, T. A., Slavin, J. A., Sprague, A. L. and Solomon, S. C. (2012). Mercury’s Mg exosphere from MESSENGER data. EPSC Abstracts, 7, abstract EPSC2012-707-1. European Planetary Science Congress, Madrid, Spain, 2328 September.Google Scholar
Schmidt, C. A., Baumgardner, J., Mendillo, M. and Wilson, J. K. (2012). Escape rates and variability constraints for high-energy sodium sources at Mercury. J. Geophys. Res., 117, A03301, doi:10.1029/2011JA017217.Google Scholar
Schriver, D., Trávníček, P., Ashour-Abdalla, M., Richard, R. L., Hellinger, P., Slavin, J. A., Anderson, B. J., Baker, D. N., Benna, M., Boardsen, S. A., Gold, R. E., Ho, G. C., Korth, H., Krimigis, S. M., McClintock, W. E., McLain, J. L., Orlando, T. M., Sarantos, M., Sprague, A. L. and Starr, R. D. (2011). Electron transport and precipitation at Mercury during the MESSENGER flybys: Implications for electron-stimulated desorption. Planet. Space Sci., 59, 20262036, doi:10.1016/j.pss.2011.03.008.Google Scholar
Schultz, P. (1996). Effect of impact angle on vaporization. J. Geophys. Res., 101, 21,117–21,136, doi:10.1029/96JE02266.CrossRefGoogle Scholar
Sieveka, E. M. and Johnson, R. E. (1984). Ejection of atoms and molecules from Io by plasma-ion impact. Astrophys. J., 287, 418426, doi:10.1086/162701.CrossRefGoogle Scholar
Sigmund, P. (1969). Theory of sputtering I: Sputtering yields of amorphous and polycrystalline targets. Phys. Rev., 184, 383416.Google Scholar
Smith, R. S. and Kay, B. D. (1997). Adsorption, desorption, and crystallization kinetics in nanoscale water films. Recent Res. Dev. Phys. Chem., 1, 209219.Google Scholar
Smyth, W. H. (1983). Io’s sodium cloud: Explanation of the east–west asymmetries. II. Astrophys. J., 264, 708725.CrossRefGoogle Scholar
Smyth, W. H. and Marconi, M. L. (1995a). Theoretical overview and modeling of the sodium and potassium atmospheres of the Moon. Astrophys. J., 443, 371392.Google Scholar
Smyth, W. H. and Marconi, M. L. (1995b). Theoretical overview and modeling of the sodium and potassium atmospheres of Mercury. Astrophys. J., 441, 839864.Google Scholar
Sneh, O., Cameron, M. A. and George, S. M. (1996). Adsorption and desorption kinetics of H2O on a fully hydroxylated SiO2 surface. Surf. Sci., 364, 6178.Google Scholar
Starukhina, L. V. and Shkuratov, Y. G. (2000). The lunar poles: Water ice or chemically trapped hydrogen?, Icarus, 147, 585587, doi:10.1006/icar.2000.6476.Google Scholar
Szalay, J. R. and Horanyi, M. (2016). Annual variation and synodic modulation of the sporadic meteoroid flux to the Moon. Geophys Res. Lett., 42, 10,580–10.584, doi:10.1002/2015GL066908.Google Scholar
Vasavada, A. R., Paige, D. A. and Wood, S. E. (1999). Near-surface temperatures on Mercury and the Moon and the stability of polar ice deposits. Icarus, 141, 179193, doi:10.1006/icar.1999.6175.Google Scholar
Verner, D. A. and Yakovlev, D. G. (1995). Analytic FITS for partial photoionization cross sections. Astron. Astrophys. Suppl. Ser., 109, 125135.Google Scholar
Verner, D. A., Yakovlev, D. G., Band, I. M. and Trzhaskovskaya, M. B. (1993). Subshell photoionization cross sections and ionization energies of atoms and ions from He to Zn. Atom. Data Nucl. Data Tables, 55, 233280.Google Scholar
Verner, D. A., Ferland, G. J., Korista, K. T. and Yakovlev, D. G. (1996). Atomic data for astrophysics. II. New analytic FITS for photoionization cross sections of atoms and ions. Astrophys. J., 465, 487498.Google Scholar
Vervack, R. J. Jr., McClintock, W. E., Killen, R. M., Sprague, A. L., Anderson, B. J., Burger, M. H., Bradley, E. T., Mouawad, N., Solomon, S. C. and Izenberg, N. R. (2010). Mercury’s complex exosphere: Results from MESSENGER’s third flyby. Science, 329, 672675.Google Scholar
Vervack, R. J. Jr., Killen, R. M., Sprague, A. L., Burger, M. H., Merkel, A. W. and Sarantos, M. (2011). Early MESSENGER results for less abundant or weakly emitting species in Mercury’s exosphere. EPSC-DPS Joint Meeting Abstracts and Program, 6, abstract EPSC-DPS2011-1131. European Planetary Science Congress–Division for Planetary Sciences Joint Meeting, Nantes, France, 2–7 October.Google Scholar
Vervack, R. J. Jr., McClintock, W. E., Killen, R. M., Merkel, A. W., Burger, M. H., Sarantos, M. and Cassidy, T. A. (2015). Mercury’s exosphere: New detections, discoveries, and insights. Abstracts, 47th Division for Planetary Sciences Annual Meeting, abstract 107.01. National Harbor, MD, 8–13 November, pp. 1920.Google Scholar
Vervack, R. J. Jr., Killen, R. M., McClintock, W. E., Merkel, A. W., Burger, M. H., Cassidy, T. A. and Sarantos, M. (2016). New discoveries from MESSENGER and insights into Mercury’s exosphere. Geophys. Res. Lett., 43, 11,545–11,551.Google Scholar
Weider, S. Z., Nittler, L. R., Starr, R. D., Crapster-Pregont, E. J., Peplowski, P. N., Denevi, B. W., Head, J. W., Byrne, P. K., Hauck, S. A., Ebel, D. S. and Solomon, S. C. (2015). Evidence for geochemical terranes on Mercury: Global mapping of major elements with MESSENGER’s X-Ray Spectrometer. Earth Planet. Sci. Lett., 416, 109120, doi:10.1016/j.epsl.2015.01.023.Google Scholar
Wurz, P. and Lammer, H. (2003). Monte-Carlo simulation of Mercury’s exosphere. Icarus, 164, 113.Google Scholar
Wurz, P., Whitby, J. A., Rohner, U., Martin-Fernandez, J. A., Lammer, H. and Kolb, C. (2010). Self-consistent modelling of Mercury’s exosphere by sputtering, micro-meteorite impact and photon-stimulated desorption. Planet. Space Sci., 58, 15991616, doi:10.1016/j.pss.2010.08.003.Google Scholar
Yakshinskiy, B. V. and Madey, T. E. (1999). Photon-stimulated desorption as a substantial source of sodium in the lunar atmosphere. Nature, 400, 642644.Google Scholar
Yakshinskiy, B. V. and Madey, T. E. (2000). Desorption induced by electronic transitions of Na from SiO2: Relevance to tenuous planetary atmospheres. Surf. Sci., 451, 160165.CrossRefGoogle Scholar
Yakshinskiy, B. V. and Madey, T. E. (2004). Photon-stimulated desorption of Na from a lunar sample: Temperature-dependent effects. Icarus, 168, 5359.Google Scholar
Yakshinskiy, B. V. and Madey, T. E. (2005). Temperature-dependent DIET of alkalis from SiO2 films: Comparison with a lunar sample. Surf. Sci., 593, 202209.Google Scholar
Yakshinskiy, B. V., Madey, T. E. and Ageev, V. N. (2000). Thermal desorption of sodium atoms from thin SiO2 films. Surface Rev. Lett., 7, 7587.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×