Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-05T11:05:49.309Z Has data issue: false hasContentIssue false

4 - Mercury’s Internal Structure

Published online by Cambridge University Press:  10 December 2018

Sean C. Solomon
Affiliation:
Lamont-Doherty Earth Observatory, Columbia University, New York
Larry R. Nittler
Affiliation:
Carnegie Institution of Washington, Washington DC
Brian J. Anderson
Affiliation:
The Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland
Get access

Summary

We describe the current state of knowledge about Mercury's interior structure. We review the available observational constraints, including mass, radius, density, gravity field, spin state, composition, and tidal response. These data enable the construction of models that represent the distribution of mass inside Mercury. In particular, we infer radial profiles of the pressure, density, and gravitational acceleration in the core, mantle, and crust. We also examine Mercury's rotational dynamics and the influence of an inner core on the spin state and the determination of the moment of inertia. Finally, we discuss the wide-ranging implications of Mercury's internal structure on its thermal evolution, surface geology, capture into a distinctive spin-orbit resonance, and magnetic field generation. 
Type
Chapter
Information
Mercury
The View after MESSENGER
, pp. 85 - 113
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aharonson, O., Zuber, M. T. and Solomon, S. C. (2004). Crustal remanence in an internally magnetized non-uniform shell: A possible source for Mercury’s magnetic field? Earth Planet. Sci. Lett., 218, 261268, doi:10.1016/S0012-821X(03)00682-4.CrossRefGoogle Scholar
Alterman, Z., Jarosch, H. and Pekeris, C. L. (1959). Oscillations of the Earth. Proc. R. Soc. A, 252, 8095, doi:10.1098/rspa.1959.0138.Google Scholar
Anderson, B. J., Acidla, M. H., Korth, H., Purucker, M. E., Johnson, C. L., Slavin, J. A., Solomon, S. C. and McNutt, R. L. Jr. (2008). The structure of Mercury’s magnetic field from MESSENGER’s first flyby. Science, 321, 8285, doi:10.1126/science.1159081.Google Scholar
Anderson, B. J., Acuna, M. H., Korth, H., Slavin, J. A., Uno, H., Johnson, C. L., Purucker, M. E., Solomon, S. C., Raines, J. M., Zurbuchen, T. H., Gloeckler, G. and McNutt, R. L. Jr. (2010). The magnetic field of Mercury. Space Sci. Rev., 152, 307339, doi:10.1007/978-1-4419-5901-0_10.Google Scholar
Anderson, B. J., Johnson, C. L., Korth, H., Winslow, R. M., Borovsky, J. E., Purucker, M. E., Slavin, J. A., Solomon, S. C., Zuber, M. T. and McNutt, R. L. Jr. (2012). Low-degree structure in Mercury’s planetary magnetic field. J. Geophys. Res., 117, EOOL12, doi:10.1029/2012JE004159.CrossRefGoogle Scholar
Anderson, J. D., Colombo, G., Esposito, P. B., Lau, E. L. and Trager, G. B. (1987). The mass, gravity field, and ephemeris of Mercury. Icarus, 71, 337349, doi:10.1016/0019-1035(87)90033-9.CrossRefGoogle Scholar
Archinal, B. A., A’Hearn, M. F., Bowell, E., Conrad, A., Consolmagno, G. J., Courtin, R., Fukushima, T., Hestroffer, D., Hilton, J. L., Krasinsky, G. A., Neumann, G., Oberst, J., Seidelmann, P. K., Stooke, P., Tholen, D. J., Thomas, P. C. and Williams, I. P. (2011). Report of the IAU Working Group on Cartographic Coordinates and Rotational Elements: 2009. Celest. Mech. Dyn. Astron., 109, 101135, doi:10.1007/s10569-010-9320-4.Google Scholar
Ash, M. E., Shapiro, I. I. and Smith, W. B. (1971). The system of planetary masses. Science, 174, 551556, doi:10.1126/science.174.4009.551.Google Scholar
Baland, R.-M., Yseboodt, M., Rivoldini, A. and Van Hoolst, T. (2017). Obliquity of Mercury: Influence of the precession of the pericenter and of tides. Icarus, 291, 136159, doi:10.1016/j.icarus.2017.03.020.Google Scholar
Balogh, A. and Giampieri, G. (2002). Mercury: The planet and its orbit. Rep. Prog. Phys., 65, 529560, doi:10.1088/0034-4885/65/4/202.Google Scholar
Balogh, A., Grard, R., Solomon, S. C., Schulz, R., Langevin, Y., Kasaba, Y. and Fujimoto, M. (2007). Missions to Mercury. Space Sci. Rev., 132, 611645, doi:10.1007/978-0-387-77539-5_16.Google Scholar
Benkhoff, J., van Casteren, J., Hayakawa, H., Fujimoto, M., Laakso, H., Novara, M., Ferri, P., Middleton, H. R. and Ziethe, R. (2010). BepiColombo – Comprehensive exploration of Mercury: Mission overview and science goals. Planet. Space Sci., 58, 220, doi:10.1016/j.pss.2009.09.020.Google Scholar
Bills, B. G. and Comstock, R. L. (2005). Forced obliquity variations of Mercury. J. Geophys. Res., 110, E04006, doi:10.1029/2003JE002116.Google Scholar
Bois, E. (1995). Proposed terminology for a general classification of rotational swing motions of the celestial solid bodies. Astron. Astrophys., 296, 850857.Google Scholar
Bois, E. and Rambaux, N. (2007). On the oscillations in Mercury’s obliquity. Icarus, 192, 308317, doi:10.1016/j.icarus.2007.07.015.Google Scholar
Borch, R. S. and Green, H. W. II (1987). Dependence of creep in olivine on homologous temperature and its implications for flow in the mantle. Nature, 330, 345348, doi:10.1038/330345a0.Google Scholar
Breuer, D., Hauck, S. A. II, Buske, M., Pauer, M. and Spohn, T. (2007). Interior evolution of Mercury. Space Sci. Rev., 132, 229260, doi:10.1007/978-0-387-77539-5_4.Google Scholar
Burbine, T. H., McCoy, T. J., Nittler, L. R., Benedix, G. K., Cloutis, E. A. and Dickinson, T. L. (2002). Spectra of extremely reduced assemblages: Implications for Mercury. Meteorit. Planet. Sci., 37, 12331244, doi:10.111141945-5100.2002.tb00892.x.Google Scholar
Byrne, P. K., Klimczak, C., Şengör, A. M. C., Solomon, S. C., Watters, T. R. and Hauck, S. A. II. (2014). Mercury’s global contraction much greater than earlier estimates. Nature Geosci., 7, 301307, doi:10.1038/ngeo2097.Google Scholar
Cao, H., Aurnou, J. M., Wicht, J., Dietrich, W., Soderlund, K. M. and Russell, C. T. (2014). A dynamo explanation for Mercury’s anomalous magnetic field. Geophys. Res. Lett., 41, 41274134 doi:10.1002/2014GL060196.CrossRefGoogle Scholar
Cavanaugh, J. F., Smith, J. C., Sun, X., Bartels, A. E., RamosIzquierdo, L., Krebs, D. J., McGarry, J. F., Trunzo, R., NovoGradac, A. M., Britt, J. L., Karsh, J., Katz, R. B., Lukemire, A. T., Szymkiewicz, R., Berry, D. L., Swinski, J. P., Neumann, G. A., Zuber, M. T. and Smith, D. E. (2007). The Mercury Laser Altimeter instrument for the MESSENGER mission. Space Sci. Rev., 131, 451479, doi:10.1007/s11214-007–9273-4.CrossRefGoogle Scholar
Chabot, N. L., Wollack, E. A., Klima, R. L. and Minitti, M. E. (2014). Experimental constraints on Mercury’s core composition. Earth Planet. Sci. Lett., 390, 199208, doi:10.1016/j.eps1.2014.01.004.Google Scholar
Charlier, B., Grove, T. L. and Zuber, M. T. (2013). Phase equilibria of ultramafic compositions on Mercury and the origin of the compositional dichotomy. Earth Planet. Sci. Lett., 363, 5060, doi:10.1016/j.eps1.2012.12.021.Google Scholar
Chen, B., Li, J. and Hauck, S. A. II. (2008). Non-ideal liquidus curve in the Fe–S system and Mercury’s snowing core. Geophys. Res. Lett., 35, L07201, doi:10.1029/2008GL033311.Google Scholar
Cicalò, S. and Milani, A. (2012). Determination of the rotation of Mercury from satellite gravimetry. Mon. Not. Roy. Astron. Soc., 427, 468482, doi:10.1111/j.1365-2966.2012.21919.x.CrossRefGoogle Scholar
Colombo, G. (1965). Rotational period of the planet Mercury. Nature, 208, 575, doi:10.1038/208575a0.Google Scholar
Colombo, G. (1966). Cassini’s second and third laws. Astron. J., 71, 891896, doi:10.1007/978-94-010-3529-3_2.Google Scholar
Correia, A. C. M. and Laskar, J. (2004). Mercury’s capture into the 3/2 spin-orbit resonance as a result of its chaotic dynamics. Nature, 429, 848850, doi:10.1038/nature02609.Google Scholar
Correia, A. C. M. and Laskar, J. (2009). Mercury’s capture into the 3/2 spin-orbit resonance including the effect of core-mantle friction. Icarus, 201, 111, doi:10.1016/j.icarus.2008.12.034.Google Scholar
Correia, A. C. M. and Laskar, J. (2010). Long-term evolution of the spin of Mercury. I. Effect of the obliquity and core–mantle friction. Icarus, 205, 338355, doi:10.1016/j.icarus.2009.08.006.CrossRefGoogle Scholar
Correia, A. C. M. and Laskar, J. (2012). Impact cratering on Mercury: Consequences for the spin evolution. Astrophys. J., 751, L43, doi:10.1088/2041-8205/751/2/L43.Google Scholar
Counselman, C. C. III and Shapiro, I. I. (1970). Spin-orbit resonance of Mercury. Symp. Math., 3, 121169.Google Scholar
Davies, M. F., Abalakin, V. K., Duncombe, R. L., Masursky, H., Morando, B., Owen, T. C., Seidelmann, P. K., Sinclair, A. T., Wilkins, G. A. and Cross, C. A. (1980). Report of the IAU Working Group on Cartographic Coordinates and Rotational Elements of the Planets and Satellites. Celest. Mech., 22, 205230, doi:10.1007/BF01229508.Google Scholar
D’Hoedt, S. and Lemaître, A. (2008). Planetary long periodic terms in Mercury’s rotation: A two dimensional adiabatic approach. Celest. Mech. Dyn. Astron., 101, 127139, doi:10.1007/s10569-007-9115-4.Google Scholar
D’Hoedt, S., Noyelles, B., Dufey, J. and Lemaitre, A. (2009). Determination of an instantaneous Laplace plane for Mercury’s rotation. Adv. Space Res., 44, 597603, doi:10.1016/j.asr.2009.05.008.Google Scholar
Dufey, J., Lemaître, A. and Rambaux, N. (2008). Planetary perturbations on Mercury’s libration in longitude. Celest. Mech. Dyn. Astron., 101, 141157, doi:10.1007/s10569-008-9143-8.Google Scholar
Dumberry, M. (2011). The free librations of Mercury and the size of its inner core. Geophys. Res. Lett., 38, L16202, doi:10.1029/2011GL048277.Google Scholar
Dumberry, M. and Rivoldini, A. (2015). Mercury’s inner core size and core-crystallization regime. Icarus, 248, 254268, doi:10.1016/j.icarus.2014.10.038.Google Scholar
Dumberry, M., Rivoldini, A., Van Hoolst, T. and Yseboodt, M. (2013). The role of Mercury’s core density structure on its longitudinal librations. Icarus, 225, 6274, doi:10.1016/j.icarus.2013.03.001.CrossRefGoogle Scholar
Dziewonski, A. M. and Anderson, D. L. (1981). Preliminary reference Earth model. Phys. Earth Planet. Inter., 25, 297356, doi:10.1016/0031–9201(81)90046–7.Google Scholar
Efroimsky, M. (2012). Bodily tides near spin-orbit resonances. Celest. Mech. Dyn. Astron., 112, 283330, doi:10.1007/s10569-011-9397-4.Google Scholar
Efroimsky, M. and Lainey, V. (2007). Physics of bodily tides in terrestrial planets and the appropriate scales of dynamical evolution. J. Geophys. Res., 112, E12003, doi:10.1029/2007JE002908.Google Scholar
Evans, L. G., Peplowski, P. N., Rhodes, E. A., Lawrence, D. J., McCoy, T. J., Nittler, L. R., Solomon, S. C., Sprague, A. L., Stockstill-Cahill, K. R., Starr, R. D., Weider, S. Z., Boynton, W. V., Hamara, D. K. and Goldsten, J. O. (2012). Major-element abundances on the surface of Mercury: Results from the MESSENGER Gamma-Ray Spectrometer. J. Geophys. Res., 117, EOOL07, doi:10.1029/2012JE004178.Google Scholar
Fei, Y., Prewitt, C. T., Mao, H.-K. and Bertka, C. M. (1995). Structure and density of FeS at high pressure and high temperature and the internal structure of Mars. Science, 268, 18921894, doi:10.1126/science.268.5219.1892.Google Scholar
Genova, A., Iess, L. and Marabucci, M. (2013). Mercury’s gravity field from the first six months of MESSENGER data. Planet. Space Sci., 81, 5564, doi:10.1016/j.pss.2013.02.006.Google Scholar
Gladman, B., Dane Quinn, D., Nicholson, P. and Rand, R. (1996). Synchronous locking of tidally evolving satellites. Icarus, 122, 166192, doi:10.1006/icar.1996.0117.Google Scholar
Goldreich, P. and Peale, S. (1966). Spin-orbit coupling in the solar system. Astron. J., 71, 425438, doi:10.1086/109947.CrossRefGoogle Scholar
Goldreich, P. and Peale, S. (1967). Spin-orbit coupling in the solar system. II. The resonant rotation of Venus. Astron. J., 72, 662668, doi:10.1086/110289.Google Scholar
Grott, M., Breuer, D. and Laneuville, M. (2011). Thermo-chemical evolution and global contraction of Mercury. Earth Planet. Sci. Lett., 307, 135146, doi:10.1016/j.eps1.2011.04.040.Google Scholar
Harder, H. and Schubert, G. (2001). Sulfur in Mercury’s core? Icarus, 151, 118122, doi:10.1006/icar.2001.6586.Google Scholar
Hauck, S. A. II, Solomon, S. C. and Smith, D. A. (2007). Predicted recovery of Mercury’s internal structure by MESSENGER. Geophys. Res. Lett., 34, L18201, doi:10.1029/2007GL030793.Google Scholar
Hauck, S. A. II, Margot, J. L., Solomon, S. C., Phillips, R. J., Johnson, C. L., Lemoine, F. G., Mazarico, E., McCoy, T. J., Padovan, S., Peale, S. J., Perry, M. E., Smith, D. E. and Zuber, M. T. (2013). The curious case of Mercury’s internal structure. J. Geophys. Res. Planets, 118, 12041220, doi:10.1002/jgre.20091.Google Scholar
Hawkins, S. E. III, Boldt, J. D., Darlington, E. H., Espiritu, R., Gold, R. E., Gotwols, B., Grey, M. P., Hash, C. D., Hayes, J. R., Jaskulek, S. E., Kardian, C. J., Keller, M. R., Malaret, E. R., Murchie, S. L., Murphy, P. K., Peacock, K., Prockter, L. M., Reiter, R. A., Robinson, M. S., Schaefer, E. D., Shelton, R. G., Sterner, R. E. II, Taylor, H. W., Watters, T. R. and Williams, B. D. (2007). The Mercury Dual Imaging System on the MESSENGER spacecraft. Space Sci. Rev., 131, 247338, doi:10.1007/s11214-007-9266-3.Google Scholar
Hirschmann, M. M. (2000). Mantle solidus: Experimental constraints and the effects of peridotite composition. Geochem. Geophys. Geosyst., 1, 10421068, doi:10.1029/2000GC000070.Google Scholar
Hofmeister, A. M. and Mao, H. K. (2003). Pressure derivatives of shear and bulk moduli from the thermal Gruneisen parameter and volume-pressure data. Geochim. Cosmochim. Acta, 67, 12071227, doi:10.1016/S0016-7037(02)01289-9.Google Scholar
Holin, I. V. (1988). Space-time coherence of a signal diffusely scattered by an arbitrarily moving surface in the case of monochromatic sounding. Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, 31(5), 515518.Google Scholar
Holin, I. V. (1992). Accuracy of body-rotation-parameter measurement with monochromatic illumination and two-element reception. Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, 35(5), 433439, doi:10.1007/BF01038312.Google Scholar
Howard, H. T., Tyler, G. L., Esposito, P. B., Anderson, J. D., Reasenberg, R. D., Shapiro, I. I., Fjeldbo, G., Kliore, A. J., Levy, G. S., Brunn, D. L., Dickinson, R., Edelson, R. E., Martin, W. L., Postal, R. B., Seidel, B., Sesplaukis, T. T., Shirley, D. L., Stelzried, C. T., Sweetnam, D. N., Wood, G. E. and Zygielbaum, A. I. (1974). Mercury: Results on mass, radius, ionosphere, and atmosphere from Mariner 10 dual-frequency radio signals. Science, 185, 179180, doi:10.1126/science.185.4146.179.Google Scholar
Iess, L., Jacobson, R. A., Ducci, M., Stevenson, D. J., Lunine, J. I., Armstrong, J. W., Asmar, S. W., Racioppa, P., Rappaport, N. J. and Tortora, P. (2012). The tides of Titan. Science, 337, 457459, doi:10.1126/science.1219631.Google Scholar
Jackson, I., Faul, U. H., Suetsugu, D., Bina, C., Inoue, T. and Jellinek, M. (2010). Grainsize-sensitive viscoelastic relaxation in olivine: Towards a robust laboratory-based model for seismological application. Phys. Earth Planet. Inter., 183, 151163, doi:10.1016/j.pepi.2010.09.005.Google Scholar
James, P. B., Zuber, M. T., Phillips, R. J. and Solomon, S. C. (2015). Support of long-wavelength topography on Mercury inferred from MESSENGER measurements of gravity and topography. J. Geophys. Res. Planets, 120, 287310, doi:10.1002/2014JE004713.Google Scholar
Jehn, R., Corral, C. and Giampieri, G. (2004). Estimating Mercury’s 88-day libration amplitude from orbit. Planet. Space Sci., 52, 727732, doi:10.1016/j.pss.2003.12.012.Google Scholar
Kaufmann, G. and Lambeck, K. (2000). Mantle dynamics, postglacial rebound and the radial viscosity profile. Phys. Earth Planet. Inter., 121, 301324, doi:10.1016/S0031-9201(00)00174-6.Google Scholar
Kaula, W. M. (2000). Theory of Satellite Geodesy: Applications of Satellites to Geodesy. Mineola, NY: Dover Publications.Google Scholar
Klaasen, K. P. (1976). Mercury’s rotation axis and period. Icarus, 28, 469478, doi:10.1016/0019-1035(76)90120-2.Google Scholar
Knibbe, J. S. and van Westrenen, W. (2015). The interior configuration of planet Mercury constrained by moment of inertia and planetary contraction. J. Geophys. Res. Planets, 120, 19041923, doi:10.1002/2015JE004908.CrossRefGoogle Scholar
Koning, A. and Dumberry, M. (2013). Internal forcing of Mercury’s long period free librations. Icarus, 223, 4047, doi:10.1016/j.icarus.2012.11.022.CrossRefGoogle Scholar
Konopliv, A. S. and Yoder, C. F. (1996). Venusian k2 tidal Love number from Magellan and PVO tracking data. Geophys. Res. Lett., 23, 18571860, doi:10.1029/96GL01589.Google Scholar
Kuwayama, Y. and Hirose, K. (2004). Phase relations in the system Fe–FeSi at 21 GPa. Amer. Mineral., 89, 273276, doi:10.2138/am-2004–2-303.Google Scholar
Makarov, V. V. (2012). Conditions of passage and entrapment of terrestrial planets in spin-orbit resonances. Astrophys. J., 752, 7380, doi:10.1088/0004-637X/752/1/73.Google Scholar
Malavergne, V., Toplis, M. J., Berthet, S. and Jones, J. (2010). Highly reducing conditions during core formation on Mercury: Implications for internal structure and the origin of a magnetic field. Icarus, 206, 199209, doi:10.1016/j.icarus.2009.09.001.Google Scholar
Margot, J. L. (2009). A Mercury orientation model including nonzero obliquity and librations. Celest. Mech. Dyn. Astron., 105, 329336, doi:10.1007/s10569-009-9234-1.CrossRefGoogle Scholar
Margot, J. L., Peale, S. J., Jurgens, R. F., Slade, M. A. and Holin, I. V. (2007). Large longitude libration of Mercury reveals a molten core. Science, 316, 710714, doi:10.1126/science.1140514.Google Scholar
Margot, J. L., Peale, S. J., Solomon, S. C., Hauck, S. A. II, Ghigo, F. D., Jurgens, R. F., Yseboodt, M., Giorgini, J. D., Padovan, S. and Campbell, D. B. (2012). Mercury’s moment of inertia from spin and gravity data. J. Geophys. Res., 117, EOOL09, doi:10.1029/2012JE004161.Google Scholar
Matsuyama, I. and Nimmo, F. (2009). Gravity and tectonic patterns of Mercury: Effect of tidal deformation, spin-orbit resonance, nonzero eccentricity, despinning, and reorientation. J. Geophys. Res., 114, E01010, doi:10.1029/2008JE003252.Google Scholar
Mazarico, E., Genova, A., Goossens, S., Lemoine, F. G., Neumann, G. A., Zuber, M. T., Smith, D. E. and Solomon, S. C. (2014). The gravity field, orientation, and ephemeris of Mercury from MESSENGER observations after three years in orbit. J. Geophys. Res. Planets, 119, 24172436, doi:10.1002/2014JE004675.Google Scholar
McCubbin, F. M., Riner, M. A., Vander Kaaden, K. E. and Burkemper, L. K. (2012). Is Mercury a volatile-rich planet? Geophys. Res. Lett., 39, L09202, doi:10.1029/2012GL051711.Google Scholar
Michel, N. C., Hauck, S. A. II, Solomon, S. C., Phillips, R. J., Roberts, J. H. and Zuber, M. T. (2013). Thermal evolution of Mercury as constrained by MESSENGER observations. J. Geophys. Res. Planets, 118, 10331044, doi:10.1002/jgre.20049.Google Scholar
Mohr, P. J., Newell, D. B. and Taylor, B. N. (2016). CO-DATA recommended values of the fundamental physical constants: 2014. Rev. Mod. Phys., 88(3), 035009, doi:10.1103/RevModPhys.88.035009.Google Scholar
Moore, W. B. and Schubert, G. (2000). Note: The tidal response of Europa. Icarus, 147, 317319, doi:10.1006/icar.2000.6460.CrossRefGoogle Scholar
Moore, W. B. and Schubert, G. (2003). The tidal response of Ganymede and Callisto with and without liquid water oceans. Icarus, 166, 223226, doi:10.1016/j.icarus.2003.07.001.Google Scholar
Morard, G. and Katsura, T. (2010). Pressure-temperature cartography of Fe–S–Si immiscible system. Geochim. Cosmochim. Acta, 74, 36593667, doi:10.1016/j.gca.2010.03.025.Google Scholar
Morgan, J. W. and Anders, E. (1980). Chemical composition of Earth, Venus, and Mercury. Proc. Natl. Acad. Sci., 77, 69736977, doi:10.1073/pnas.77.12.6973.Google Scholar
Naidu, S. P. and Margot, J. L. (2015). Near-Earth asteroid satellite spins under spin-orbit coupling. Astron. J., 149, 8090, doi:10.1088/0004-6256/149/2/80.Google Scholar
Namur, O., Collinet, M., Charlier, B., Grove, T. L., Holtz, F. and McCammon, C. (2016a). Melting processes and mantle sources of lavas on Mercury. Earth Planet. Sci. Lett., 439, 117128, doi:10.1016/j.eps1.2016.01.030.Google Scholar
Namur, O., Charlier, B., Holtz, F., Cartier, C. and McCammon, C. (2016b). Sulfur solubility in reduced mafic silicate melts: Implications for the speciation and distribution of sulfur on Mercury. Earth Planet. Sci. Lett., 448, 102114, doi:10.1016/j.eps1.2016.05.024.Google Scholar
Ness, N. F., Behannon, K. W., Lepping, R. P., Whang, Y. C. and Schatten, K. H. (1974). Magnetic field observations near Mercury: Preliminary results from Mariner 10. Science, 185, 151160, doi:10.1126/science.185.4146.151.Google Scholar
Ness, N. F., Behannon, K. W., Lepping, R. P. and Whang, Y. C. (1975). The magnetic field of Mercury. I. J. Geophys. Res., 80, 27082716, doi:10.1017/S1539299600002562.Google Scholar
Nimmo, F. and Faul, U. H. (2013). Dissipation at tidal and seismic frequencies in a melt-free, anhydrous Mars. J. Geophys. Res. Planets, 118, 25582569, doi:10.1002/2013JE004499.Google Scholar
Nimmo, F., Faul, U. H. and Garnero, E. J. (2012). Dissipation at tidal and seismic frequencies in a melt-free Moon. J. Geophys. Res., 117, E09005, doi:10.1029/2012JE004160.Google Scholar
Nittler, L. R., Starr, R. D., Weider, S. Z., McCoy, T. J., Boynton, W. V., Ebel, D. S., Ernst, C. M., Evans, L. G., Goldsten, J. O., Hamara, D. K., Lawrence, D. J., McNutt, R. L. Jr., Schlemm, C. E., Solomon, S. C. and Sprague, A. L. (2011). The major-element composition of Mercury’s surface from MESSENGER X-ray spectrometry. Science, 333, 18471850, doi:10.1126/science.1211567.Google Scholar
Novara, M. (2002). The BepiColombo ESA cornerstone mission to Mercury. Acta Astronaut., 51, 387395, doi:10.1016/S0094-5765(02)00065-6.Google Scholar
Noyelles, B. and Lhotka, C. (2013). The influence of orbital dynamics, shape and tides on the obliquity of Mercury. Adv. Space Res., 52, 20852101, doi:10.1016/j.asr.2013.09.024.Google Scholar
Noyelles, B., Frouard, J., Makarov, V. V. and Efroimsky, M. (2014). Spin-orbit evolution of Mercury revisited. Icarus, 241, 2644, doi:10.1016/j.icarus.2014.05.045.Google Scholar
Padovan, S., Margot, J. L., Hauck, S. A. II, Moore, B. and Solomon, S. C. (2014). The tides of Mercury and possible implications for its interior structure. J. Geophys. Res. Planets, 119, 850866, doi:10.1002/2013JE004459.Google Scholar
Padovan, S., Wieczorek, M. A., Margot, J. L., Tosi, N. and Solomon, S. C. (2015). Thickness of the crust of Mercury from geoid-to-topography ratios. Geophys. Res. Lett., 42, 10291038, doi:10.1002/2014GL062487.CrossRefGoogle Scholar
Peale, S. J. (1969). Generalized Cassini’s laws. Astron. J., 74, 483489, doi:10.1086/110825.Google Scholar
Peale, S. J. (1972). Determination of parameters related to the interior of Mercury. Icarus, 17, 168173, doi:10.1016/0019–1035(72)90052–8.Google Scholar
Peale, S. J. (1976). Does Mercury have a molten core? Nature, 262, 765766, doi:10.1038/262765a0.Google Scholar
Peale, S. J. (1981). Measurement accuracies required for the determination of a Mercurian liquid core. Icarus, 48, 143145, doi:10.1016/0019–1035(81)90160–3.Google Scholar
Peale, S. J. (1988). The rotational dynamics of Mercury and the state of its core. In Mercury, ed. Vilas, F., Chapman, C. R. and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 461493.Google Scholar
Peale, S. J. (2005). The free precession and libration of Mercury. Icarus, 178, 418, doi:10.1016/j.icarus.2005.03.017.Google Scholar
Peale, S. J. (2006). The proximity of Mercury’s spin to Cassini state 1 from adiabatic invariance. Icarus, 181, 338347, doi:10.1016/j.icarus.2005.10.006.Google Scholar
Peale, S. J. and Boss, A. P. (1977). A spin-orbit constraint on the viscosity of a Mercurian liquid core. J. Geophys. Res., 82, 743749, doi:10.1029/JB082i005p00743.Google Scholar
Peale, S. J., Phillips, R. J., Solomon, S. C., Smith, D. E. and Zuber, M. T. (2002). A procedure for determining the nature of Mercury’s core. Meteorit. Planet. Sci., 37, 12691283, doi:10.1111/j.1945–5100.2002.tb00895.x.Google Scholar
Peale, S. J., Yseboodt, M. and Margot, J. L. (2007). Long-period forcing of Mercury’s libration in longitude. Icarus, 187, 365373, doi:10.1016/j.icarus.2006.10.028.Google Scholar
Peale, S. J., Margot, J. L. and Yseboodt, M. (2009). Resonant forcing of Mercury’s libration in longitude. Icarus, 199, 18, doi:10.1016/j.icarus.2008.09.002.Google Scholar
Peale, S. J., Margot, J. L., Hauck, S. A. II and Solomon, S. C. (2014). Effect of core–mantle and tidal torques on Mercury’s spin axis orientation. Icarus, 231, 206220, doi:10.1016/j.icarus.2013.12.007.Google Scholar
Peale, S. J., Margot, J. L., Hauck, S. A. II and Solomon, S. C. (2016). Consequences of a solid inner core on Mercury’s spin configuration. Icarus, 264, 443455, doi:10.1016/j.icarus.2015.09.024.Google Scholar
Peplowski, P. N., Lawrence, D. J., Rhodes, E. A., Sprague, A. L., McCoy, T. J., Denevi, B. W., Evans, L. G., Head, J. W., Nittler, L. R., Solomon, S. C., Stockstill-Cahill, K. R. and Weider, S. Z. (2012). Variations in the abundances of potassium and thorium on the surface of Mercury: Results from the MESSENGER Gamma-Ray Spectrometer. J. Geophys. Res., 117, E00L04, doi:10.1029/2012JE004141.Google Scholar
Perry, M. E., Neumann, G. A., Phillips, R. J., Barnouin, O. S., Ernst, C. M., Kahan, D. S., Solomon, S. C., Zuber, M. T., Smith, D. E., Hauck, S. A. II, Peale, S. J., Margot, J. L., Mazarico, E., Johnson, C. L., Gaskell, R. W., Roberts, J. H., McNutt, R. L. Jr. and Oberst, J. (2015). The low-degree shape of Mercury. Geophys. Res. Lett., 42, 69516958, doi:10.1002/2015GL065101.Google Scholar
Pettengill, G. H. and Dyce, R. B. (1965). A radar determination of the rotation of the planet Mercury. Nature, 206, 1240, doi:10.1038/2061240a0.Google Scholar
Poirier, J. P. (2000). Introduction to the Physics of the Earth, 2nd edn. Cambridge: Cambridge University Press.Google Scholar
Pfyffer, G., Van Hoolst, T. and Dehant, V. (2011). Librations and obliquity of Mercury from the BepiColombo radio-science and camera experiments. Planet. Space Sci., 59, 848861, doi:10.1016/j.pss.2011.03.017.Google Scholar
Rambaux, N., Van Hoolst, T., Dehant, V. and Bois, E. (2007). Inertial core–mantle coupling and libration of Mercury. Astron. Astrophys., 468, 711719, doi:10.1051/0004–6361:20053974.Google Scholar
Riner, M. A., Bina, C. R., Robinson, M. S. and Desch, S. J. (2008). Internal structure of Mercury: Implications of a molten core. J. Geophys. Res., 113, E08013, doi:10.1029/2007JE002993.Google Scholar
Rivoldini, A. and Van Hoolst, T. (2013). The interior structure of Mercury constrained by the low-degree gravity field and the rotation of Mercury. Earth Planet. Sci. Lett., 377, 6272, doi:10.1016/j.epsl.2013.07.021.Google Scholar
Rivoldini, A., Van Hoolst, T. and Verhoeven, O. (2009). The interior structure of Mercury and its core sulfur content. Icarus, 201, 1230, doi:10.1016/j.icarus.2008.12.020.Google Scholar
Robinson, M. S. and Taylor, G. J. (2001). Ferrous oxide in Mercury’s crust and mantle. Meteorit. Planet. Sci., 36, 841847, doi:10.1111/j.1945–5100.2001.tb01921.x.Google Scholar
Sabadini, R. and Vermeersen, B. (2004). Global Dynamics of the Earth: Applications of Normal Mode Relaxation Theory to Solid-Earth Geophysics. Dordrecht, the Netherlands: Kluwer Academic Publishers.CrossRefGoogle Scholar
Sanloup, C. and Fei, Y. (2004). Closure of the Fe–S–Si liquid miscibility gap at high pressure. Phys. Earth Planet. Inter., 147, 5765, doi:10.1016/j.pepi.2004.06.008.Google Scholar
Schubert, G., Ross, M. N., Stevenson, D. J. and Spohn, T. (1988). Mercury’s thermal history and the generation of its magnetic field. In Mercury, ed. Vilas, F., Chapman, C. R. and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 429460.Google Scholar
Schubert, G., Turcotte, D. L. and Olson, P. (2001). Mantle Convection in the Earth and Planets. Cambridge: Cambridge University Press.Google Scholar
Siegfried, R. W. II and Solomon, S. C. (1974). Mercury: Internal structure and thermal evolution. Icarus, 23, 192205, doi:10.1016/0019–1035(74)90005–0.Google Scholar
Siivola, J. and Schmid, R. (2007). List of mineral abbreviations: Recommendations by the IUGS Subcommission on the Systematics of Metamorphic Rocks. Electronic Source: http://www.bgs.ac.uk/scmr/docs/papers/paper_l2.pdf.Google Scholar
Smith, D. E., Zuber, M. T., Phillips, R. J., Solomon, S. C., Neumann, G. A., Lemoine, F. G., Peale, S. J., Margot, J. L., Torrence, M. H., Talpe, M. J., Head, J. W., Hauck, S. A. II, Johnson, C. L., Perry, M. E., Barnouin, O. S., McNutt, R. L. Jr. and Oberst, J. (2010). The equatorial shape and gravity field of Mercury from MESSENGER flybys 1 and 2. Icarus, 209, 88100, doi:10.1016/j.icarus.2010.04.007.Google Scholar
Smith, D. E., Zuber, M. T., Phillips, R. J., Solomon, S. C., Hauck, S. A. II, Lemoine, F. G., Mazarico, E., Neumann, G. A., Peale, S. J., Margot, J. L., Johnson, C. L., Torrence, M. H., Perry, M. E., Rowlands, D. D., Goossens, S., Head, J. W. and Taylor, A. H. (2012). Gravity field and internal structure of Mercury from MESSENGER. Science, 336, 214217, doi:10.1126/science.1218809.Google Scholar
Smyth, J. R. and McCormick, T. C. (1995). Crystallographic data for minerals. In Mineral Physics and Crystallography: A Handbook of Physical Constants, ed. Ahrens, T. J.. Washington, DC: American Geophysical Union, pp. 117.Google Scholar
Solomon, S. C., McNutt, R. L. Jr., Gold, R. E., Acuiia, M. H., Baker, D. N., Boynton, W. V., Chapman, C. R., Cheng, A. F., Gloeckler, G., Head, J. W. III, Krimigis, S. M., McClintock, W. E., Murchie, S. L., Peale, S. J., Phillips, R. J., Robinson, M. S., Slavin, J. A., Smith, D. E., Strom, R. G., Trombka, J. I. and Zuber, M. T. (2001). The MESSENGER mission to Mercury: Scientific objectives and implementation. Planet. Space Sci., 49, 14451465, doi:10.1016/S0032-0633(01)00085-X.Google Scholar
Spohn, T., Sohl, F., Wieczerkowski, K. and Conzelmann, V. (2001). The interior structure of Mercury: What we know, what we expect from BepiColombo. Planet. Space Sci., 49, 15611570, doi:10.1016/S0032-0633(01)00093–9.Google Scholar
Stark, A., Oberst, J., Preusker, F., Peale, S. J., Margot, J. L., Phillips, R. J., Neumann, G. A., Smith, D. E., Zuber, M. T. and Solomon, S. C. (2015a). First MESSENGER orbital observations of Mercury’s librations. Geophys. Res. Lett., 42, 78817889, doi:10.1002/2015GL065152.Google Scholar
Stark, A., Oberst, J. and Hussmann, H. (2015b). Mercury’s resonant rotation from secular orbital elements. Celest. Mech. Dyn. Astron., 123, 263277, doi:10.1007/s10569-015–9633–4.Google Scholar
Stark, A., Oberst, J., Preusker, F., Gwinner, K., Peale, S. J., Margot, J. L., Phillips, R. J., Zuber, M. T. and Solomon, S. C. (2015c). Mercury’s rotational parameters from MESSENGER image and laser altimeter data: A feasibility study. Planet. Space Sci., 117, 6472, doi:10.1016/j.pss.2015.05.006.Google Scholar
Stephenson, A. (1976). Crustal remanence and the magnetic moment of Mercury. Earth Planet. Sci. Lett., 28, 454458, doi:10.1016/0012-821X(76)90206–5.Google Scholar
Stevenson, D. J. (1983). Planetary magnetic fields. Rep. Prog. Phys., 46, 555620, doi:10.1016/50012-821X(02)01126–3.CrossRefGoogle Scholar
Stevenson, D. J. (2010). Planetary magnetic fields: Achievements and prospects. Space Sci. Rev., 152, 651664, doi:10.1007/978–1-4419–5901-0_20.Google Scholar
Stevenson, D. J., Spohn, T. and Schubert, G. (1983). Magnetism and thermal evolution of the terrestrial planets. Icarus, 54, 466489, doi:10.1016/0019–1035(83)90241–5.Google Scholar
Taylor, G. J. and Scott, E. R. D. (2003). Mercury. In Treatise on Geochemistry, ed. Holland, H. D. and Turekian, K. K.. Oxford: Pergamon, pp. 477485.Google Scholar
Tosi, N., Grott, M., Plesa, A.-C. and Breuer, D. (2013). Thermo-chemical evolution of Mercury’s interior. J. Geophys. Res. Planets, 118, 24742487, doi:10.1002/jgre.20168.Google Scholar
Tosi, N., Čadek, O., Běhounková, M., Káňová, M., Plesa, A.-C., Grott, M., Breuer, D., Padovan, S. and Wieczorek, M. A. (2015). Mercury’s low-degree geoid and topography controlled by insolation-driven elastic deformation. Geophys. Res. Lett., 42, 73277335, doi:10.1002/2015GL065314.Google Scholar
Turcotte, D. L. and Schubert, G. (2002). Geodynamics, 2nd edn. Cambridge: Cambridge University Press.Google Scholar
Van Hoolst, T. and Jacobs, C. (2003). Mercury’s tides and interior structure. J. Geophys. Res., 108, 51215136, doi:10.1029/2003JE002126.Google Scholar
Van Hoolst, T., Sohl, F., Holin, I., Verhoeven, O., Dehant, V. and Spohn, T. (2007). Mercury’s interior structure, rotation, and tides. Space Sci. Rev., 132, 203227, doi:10.1007/s11214-007–9202-6.Google Scholar
Van Hoolst, T., Rivoldini, A., Baland, R.-M. and Yseboodt, M. (2012). The effect of tides and an inner core on the forced longitudinal libration of Mercury. Earth Planet. Sci. Lett., 333, 8390, doi:10.1016/j.eps1.2012.04.014.Google Scholar
Vander Kaaden, K. E. and McCubbin, F. M. (2016). The origin of boninites on Mercury: An experimental study of the northern volcanic plains lavas. Geochim. Cosmochim. Acta, 173, 246263, doi:10.1016/j.gca.2015.10.016.Google Scholar
Veasey, M. and Dumberry, M. (2011). The influence of Mercury’s inner core on its physical libration. Icarus, 214, 265274, doi:10.1016/j.icarus.2011.04.025.Google Scholar
Verma, A. K. and Margot, J. L. (2016). Mercury’s gravity, tides, and spin from MESSENGER radio science data. J. Geophys. Res. Planets, 121, 16271640, doi:10.1002/2016JE005037.Google Scholar
Wasson, J. T. (1988). The building stones of the planets. In Mercury, ed. Vilas, F., Chapman, C. R. and Matthews., M. S. Tucson, AZ: University of Arizona Press, pp. 622650.Google Scholar
Watt, J. P., Davies, G. F. and O’Connell, R. J. (1976). The elastic properties of composite materials. Rev. Geophys. Space Phys., 14, 541563, doi:10.1029/RG014i004p00541.Google Scholar
Weider, S. Z., Nittler, L. R., Starr, R. D., McCoy, T. J. and Solomon, S. C. (2014). Variations in the abundance of iron on Mercury’s surface from MESSENGER X-Ray Spectrometer observations. Icarus, 235, 170186, doi:10.1016/j.icarus.2014.03.002.Google Scholar
Weider, S. Z., Nittler, L. R., Starr, R. D., Crapster-Pregont, E. J., Peplowski, P. N., Denevi, B. W., Head, J. W., Byrne, P. K., Hauck, S. A. II, Ebel, D. S. and Solomon, S. C. (2015). Evidence for geochemical terranes on Mercury: Global mapping of major elements with MESSENGER’s X-Ray Spectrometer. Earth Planet. Sci. Lett., 416, 109120, doi:10.1016/j.eps1.2015.01.023.Google Scholar
Wieczorek, M. A., Correia, A. C. M., Le Feuvre, M., Laskar, J. and Rambaux, N. (2012). Mercury’s spin–orbit resonance explained by initial retrograde and subsequent synchronous rotation. Nature Geosci., 5, 1821, doi:10.1038/ngeo1350.Google Scholar
Wieczorek, M. A., Neumann, G. A., Nimmo, F., Kiefer, W. S., Taylor, G. J., Melosh, H. J., Phillips, R. J., Solomon, S. C., Andrews-Hanna, J. C., Asmar, S. W., Konopliv, A. S., Lemoine, F. G., Smith, D. E., Watkins, M. M., Williams, J. G. and Zuber, M. T. (2013). The crust of the Moon as seen by GRAIL. Science, 339, 671675, doi:10.1126/science.1231530.Google Scholar
Williams, J. G. (1994). Contributions to the Earth’s obliquity rate, precession, and nutation. Astron. J., 108, 711724, doi:10.1086/117108.Google Scholar
Williams, J. G., Newhall, X. X. and Dickey, J. O. (1996). Lunar moments, tides, orientation, and coordinate frames. Planet. Space Sci., 44, 10771080, doi:10.1016/0032–0633(95)00154–9.Google Scholar
Williams, J. G., Boggs, D. H., Yoder, C. F., Ratcliff, J. T. and Dickey, J. O. (2001). Lunar rotational dissipation in solid body and molten core. J. Geophys. Res., 106, 2793327968, doi:10.1029/2000JE001396.CrossRefGoogle Scholar
Wolf, D. (1994). Lamé’s problem of gravitational viscoelasticity: The isochemical, incompressible planet. Geophys. J. Int., 116, 321348, doi:10.1111/j.1365-246X.1994.tb01801.x.Google Scholar
Wu, X., Bender, P. L. and Rosborough, G. W. (1995). Probing the interior structure of Mercury from an orbiter plus single lander. J. Geophys. Res., 100, 15151525, doi:10.1029/94JE02833.Google Scholar
Yoder, C. F. (1981). The free librations of a dissipative moon. Phil. Trans. R. Soc. London A, 303, 327338, doi:10.1098/rsta.1981.0206.Google Scholar
Yoder, C. F., Konopliv, A. S., Yuan, D. N., Standish, E. M. and Folkner, W. M. (2003). Fluid core size of Mars from detection of the solar tide. Science, 300, 299303, doi:10.1126/science.1079645.Google Scholar
Yseboodt, M. and Margot, J. L. (2006). Evolution of Mercury’s obliquity. Icarus, 181, 327337, doi:10.1016/j.icarus.2005.11.024.Google Scholar
Yseboodt, M., Margot, J. L. and Peale, S. J. (2010). Analytical model of the long-period forced longitude librations of Mercury. Icarus, 207, 536544, doi:10.1016/j.icarus.2009.12.020.Google Scholar
Yseboodt, M., Rivoldini, A., Van Hoolst, T. and Dumberry, M. (2013). Influence of an inner core on the long-period forced librations of Mercury. Icarus, 226, 4151, doi:10.1016/j.icarus.2013.05.011.Google Scholar
Zolotov, M. Yu., Sprague, A. L., Hauck, S. A. II, Nittler, L. R., Solomon, S. C. and Weider, S. Z. (2013). The redox state, FeO content, and origin of sulfur-rich magmas on Mercury. J. Geophys. Res. Planets, 118, 138146, doi:10.1029/2012JE004274.Google Scholar
Zuber, M. T., Smith, D. E., Phillips, R. J., Solomon, S. C., Neumann, G. A., Hauck, S. A. II, Peale, S. J., Barnouin, O. S., Head, J. W., Johnson, C. L., Lemoine, F. G., Mazarico, E., Sun, X., Torrence, M. H., Freed, A. M., Klimczak, C., Margot, J. L., Oberst, J., Perry, M. E., McNutt, R. L. Jr., Balcerski, J. A., Michel, N., Talpe, M. J. and Yang, D. (2012). Topography of the northern hemisphere of Mercury from MESSENGER laser altimetry. Science, 336, 217220, doi:10.1126/science.1218805.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×