Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-20T16:23:42.034Z Has data issue: false hasContentIssue false

3 - Mercury’s Crust and Lithosphere: Structure and Mechanics

Published online by Cambridge University Press:  10 December 2018

Sean C. Solomon
Affiliation:
Lamont-Doherty Earth Observatory, Columbia University, New York
Larry R. Nittler
Affiliation:
Carnegie Institution of Washington, Washington DC
Brian J. Anderson
Affiliation:
The Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland
Get access

Summary

The outermost “crust” and an underlying, compositionally distinct, and denser layer, the “mantle,” constitute the silicate portion of a terrestrial planet. The “lithosphere” is the planet’s high-strength outer shell. The crust records the history of shallow magmatism, which along with temporal changes in lithospheric thickness, provides information on a planet’s thermal evolution. We focus on the basic structure and mechanics of Mercury’s crust and lithosphere as determined primarily from gravity and topography data acquired by the MESSENGER mission. We first describe these datasets: how they were acquired, how the data are represented on a sphere, and the limitations of the data imparted by MESSENGER’s highly eccentric orbit.  We review different crustal thickness models obtained by parsing the observed gravity signal into contributions from topography, relief on the crust–mantle boundary, and density anomalies that drive viscous flow in the mantle. Estimates of lithospheric thickness from gravity–topography analyses are at odds with predictions from thermal models, thus challenging our understanding of Mercury’s geodynamics. We show that, like those of the Moon, Mercury's ellipsoidal shape and geoid are far from hydrostatic equilibrium, possibly the result of Mercury's peculiar surface temperature distribution and associated buoyancy anomalies and thermoelastic stresses in the interior.  
Type
Chapter
Information
Mercury
The View after MESSENGER
, pp. 52 - 84
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albert, R. A. and Phillips, R. J. (2000). Paleoflexure. Geophys. Res. Lett., 27, 23852388.Google Scholar
Anderson, F. S. and Smrekar, S. E. (2006). Global mapping of crustal and lithospheric thickness on Venus. J. Geophys. Res., 111, E08006, doi:10.1029/2004JE002395.Google Scholar
Anderson, J. D., Colombo, G., Esposito, P. B., Lau, E. L. and Trager, G. B. (1987). The mass, gravity field and ephemeris of Mercury. Icarus, 71, 337349.Google Scholar
Anderson, J. D., Jurgens, R. F., Lau, E. L., Slade, M. A. III and Schubert, G. (1996). Shape and orientation of Mercury from radar ranging data. Icarus, 124, 690697.Google Scholar
Asmar, S. W. and Armstrong, J. W. (2005). Spacecraft Doppler tracking: Noise budget and accuracy achievable in precision radio science observations. Radio Sci., 40, RS2001, doi:10.1029/2004RS003101.CrossRefGoogle Scholar
Balcerski, J. A., Hauck, S. A. II, Sun, P., Klimczak, C., Byrne, P. K., Phillips, R. J. and Solomon, S. C. (2013). New constraints on timing and mechanisms of regional tectonism from Mercury’s tilted craters. Lunar Planet. Sci., 44, abstract 2444.Google Scholar
Banerdt, W. B. (1986). Support of long-wavelength loads on Venus and implications for internal structure. J. Geophys. Res., 91, 403419.Google Scholar
Becker, K. J., Weller, L. A., Edmundson, K. L., Becker, T. L., Robinson, M. S., Enns, A. C. and Solomon, S. C. (2012). Global controlled mosaic of Mercury from MESSENGER orbital images. Lunar Planet. Sci., 43, abstract 2654.Google Scholar
Becker, K. J., Robinson, M. S., Becker, T. L., Weller, L. A., Edmundson, K. L., Neumann, G. A., Perry, M. E. and Solomon, S. C. (2016). First global digital elevation model of Mercury. Lunar Planet. Sci., 47, abstract 2959.Google Scholar
Bindschadler, D. L., Schubert, G. and Ford, P. G. (1994). Venus’ center of figure–center of mass offset, Icarus, 111, 417432.CrossRefGoogle Scholar
Brace, W. F. and Kohlstedt, D. L. (1980). Limits on lithospheric stress imposed by laboratory measurements. J. Geophys. Res., 85, 62486252.Google Scholar
Brown, S. M. and Elkins-Tanton, L. T. (2009). Compositions of Mercury’s earliest crust from magma ocean models. Earth Planet. Sci. Lett., 286, 446455, doi:10.1016/j.epsl.2009.07.010.Google Scholar
Burke, K. C., Şengör, A. M. C. and Francis, P. W. (1984). Maxwell Montes in Ishtar: A collisional plateau on Venus? Lunar Planet. Sci., 15, 104105.Google Scholar
Byerlee, J. D. (1978). Friction of rocks. Pure Appl. Geophys., 116, 615626.Google Scholar
Byrne, P. K., Klimczak, C., Williams, D. A., Hurwitz, D. M., Solomon, S. C., Head, J. W., Preusker, F. and Oberst, J. (2013). An assemblage of lava flow features on Mercury. J. Geophys. Res. Planets, 118, 13031322.Google Scholar
Byrne, P. K., Klimczak, C., Şengör, A. M. C., Solomon, S. C., Watters, T. R. and HauckII, S. A. (2014). Mercury’s global contraction much greater than earlier estimates. Nature Geosci., 7, 301307.CrossRefGoogle Scholar
Byrne, P. K., Klimczak, C., McGovern, P. J., Mazarico, E., James, P. B., Neumann, G. A., Zuber, M. T. and Solomon, S. C. (2015). Deep-seated thrust faults bound the Mare Crisium lunar mascon. Earth Planet. Sci. Lett., 427, 183190.Google Scholar
Cavanaugh, J. F., Smith, J. C., Sun, X., Bartels, A. E., Ramos-Izquierdo, L., Krebs, D. J., McGarry, J. F., Trunzo, R., Novo-Gradac, A.-M., Britt, J. L., Karsh, J. L., Katz, R. B., Lukemire, A. T., Symkiewicz, R., Berry, D. L., Swinski, J. P., Neumann, G. A., Zuber, M. T. and Smith, D. E. (2007). The Mercury Laser Altimeter instrument for the MESSENGER mission. Space Sci. Rev., 131, 451480.CrossRefGoogle Scholar
Chandrasekhar, S. (1987). Ellipsoidal Figures of Equilibrium. New York: Dover, 264 pp.Google Scholar
Chao, B. F. (2006). Earth’s oblateness and its temporal variations. Comptes Rendus Geoscience, 338, 11231129.Google Scholar
Charlier, B., Grove, T. L. and Zuber, M. T. (2013). Phase equilibria of ultramafic compositions on Mercury and the origin of the compositional dichotomy. Earth Planet. Sci. Lett., 363, 5060.Google Scholar
Correia, A. C. M. and Laskar, J. (2004). Mercury’s capture into the 3/2 spin-orbit resonance as a result of its chaotic dynamics. Nature, 429, 848850.Google Scholar
Correia, A. C. M. and Laskar, J. (2009). Mercury’s capture into the 3/2 spin–orbit resonance including the effect of core–mantle friction. Icarus, 201, 111.CrossRefGoogle Scholar
Correia, A. C. M. and Laskar, J. (2012). Impact cratering on Mercury: Consequences for the spin evolution. Astrophys. J., 751, L43, 5 pp.CrossRefGoogle Scholar
Courtney, R. C. and Beaumont, C. (1983). Thermally-activated creep and flexure of the oceanic lithosphere. Nature, 305, 201204, doi:10.1038/305201a0.Google Scholar
Denevi, B. W., Robinson, M. S., Solomon, S. C., Murchie, S. L., Blewett, D. T., Domingue, D. L., McCoy, T. J., Ernst, C. M., Head, J. W., Watters, T. R. and Chabot, N. L. (2009). The evolution of Mercury’s crust: A global perspective from MESSENGER. Science, 324, 613618, doi:10.1126/science.1172226.Google Scholar
Denevi, B. W., Ernst, C. M., Meyer, H. M., Robinson, M. S., Murchie, S. L., Whitten, J. L., Head, J. W., Watters, T. R., Solomon, S. C., Ostrach, L. R., Chapman, C. R., Byrne, P. K., Klimczak, C. and Peplowski, P. N. (2013). The distribution and origin of smooth plains on Mercury. J. Geophys. Res. Planets, 118, 891907, doi:10.1002/jgre.20075.Google Scholar
Dombard, A. J., Hauck, S. A. II, Solomon, S. C. and Phillips, R. J. (2001). Potential for long-wavelength folding on Mercury. Lunar Planet. Sci., 32, abstract 2035.Google Scholar
Elgner, S., Stark, A., Oberst, J., Perry, M. E., Zuber, M. T., Robinson, M. S. and Solomon, S. C. (2014). Mercury׳s global shape and topography from MESSENGER limb images. Planet. Space Sci., 103, 299308.Google Scholar
Elkins-Tanton, L. T. (2012). Magma oceans in the inner solar system. Annu. Rev. Earth Planet. Sci., 40, 113139.CrossRefGoogle Scholar
Ernst, C. M., Murchie, S. L., Barnouin, O. S., Robinson, M. S., Denevi, B. W., Blewett, D. T., Head, J. W., Izenberg, N. R., Solomon, S. C. and Roberts, J. H. (2010). Exposure of spectrally distinct material by impact craters on Mercury: Implications for global stratigraphy. Icarus, 209, 210223, doi:10.1016/j.icarus.2010.05.022.Google Scholar
Evans, L. G., Peplowski, P. N., Rhodes, E. A., Lawrence, D. J., McCoy, T. J., Nittler, L. R., Solomon, S. C., Sprague, A. L., Stockstill-Cahill, K. R., Starr, R. D., Weider, S. Z., Boynton, W. V., Hamara, D. K. and Goldsten, J. O. (2012). Major-element abundances on the surface of Mercury: Results from the MESSENGER Gamma-Ray Spectrometer. J. Geophys. Res., 117, E00L07, doi:10.1029/2012JE004178.CrossRefGoogle Scholar
Fjeldbo, G.A., Kliore, A., Sweetnam, D., Esposito, P., Seidel, B. and Howard, T. (1976). The occultation of Mariner 10 by Mercury. Icarus, 27, 439444.CrossRefGoogle Scholar
Folkner, W. M., Yoder, C. F., Yuan, D. N., Standish, E. M. and Preston, R. A. (1997). Interior structure and seasonal mass redistribution of Mars from radio tracking of Mars Pathfinder. Science, 278, 17491752.CrossRefGoogle ScholarPubMed
Garrick-Bethell, I., Wisdom, J. and Zuber, M. T. (2006). Evidence for a past high eccentricity lunar orbit. Science, 313, 652655.Google Scholar
Garrick-Bethell, I., Perera, V., Nimmo, F. and Zuber, M. T. (2014). The tidal-rotational shape of the Moon and evidence for polar wander. Nature, 512, 181184.Google Scholar
Gaskell, R. W., Barnouin-Jha, O. S., Scheeres, D. J., Konopliv, A. S., Mukia, T., Abe, S., Saito, J., Ishiguro, M., Kubota, T., Hashimoto, T., Kawaguhi, J., Yoshikawa, M. S., Kominato, T., Hirata, N. and Demura, H. (2008). Characterizing and navigating small bodies with imaging data. Meteorit. Planet. Sci., 43, 10491061.Google Scholar
Grott, M. and Breuer, D. (2008). The evolution of the Martian elastic lithosphere and implications for crustal and mantle rheology. Icarus, 193, 503515.Google Scholar
Guest, J. E. (1971). Centres of igneous activity in the maria. In Geology and Physics of the Moon, ed. Fielder, G.. New York: Elsevier, pp. 4153.Google Scholar
Hager, B. H. and Clayton, R. W. (1989). Constraints on the structure of mantle convection using seismic observations, flow models, and the geoid. In Mantle Convection: Plate Tectonics and Global Dynamics, ed. Peltier, R. W.. New York: Gordon and Breach Science, pp. 657763.Google Scholar
Harmon, J. K., Campbell, D. B., Bindschadler, D. L., Head, J. W. and Shapiro, I. I. (1986). Radar altimetry of Mercury: A preliminary analysis. J. Geophys. Res., 91, 385401.Google Scholar
Hauck, S. A. II, Dombard, A. J., Phillips, R. J. and Solomon, S. C. (2004). Internal and tectonic evolution of Mercury. Earth Planet. Sci. Lett., 222, 713728.Google Scholar
Hauck, S. A. II, Margot, J.-L., Solomon, S. C., Phillips, R. J., Johnson, C. L., Lemoine, F. G., Mazarico, E., McCoy, T. J., Padovan, S., Peale, S. J., Perry, M. E., Smith, D. E. and Zuber, M. T. (2013). The curious case of Mercury’s internal structure. J. Geophys. Res. Planets, 118, 12041220.Google Scholar
Hauck, S. A. II, Byrne, P. K., Denevi, B. W., Grott, M., McCoy, T. and Stanley, S. (2015). Mercury’s global evolution: New views from MESSENGER. Presented at 2015 Fall Meeting, American Geophysical Union, abstract P53A-2105, San Francisco, CA, 14–18 December.Google Scholar
Head, J. W., Chapman, C. R., Strom, R. G., Fassett, C. I., Denevi, B. W., Blewett, D. T., Ernst, C. M., Watters, T. R., Solomon, S. C., Murchie, S. L., Prockter, L. M., Chabot, N. L., Gillis-Davis, J. J., Whitten, J. L., Goudge, T. A., Baker, D. M. H., Hurwitz, D. M., Ostrach, L. R., Xiao, Z., Merline, W. J., Kerber, L., Dickson, J. L., Oberst, J., Byrne, P. K., Klimczak, C. and Nittler, L. R. (2011). Flood volcanism in the northern high latitudes of Mercury revealed by MESSENGER. Science, 333, 18531856.CrossRefGoogle ScholarPubMed
Herrick, R. R. and Phillips, R. J. (1992). Geological correlations with the interior density structure of Venus. J. Geophys. Res., 97, 16,01716,034.Google Scholar
Hirschmann, M. M. (2000). Mantle solidus: Experimental constraints and the effects of peridotite composition. Geochem. Geophys. Geosyst., 1, 1042, doi:10.1029/2000GC000070.Google Scholar
Iess, L., Asmar, S. and Tortora, P. (2009). MORE: An advanced tracking experiment for the exploration of Mercury with the mission BepiColombo. Acta Astronautica, 65, 666675.Google Scholar
James, P. B., Byrne, P. K., Solomon, S. C., Zuber, M. T. and Phillips, R. J. (2014). Surface strains associated with the evolution of Mercury’s domical swells. Presented at 2014 Fall Meeting, American Geophysical Union, abstract P21C-393, San Francisco, CA, 15–19 December.Google Scholar
James, P. B., Mazarico, E., Genova, A., Smith, D. E., Neumann, G. A. and Solomon, S. C. (2015a). Mercury’s lithospheric thickness and crustal density, as inferred from MESSENGER observations. Presented at 2015 Fall Meeting, American Geophysical Union, abstract P53A-2102, San Francisco, CA, 14–18 December.Google Scholar
James, P. B., Zuber, M. T., Phillips, R. J. and Solomon, S. C. (2015b). Support of long-wavelength topography on Mercury inferred from MESSENGER measurements of gravity and topography. J. Geophys. Res. Planets, 120, 287310.Google Scholar
James, P. B., Phillips, R. J., Grott, M., Hauck, S. A. II and Solomon, S. C. (2016). The thickness of Mercury’s lithosphere inferred from MESSENGER gravity and topography. Lunar Planet. Sci., 47, abstract 1992.Google Scholar
Jeffreys, H. (1970). The Earth, Its Origin, History and Physical Constitution, 5th edn. Cambridge: Cambridge University Press.Google Scholar
Johnson, B. C., Blair, D. M., Collins, G. S., Melosh, H. J., Freed, A. M., Taylor, G. J., Head, J. W., Wieczorek, M. A., Andrews-Hanna, J. C., Nimmo, F., Keane, J. T., Miljković, K., Soderblom, J. M. and Zuber, M. T. (2016). Formation of the Orientale lunar multiring basin. Science, 354, 441444.Google Scholar
Kaula, W. M. (1966). Theory of Satellite Geodesy. Waltham, MA: Blaisdell.Google Scholar
Kaula, W. M. (1979). The moment of inertia of Mars. Geophys. Res. Lett., 6, 194196.Google Scholar
Keane, J. T. and Matsuyama, I. (2014). Evidence for lunar true polar wander and a past low-eccentricity, synchronous lunar orbit. Geophys. Res. Lett., 41, 66106619.Google Scholar
Kegege, O., Fuentes, M., Meyer, N. and Sil, A. (2012). Three-dimensional analysis of Deep Space Network antenna coverage. 2012 IEEE Aerospace Conference, 9 pp., Big Sky, Montana, 4–10 March, doi:10.1109/AERO.2012.6187124.CrossRefGoogle Scholar
Khan, A., Mosegaard, K. and Rasmussen, K. L. (2000). A new seismic velocity model for the Moon from a Monte Carlo inversion of the Apollo lunar seismic data. Geophys. Res. Lett., 27, 15911594.Google Scholar
King, S. D. (2008). Pattern of lobate scarps on Mercury’s surface reproduced by a model of mantle convection. Nature Geosci., 1, 229232.Google Scholar
Klimczak, C., Watters, T. R., Ernst, C. M., Freed, A. M., Byrne, P. K., Solomon, S. C., Blair, D. M. and Head, J. W. (2012). Deformation associated with ghost craters and basins in volcanic smooth plains on Mercury: Strain analysis and implications for plains evolution. J. Geophys. Res., 117, E00L03, doi:10.1029/2012JE004100.CrossRefGoogle Scholar
Klimczak, C., Ernst, C. M., Byrne, P. K., Solomon, S. C., Watters, T. R., Murchie, S. L., Preusker, F. and Balcerski, J. A. (2013). Insights into the subsurface structure of the Caloris basin, Mercury, from assessments of mechanical layering and changes in long-wavelength topography. J. Geophys. Res. Planets, 118, 20302044.CrossRefGoogle Scholar
Klimczak, C., Byrne, P. K. and Solomon, S. C. (2015). A rock-mechanical assessment of Mercury’s global tectonic fabric. Earth Planet. Sci. Lett., 4168290, doi:10.1016/ j.epsl.2015.02.003.Google Scholar
Kohlstedt, D. L. and Mackwell, S. J. (2010). Strength and deformation of planetary lithospheres. In Planetary Tectonics, ed. Watters, T. R. and Schultz, R. A.. New York: Cambridge University Press, pp. 397456.Google Scholar
Kohlstedt, D. L., Evans, B. and Mackwell, S. J. (1995). Strength of the lithosphere: Constraints imposed by laboratory experiments. J. Geophys. Res., 100, 17,58717,602.Google Scholar
Konopliv, A. S., Banerdt, W. B. and Sjogren, W. L. (1999). Venus gravity: 180th degree and order model. Icarus, 139, 318.Google Scholar
Lago, B. and Cazenave, A. (1981). State of stress in the oceanic lithosphere in response to loading. Geophys. J. Roy. Astron. Soc., 64, 785799.Google Scholar
Laplace, P.-S. (1878). Oeuvres Complètes de Laplace. Paris: Gauthiers-Villars.Google Scholar
Laskar, J. (1988). Secular evolution of the Solar System over 10 million years. Astron. Astrophys., 198, 341362.Google Scholar
Lemoine, F. G. R., Smith, D. E., Zuber, M. T., Neumann, G. A. and Rowlands, D. D. (1997). A 70th degree lunar gravity model (GLGM-2) from Clementine and other tracking data. J. Geophys. Res., 102, 16,33916,359.Google Scholar
Lemoine, F. G., Smith, D. E., Rowlands, D. D., Zuber, M. T., Neumann, G. A., Chinn, D. S. and Pavlis, D. E. (2001). An improved solution of the gravity field of Mars (GMM-2B) from Mars Global Surveyor. J. Geophys. Res., 106, 23,35923,376.Google Scholar
Lemoine, F. G., Goossens, S., Sabaka, T. J., Nicholas, J. B., Mazarico, E., Rowlands, D. D., Loomis, B. D., Chinn, D. S., Caprette, D. S., Neumann, G. A., Smith, D. E. and Zuber, M. T. (2013). High-degree gravity models from GRAIL primary mission data. J. Geophys. Res. Planets, 118, 16761698.Google Scholar
Makarov, V. V. (2012). Conditions of passage and entrapment of terrestrial planets in spin-orbit resonances. Astrophys. J., 752, article 73, doi:10.1088/0004-637X/752/1/73.Google Scholar
Margot, J.-L., Peale, S. J., Solomon, S. C., Hauck, S. A. II, Ghigo, F. D., Jurgens, R. F., Yseboodt, M., Giorgini, J. D., Padovan, S. and Campbell, D. B. (2012). Mercury’s moment of inertia from spin and gravity data. J. Geophys. Res., 117, E00L09, doi:10.1029/2012JE004161.Google Scholar
Matsuyama, I. and Nimmo, F. (2009). Gravity and tectonic patterns of Mercury: Effect of tidal deformation, spin-orbit resonance, nonzero eccentricity, despinning, and reorientation. J. Geophys. Res., 114, E01010, doi:10.1029/2008JE003252.CrossRefGoogle Scholar
Mazarico, E., Zuber, M. T., Lemoine, F. G. and Smith, D. E. (2008). Observation of atmospheric tides in the Martian exosphere using Mars Reconnaissance Orbiter radio tracking data. Geophys. Res. Lett., 35, L09202, doi:10.1029/2008GL033388.Google Scholar
Mazarico, E., Genova, A., Goossens, S., Lemoine, F. G., Neumann, G. A., Zuber, M. T., Smith, D. E. and Solomon, S. C. (2014). The gravity field, orientation, and ephemeris of Mercury from MESSENGER observations after three years in orbit. J. Geophys. Res. Planets, 119, 24172436.Google Scholar
Mazarico, E., Genova, A., Goossens, S., Lemoine, F. G., Smith, D. E., Zuber, M. T., Neumann, G. A. and Solomon, S. C. (2016). The gravity field of Mercury after MESSENGER. Lunar Planet. Sci., 47, abstract 2022.Google Scholar
McAdams, J. V., Bryan, C. G., Bushman, S. S., Calloway, A. B., Carranza, E., Flanigan, S. H., Kirk, M. N., Korth, H., Moessner, D. P., O’Shaughnessy, D. J. and Williams, K. E. (2015). Engineering MESSENGER’s grand finale at Mercury: The low-altitude hover campaign. Astrodynamics Specialist Conference, American Astronautical Society, paper AAS 15–634, 20 pp., Vail, CO, 9–13 August.Google Scholar
McAdoo, D. C. and Sandwell, D. T. (1985). Folding of oceanic lithosphere. J. Geophys. Res., 90, 85638569.Google Scholar
McCauley, J. F. (1967). Geologic Map of the Hevelius Region of the Moon, Map I-1491, Miscellaneous Investigations Series. Denver, CO: U.S. Geological Survey.Google Scholar
McGovern, P. J., Solomon, S. C., Smith, D. E., Zuber, M. T., Simons, M., Wieczorek, M. A., Phillips, R. J., Neumann, G. A., Aharonson, O. and Head, J. W. (2002). Localized gravity/topography admittance and correlation spectra on Mars: Implications for regional and global evolution. J. Geophys. Res., 107, 5136, doi:10.1029/2002JE001854.Google Scholar
McGovern, P. J., Solomon, S. C., Smith, D. E., Zuber, M. T., Simons, M., Wieczorek, M. A., Phillips, R. J., Neumann, G. A., Aharonson, O. and Head, J. W. (2004). Correction to “Localized gravity/topography admittance and correlation spectra on Mars: Implications for regional and global evolution”. J. Geophys. Res., 109, E07007, doi:10.1029/2004JE002286.Google Scholar
McKenzie, D. (2003). Estimating Te in the presence of internal loads. J. Geophys. Res., 108 (B9), 2438, doi:10.1029/2002JB001766.Google Scholar
McKenzie, D. and Bowin, C. (1976). The relationship between bathymetry and gravity in the Atlantic Ocean. J. Geophys. Res., 81, 19031915.Google Scholar
McNutt, M. K. (1984). Lithospheric flexure and thermal anomalies. J. Geophys. Res., 89, 11,18011,194.Google Scholar
Melosh, H. J. (2011). Planetary Surface Processes, Cambridge Planetary Science Series, Cambridge: Cambridge University Press.Google Scholar
Melosh, H. J. and McKinnon, W. B. (1988). The tectonics of Mercury. In Mercury, ed. Vilas, F., Chapman, C. R. and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 374400.Google Scholar
Meyer, J., Elkins-Tanton, L. and Wisdom, J. (2010). Coupled thermal–orbital evolution of the early Moon. Icarus, 208, 110.Google Scholar
Michel, N. C., Hauck, S. A. II, Solomon, S. C., Phillips, R. J., Roberts, J. H. and Zuber, M. T. (2013). Thermal evolution of Mercury as constrained by MESSENGER observations. J. Geophys. Res. Planets, 118, 10331044.Google Scholar
Muller, P. M. and Sjogren, W. L. (1968). Mascons: Lunar mass concentrations. Science, 161, 680684.Google Scholar
Murchie, S. L., Klima, R. L., Denevi, B. W., Ernst, C. M., Keller, M. R., Domingue, D. L., Blewett, D. T., Chabot, N. L., Hash, C. D., Malaret, E., Izenberg, N. R., Vilas, F., Nittler, L. R., Gillis-Davis, J. J., Head, J. W. and Solomon, S. C. (2015). Orbital multispectral mapping of Mercury with the MESSENGER Mercury Dual Imaging System: Evidence for the origins of plains units and low-reflectance material. Icarus, 254, 287305, doi:10.1016/j.icarus.2015.03.027.Google Scholar
Neumann, G. A., Perry, M. E., Mazarico, E., Ernst, C. M., Zuber, M. T., Smith, D. E., Becker, K. J., Gaskell, R. E., Head, J. W., Robinson, M. S. and Solomon, S. C. (2016). Mercury shape model from laser altimetry and planetary comparisons. Lunar Planet. Sci., 47, abstract 2087.Google Scholar
Nimmo, F. and Watters, T. R. (2004). Depth of faulting on Mercury: Implications for heat flux and crustal and effective elastic thickness. Geophys. Res. Lett., 31, L02701, doi:10.1029/2003GL018847.Google Scholar
Nittler, L. R., Starr, R. D., Weider, S. Z., McCoy, T. J., Boynton, W. V., Ebel, D. S., Ernst, C. M., Evans, L. G., Goldsten, J. O., Hamara, D. K., Lawrence, D. J., McNutt, R. L. Jr., Schlemm, C. E. II, Solomon, S. C. and Sprague, A. L. (2011). The major-element composition of Mercury’s surface from MESSENGER X-ray spectrometry. Science, 333, 18471850, doi:10.1126/science.1211567.Google Scholar
Noyelles, B., Frouard, J., Makarov, V. V. and Efroimsky, M. (2014). Spin–orbit evolution of Mercury revisited. Icarus, 241, 2644.Google Scholar
Oberst, J., Preusker, F., Phillips, R. J., Watters, T. R., Head, J. W., Zuber, M. T. and Solomon, S. C. (2010). The morphology of Mercury’s Caloris basin as seen in MESSENGER stereo topographic models. Icarus, 209, 230238.Google Scholar
Oberst, J., Elgner, S., Turner, F. S., Perry, M. E., Gaskell, R. W., Zuber, M. T., Robinson, M. S. and Solomon, S. C. (2011). Radius and limb topography of Mercury obtained from images acquired during the MESSENGER flybys. Planet. Space Sci., 59, 19181924.Google Scholar
Ostrach, L. R., Robinson, M. S., Whitten, J. L., Fassett, C. I., Strom, R. G., Head, J. W. and Solomon, S. C. (2015). Extent, age, and resurfacing history of the northern smooth plains on Mercury from MESSENGER observations. Icarus, 250, 602622.Google Scholar
Padovan, S., Wieczorek, M. A., Margot, J.-L., Tosi, N. and Solomon, S. C. (2015). Thickness of the crust of Mercury from geoid-to-topography ratios. Geophys. Res. Lett., 42, 10291038.Google Scholar
Page, B. R., Bryan, C. G., Williams, K. E., Taylor, A. H. and Williams, B. G. (2014). Tuning the MESSENGER state estimation filter for controlled descent to Mercury impact. Astrodynamics Specialist Conference, American Institute of Aeronautics and Astronautics/American Astronautical Society, paper AIAA-2014–4129, 16 pp., San Diego, CA, 4–7 August.CrossRefGoogle Scholar
Pavlis, D. E., Wimert, J. and McCarthy, J. J. (2013). GEODYN II System Description, Volumes 1–5, contractor report. Greenbelt, MD: SGT Inc.Google Scholar
Peplowski, P. N., Klima, R. L., Lawrence, D. J., Ernst, C. M., Denevi, B.W., Frank, E. A., Goldsten, J. O., Murchie, S. L., Nittler, L.R. and Solomon, S. C. (2016). Remote sensing evidence for an ancient carbon-bearing crust on Mercury. Nature Geosci., 9, 273276, doi:10.1038/ngeo2669.Google Scholar
Perry, M. E., Kahan, D. S., Barnouin, O. S., Ernst, C. M., Solomon, S. C., Zuber, M. T., Smith, D. E., Phillips, R. J., Srinivasan, D. K., Oberst, J. and Asmar, S. W. (2011). Measurement of the radius of Mercury by radio occultation during the MESSENGER flybys. Planet. Space Sci., 59, 1925–1931.Google Scholar
Perry, M. E., Neumann, G. A., Phillips, R. J., Barnouin, O. S., Ernst, C. M., Kahan, D. S., Solomon, S. C., Zuber, M. T., Smith, D. E., Hauck, S. A. II, Peale, S. J., Margot, J.-L., Mazarico, E., Johnson, C. L., Gaskell, R. W., Roberts, J. H., McNutt, R. L., Jr. and Oberst, J. (2015). The low-degree shape of Mercury. Geophys. Res. Lett., 42, 69516958, doi:10.1002/2015GL065101.Google Scholar
Peterson, G. A., Johnson, C. L., Byrne, P. K., Phillips, R. J. and Neumann, G. A. (2017). Depth of faulting in Mercury’s northern hemisphere from thrust fault morphology. Lunar Planet. Sci., 48, abstract 2315.Google Scholar
Phillips, R. J. and Lambeck, K. (1980). Gravity fields of the terrestrial planets: Long-wavelength anomalies and tectonics. Rev. Geophys. Space Phys., 18, 2776.Google Scholar
Phillips, R. J., Johnson, C. L., Mackwell, S. J., Morgan, P., Sandwell, D. T. and Zuber, M. T. (1997). Lithospheric mechanics and dynamics of Venus. In Venus II, ed. Bougher, S. W., Hunten, D. M. and Phillips, R. J.. Tucson, AZ: University of Arizona Press, pp. 11631204.Google Scholar
Phillips, R. J., Johnson, C. L., Perry, M. E., Hauck, S. A. II, James, P. B., Mazarico, E., Lemoine, F. G., Neumann, G., Peale, S. J., Siegler, M. A., Smith, D. E., Solomon, S. C. and Zuber, M. T. (2014). Mercury’s 2nd-degree shape and geoid: Lunar comparisons and thermal anomalies. Lunar Planet. Sci., 45, abstract 2634.Google Scholar
Poblet, J. and Lisle, R. J. (2011). Kinematic evolution and structural styles of fold-and-thrust belts. In Kinematic Evolution and Structural Styles of Fold-and-Thrust Belts, ed. Poblet, J. and Lisle, R. J., Special Publication 349. London: Geological Society, pp. 124.Google Scholar
Preusker, F., Oberst, J., Head, J. W., Watters, T. R., Robinson, M. S., Zuber, M. T. and Solomon, S. C. (2011). Stereo topographic models of Mercury after three MESSENGER flybys. Planet. Space Sci., 59, 19101917, doi:10.1016/j.pss.2011.07.005.Google Scholar
Qin, C., Zhong, S. and Phillips, R. J. (2018). Formation of the lunar fossil bulges and its implication for the early Earth and Moon. Geophys. Res. Lett., 45, 1286–1296, doi:10.1002/2017GL076278.Google Scholar
Riner, M. A., Lucey, P. G., Desch, S. J. and McCubbin, F. M. (2009). Nature of opaque components on Mercury: Insights into a Mercurian magma ocean. Geophys. Res. Lett., 36, L02201, doi:10.1029/2008GL036128.Google Scholar
Robinson, M. S., Murchie, S. L., Blewett, D. T., Domingue, D. L., Hawkins, S. E. III, Head, J. W., Holsclaw, G. M., McClintock, W. E., McCoy, T. J., McNutt, R. L. Jr., Prockter, L. M., Solomon, S. C. and Watters, T. R. (2008). Reflectance and color variations on Mercury: Regolith processes and compositional heterogeneity. Science, 321, 6669.Google Scholar
Sedgwick, W. F. (1898). On the figure of the Moon. Messenger Math., 27, 171173.Google Scholar
Seidelmann, P. K., Abalakin, V. K., Bursa, M., Davies, M. E., de Bergh, C., Lieske, J. H., Oberst, J., Simon, J. L., Standish, E. M., Stooke, P. and Thomas, P. C. (2002). Report of the IAU/IAG Working Group on Cartographic Coordinates and Rotational Elements of the Planets and Satellites: 2000. Celest. Mech. Dyn. Astron., 82, 83110.Google Scholar
Şengör, A. M. C., Natal’in, B. A. and Burtman, V. S. (1993). Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature, 364, 299307.Google Scholar
Shearer, C. K., Hess, P. C, Wieczorek, M. A., Pritchard, M. E., Parmentier, E. M., Borg, L. E., Longhi, J., Elkins-Tanton, L. T., Neal, C. R., Antonenko, I., Canup, R. M., Halliday, A. N., Grove, T. L., Hager, B. H., Lee, D.-C. and Wiechert, U. (2006). Thermal and magmatic evolution of the Moon. Rev. Mineral. Geochem., 60, 365518.Google Scholar
Siegler, M. A., Bills, B. G. and Paige, D. A. (2013). Orbital eccentricity driven temperature variation at Mercury’s poles. J. Geophys. Res. Planets, 118, 930937.Google Scholar
Smith, D. E., Zuber, M. T., Solomon, S. C., Phillips, R. J., Head, J. W., Garvin, J. B., Banerdt, W. B., Muhleman, D. O., Pettengill, G. H., Neumann, G. A., Lemoine, F. G., Abshire, J. B., Aharonson, O., Brown, C. D., Hauck, S. A. II, Ivanov, A. B., McGovern, P. J., Zwally, H. J. and Duxbury, T. C. (1999). The global topography of Mars and implications for surface evolution. Science, 284, 14951503.CrossRefGoogle ScholarPubMed
Smith, D. E., Zuber, M. T., Sun, X., Neumann, G. A., Cavanaugh, J. F., McGarry, J. F. and Zagwodzki, T. W. (2006). Two-way laser link over interplanetary distance. Science, 311, 53.Google Scholar
Smith, D. E., Zuber, M. T., Phillips, R. J., Solomon, S. C., Neumann, G. A., Lemoine, F. G., Torrence, M., Peale, S. J., Margot, J.-L., Barmouin-Jha, O., Head, J. W. and Talpe, M. (2010a). The equatorial shape and gravity field of Mercury from MESSENGER flybys 1 and 2. Icarus, 209, 247255.Google Scholar
Smith, D. E., Zuber, M. T., Neumann, G. A. Lemoine, F. G., Mazarico, E., Torrence, M. H., McGarry, J. F., Rowlands, D. D., Head, J. W., Duxbury, T. H., Aharonson, O., Lucey, P. G., Robinson, M. S., Barnouin, O. S., Cavanaugh, J. F., Sun, X. L., Liva, P., Mao, D. D., Smith, J. C. and Bartles, A. E. (2010b). Initial observations from the Lunar Orbiter Laser Altimeter (LOLA). Geophys. Res. Lett., 37, L18204, doi:10.1029/2010GL043751.Google Scholar
Smith, D. E., Zuber, M. T., Phillips, R. J., Solomon, S. C., Hauck, S. A. II, Lemoine, F. G., Mazarico, E., Neumann, G. A., Peale, S. J., Margot, J. L., Johnson, C. L., Torrence, M. H., Perry, M. E., Rowlands, D. D., Goossens, S., Head, J. W. and Taylor, A. H. (2012). Gravity field and internal structure of Mercury from MESSENGER. Science, 336, 214217.Google Scholar
Spudis, P. D. (1996). The Once and Future Moon. Washington, DC: Smithsonian Institution Press, pp. 117118,Google Scholar
Spudis, P. D., McGovern, P. J. and Kiefer, W. S. (2013). Large shield volcanoes on the Moon. J. Geophys. Res. Planets, 118, 10631081.Google Scholar
Srinivasan, D. K., Perry, M. E., Fielhauer, K. B., Smith, D. E. and Zuber, M. T. (2007). The radio frequency subsystem and radio science on the MESSENGER mission. Space Sci. Rev., 131, 557571.Google Scholar
Stacey, F. D. and Davis, P. M. (2008). Physics of the Earth, 4th edn. Cambridge: Cambridge University Press.Google Scholar
Strom, R. G., Trask, N. J. and Guest, J. E. (1975). Tectonism and volcanism on Mercury. J. Geophys. Res., 80, 24782507.Google Scholar
Suess, E. (1909). Das Antlitz der Erde, Vol. III.2, ed. Suess, E.. Leipzig:F. Tempsky.Google Scholar
Tosi, N., Grott, M., Plesa, A. C. and Breuer, D. (2013). Thermochemical evolution of Mercury’s interior. J. Geophys. Res. Planets, 118, 24742487.Google Scholar
Tosi, N., Čadek, O., Běhounková, M., Káňová, M., Plesa, A. C., Grott, M., Breuer, D., Padovan, S. and Wieczorek, M. A. (2015). Mercury’s low-degree geoid and topography controlled by insolation-driven elastic deformation. Geophys. Res. Lett., 42, 73277335.Google Scholar
Turcotte, D. L., Willemann, R. J., Haxby, W. F. and Norberry, J. (1981). Role of membrane stress in the support of planetary topography. J. Geophys. Res., 86, 39513959.Google Scholar
Vander Kaaden, K. E. and McCubbin, F. M. (2015). Exotic crust formation on Mercury: Consequences of a shallow, FeO-poor mantle. J. Geophys. Res. Planets, 120, 195209.CrossRefGoogle Scholar
Vasavada, A. R., Paige, D. A. and Wood, S. E. (1999). Near-surface temperatures on Mercury and the Moon and the stability of polar ice deposits. Icarus, 141, 179193.Google Scholar
Watters, T. R., Schultz, R. A., Robinson, M. S. and Cook, A. C. (2002). The mechanical and thermal structure of Mercury’s early lithosphere. Geophys. Res. Lett., 29, 1542, doi:10.029/2001GL014308.Google Scholar
Watts, A. B. (1978). An analysis of isostasy in the world’s oceans 1. Hawaiian-Emperor seamount chain. J. Geophys. Res., 83, 59896004.Google Scholar
Watts, A. B. (2001) Isostasy and Flexure of the Lithosphere. Cambridge: Cambridge University Press.Google Scholar
Wieczorek, M. A. and Phillips, R. J. (1998). Potential anomalies on a sphere: Applications to the thickness of the lunar crust. J. Geophys. Res., 103, 17151724.Google Scholar
Wieczorek, M. A. and Simons, F. J. (2005). Localized spectral analysis on the sphere. Geophys. J. Int., 162, 655675.Google Scholar
Wieczorek, M. A., Correia, A. C. M., Le Feuvre, M., Laskar, J. and Rambaux, N. (2011). Mercury’s spin–orbit resonance explained by initial retrograde and subsequent synchronous rotation. Nature Geosci., 5, 1821.Google Scholar
Wieczorek, M. A., Neumann, G. A., Nimmo, F., Kiefer, W. S., Taylor, G. J., Melosh, H. J., Phillips, R. J., Solomon, S. C., Andrews-Hanna, J. C., Asmar, S. W., Konopliv, A. S., Lemoine, F. G., Smith, D. E., Watkins, M. M., Williams, J. G. and Zuber, M. T. (2013). The crust of the Moon as seen by GRAIL. Science, 339, 671675.Google Scholar
Williams, J. G., Boggs, D. H., Yoder, C. F., Ratcliff, J. T. and Dickey, J. O. (2001). Lunar rotational dissipation in solid body and molten core. J. Geophys. Res., 106, 27,93327,968.Google Scholar
Williams, J.-P., Ruiz, J., Rosenburg, M. A., Aharonson, O. and Phillips, R. J. (2011). Insolation driven variations of Mercury’s lithospheric strength. J. Geophys. Res., 116, E01008, doi:10.1029/2001JE003655.Google Scholar
Yseboodt, M. and Margot, J.-L. (2006). Evolution of Mercury’s obliquity. Icarus, 181, 327337.Google Scholar
Zuber, M. T. and Parmentier, E. M. (1995). Formation of fold-and-thrust belts on Venus by thick-skinned deformation. Nature, 377, 704707.Google Scholar
Zuber, M. T., Smith, D. E., Solomon, S. C., Muhleman, D. O., Head, J. W., Garvin, J. B., Abshire, J. B. and Bufton, J. L. (1992). The Mars Observer Laser Altimeter investigation. J. Geophys. Res., 97, 77817797.Google Scholar
Zuber, M. T., Aharonson, O., Aurnou, J. M., Cheng, A. F., Hauck, S. A., II , Heimpel, M. H., Neumann, G. A., Peale, S. J., Phillips, R. J., Smith, D. E., Solomon, S. C. and Stanley, S. (2007). The geophysics of Mercury: Current status and anticipated insights from the MESSENGER mission. Space Sci. Rev., 131, 105132.CrossRefGoogle Scholar
Zuber, M. T., Montési, L. G. J., Farmer, G. T., Hauck, S. A. II , Ritzer, A., Phillips, R. J., Solomon, S. C., Smith, D. E., Talpe, M. J., Head, J. W. III, Neumann, G. A., Watters, T. R. and Johnson, C. L. (2010). Accommodation of lithospheric shortening on Mercury from altimetric profiles of ridges and lobate scarps measured during MESSENGER flybys 1 and 2. Icarus, 209, 247255.Google Scholar
Zuber, M. T., Smith, D. E., Phillips, R. J., Solomon, S. C., Neumann, G. A., Hauck, S. A. II, Peale, S. J., Barnouin, O. S., Head, J. W., Johnson, C. L., Lemoine, F. G., Mazarico, E., Sun, X., Torrence, M. H., Freed, A. M., Klimczak, C., Margot, J. L., Oberst, J., Perry, M. E., McNutt, R. L. Jr., Balcerski, J. A., Michel, N., Talpe, M. J. and Yang, D. (2012). Topography of the northern hemisphere of Mercury from MESSENGER laser altimetry. Science, 336, 217220.Google Scholar
Zuber, M. T., Smith, D. E., Watkins, M. M., Asmar, S. W., Konopliv, A. S., Lemoine, F. G., Melosh, H. J., Neumann, G. A., Phillips, R. J., Solomon, S. C., Wieczorek, M. A., Williams, J. G., Goossens, S. J., Kruizinga, G., Mazarico, E., Park, R. S. and Yuan, D. N. (2013). Gravity field of the Moon from the Gravity Recovery and Interior Laboratory (GRAIL) mission. Science, 339, 668671.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×