Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-05T11:41:26.941Z Has data issue: false hasContentIssue false

2 - The Chemical Composition of Mercury

Published online by Cambridge University Press:  10 December 2018

Sean C. Solomon
Affiliation:
Lamont-Doherty Earth Observatory, Columbia University, New York
Larry R. Nittler
Affiliation:
Carnegie Institution of Washington, Washington DC
Brian J. Anderson
Affiliation:
The Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland
Get access

Summary

The chemical composition of a planetary body reflects its starting conditions modified by numerous processes during its formation and geological evolution. Measurements by X-ray, gamma-ray, and neutron spectrometers on the MESSENGER spacecraft revealed Mercury’s surface to have surprisingly high abundances of the moderately volatile elements sodium, sulfur, potassium, and chlorine, and a low abundance of iron. This composition rules out some formation models for which high temperatures are expected to have strongly depleted volatiles and indicates that Mercury formed under conditions much more reducing than the other rocky planets of our solar system. Through geochemical modeling and petrologic experiments, the planet’s mantle and core compositions can be estimated from the surface composition and geophysical constraints. The bulk silicate composition of Mercury is likely similar to that of enstatite or metal-rich chondrite meteorites, and the planet’s unusually large core is most likely Si rich, implying that in bulk Mercury is enriched in Fe and Si (and possibly S) relative to the other inner planets. The compositional data for Mercury acquired by MESSENGER will be crucial for quantitatively testing future models of the formation of Mercury and the Solar System as a whole, as well as for constraining the geological evolution of the innermost planet.
Type
Chapter
Information
Mercury
The View after MESSENGER
, pp. 30 - 51
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adler, I., Trombka, J., Gerard, J., Lowman, P., Schmadebeck, R., Blodget, H., Eller, E., Yin, L., Lamothe, R., Gorenstein, P. and Bjorkholm, P. (1972a). Apollo 15 geochemical X-ray fluorescence experiment: Preliminary report. Science, 175, 436440.CrossRefGoogle ScholarPubMed
Adler, I., Trombka, J., Gerard, J., Lowman, P., Schmadebeck, R., Blodget, H., Eller, E., Yin, L., Lamothe, R., Osswald, G., Gorenstein, P., Bjorkholm, P., Gursky, H. and Harris, B. (1972b). Apollo 16 geochemical X-ray fluorescence experiment: Preliminary report. Science, 177, 256259.CrossRefGoogle ScholarPubMed
Anderson, B. J., Johnson, C. L., Korth, H., Purucker, M. E., Winslow, R. M., Slavin, J. A., Solomon, S. C., McNutt, R. L. Jr., Raines, J. M. and Zurbuchen, T. H. (2011). The global magnetic field of Mercury from MESSENGER orbital observations. Science, 333, 18591862, doi:10.1126/science.1211001.Google Scholar
Anderson, J. D., Colombo, G., Espsitio, P. B., Lau, E. L. and Trager, G. B. (1987). The mass, gravity field, and ephemeris of Mercury. Icarus, 71, 337349.CrossRefGoogle Scholar
Asphaug, E. and Reufer, A. (2014). Mercury and other iron-rich planetary bodies as relics of inefficient accretion. Nature Geosci., 7, 564568, doi:10.1038/ngeo2189.Google Scholar
Benz, W., Anic, A., Horner, J. and Whitby, J. A. (2007). The origin of Mercury. Space Sci. Rev., 132, 189202.CrossRefGoogle Scholar
Berthet, S., Malavergne, V. and Righter, K. (2009). Melting of the Indarch meteorite (EH4 chondrite) at 1 GPa and variable oxygen fugacity: Implications for early planetary differentiation processes. Geochim. Cosmochim. Acta, 73, 64026420, doi:10.1016/j.gca.2009.07.030.Google Scholar
Bida, T. A., Killen, R. M. and Morgan, T. H. (2000). Discovery of calcium in Mercury’s atmosphere. Nature, 404, 159161.CrossRefGoogle ScholarPubMed
Blewett, D. T., Lucey, P. G., Hawke, B. R., Ling, G. G. and Robinson, M. S. (1997). A comparison of Mercurian reflectance and spectral quantities with those of the Moon. Icarus, 129, 217231.Google Scholar
Blewett, D. T., Chabot, N. L., Denevi, B. W., Ernst, C. M., Head, J. W., Izenberg, N. R., Murchie, S. L., Solomon, S. C., Nittler, L. R., McCoy, T. J., Xiao, Z., Baker, D. M. H., Fassett, C. I., Braden, S. E., Oberst, J., Scholten, F., Preusker, F. and Hurwitz, D. M. (2011). Hollows on Mercury: MESSENGER evidence for geologically recent volatile-related activity. Science, 333, 18561859, doi:10.1126/science.1211681.Google Scholar
Boujibar, A., Andrault, D., Bouhifd, M. A., Bolfan-Casanova, N., Devidal, J.-L. and Trcera, N. (2014). Metal-silicate partitioning of sulphur, new experimental and thermodynamic constraints on planetary accretion. Earth Planet. Sci. Lett., 391, 4254.Google Scholar
Brown, S. M. and Elkins-Tanton, L. T. (2009). Compositions of Mercury’s earliest crust from magma ocean models. Earth Planet. Sci. Lett., 286, 446455.Google Scholar
Bruck Syal, M., Schultz, P. H. and Riner, M. A. (2015). Darkening of Mercury’s surface by cometary carbon. Nature Geosci, 8, 352356, doi:10.1038/ngeo2397.CrossRefGoogle Scholar
Buchwald, V. F. (1975). Handbook of Iron Meteorites, Their History, Distribution, Composition, and Structure. Berkeley, CA: University of California Press.Google Scholar
Burbine, T. H., McCoy, T. J., Nittler, L. R., Benedix, G. K., Cloutis, E. A. and Dickinson, T. L. (2002). Spectra of extremely reduced assemblages: Implications for Mercury. Meteorit. Planet. Sci., 37, 12331244.Google Scholar
Byrne, P. K., Klimczak, C., Şengör, A. M. C., Solomon, S. C., Watters, T. R. and Hauck, S. A. II (2014). Mercury’s global contraction much greater than earlier estimates. Nature Geosci., 7, 301307, doi:10.1038/ngeo2097.Google Scholar
Byrne, P. K., Ostrach, L. R., Fassett, C. I., Chapman, C. R., Denevi, B. W., Evans, A. J., Klimczak, C., Banks, M. E., Head, J. W. and Solomon, S. C. (2016). Widespread effusive volcanism on Mercury likely ended by about 3.5 Ga. Geophys. Res. Lett., 43, 74087416.Google Scholar
Chabot, N. L. and Haack, H. (2006). Evolution of asteroidal cores. In Meteorites and the Early Solar System II, ed. Lauretta, D. S. and McSween, H. Y.. Tucson, AZ: University of Arizona Press, pp. 747771.CrossRefGoogle Scholar
Chabot, N. L., Ernst, C. M., Denevi, B. W., Nair, H., Deutsch, A. N., Blewett, D. T., Murchie, S. L., Neumann, G. A., Mazarico, E., Paige, D. A., Harmon, J. K., Head, J. W. and Solomon, S. C. (2014a). Images of surface volatiles in Mercury’s polar craters acquired by the MESSENGER spacecraft. Geology, 42, 10511054, doi:10.1130/g35916.1.Google Scholar
Chabot, N. L., Wollack, E. A., Klima, R. L. and Minitti, M. E. (2014b). Experimental constraints on Mercury’s core composition. Earth Planet. Sci. Lett., 390, 199208.Google Scholar
Charlier, B., Grove, T. L. and Zuber, M. T. (2013). Phase equilibria of ultramafic compositions on Mercury and the origin of the compositional dichotomy. Earth Planet. Sci. Lett., 363, 5060.Google Scholar
Chi, H., Dasgupta, R., Duncan, M. S. and Shimizu, N. (2014). Partitioning of carbon between Fe-rich alloy melt and silicate melt in a magma ocean: Implications for the abundance and origin of volatiles in Earth, Mars, and the Moon. Geochim. Cosmochim. Acta, 139, 447471.Google Scholar
Crider, D. and Killen, R. M. (2005). Burial rate of Mercury’s polar volatile deposits. Geophys. Res. Lett., 32, L12201, doi:10.1029/2005GL022689.Google Scholar
Dasgupta, R., Chi, H., Shimizu, N., Buono, A. S. and Walker, D. (2013). Carbon solution and partitioning between metallic and silicate melts in a shallow magma ocean: Implications for the origin and distribution of terrestrial carbon. Geochim. Cosmochim. Acta, 102, 191212.Google Scholar
Dauphas, N. and Pourmand, A. (2011). Hf-W-Th evidence for rapid growth of Mars and its status as a planetary embryo. Nature, 473, 489492.Google Scholar
Denevi, B. W., Robinson, M. S., Solomon, S. C., Murchie, S. L., Blewett, D. T., Domingue, D. L., McCoy, T. J., Ernst, C. M., Head, J. W., Watters, T. R. and Chabot, N. L. (2009). The evolution of Mercury’s crust: A global perspective from MESSENGER. Science, 324, 613618.CrossRefGoogle ScholarPubMed
Dreibus, G. and Palme, H. (1996). Cosmochemical constraints on the sulfur content in the Earth’s core. Geochim. Cosmochim. Acta, 60, 11251130.CrossRefGoogle Scholar
Dreibus, G. and Wänke, H. (1985). Mars, a volatile-rich planet. Meteoritics, 20, 367381.Google Scholar
Dumberry, M. and Rivoldini, A. (2015). Mercury’s inner core size and core-crystallization regime. Icarus, 248, 254268.Google Scholar
Ebel, D. S. and Alexander, C. M. O’D. (2011). Equilibrium condensation from chondritic porous IDP enriched vapor: Implications for Mercury and enstatite chondrite origins. Planet. Space Sci., 59, 18881894, doi:10.1016/j.pss.2011.07.017.Google Scholar
Ebel, D. S. and Sack, R. O. (2013). Djerfisherite: Nebular source of refractory potassium. Contrib. Mineral. Petrol., 166, 923934, doi:10.1007/s00410-013–0898-x.Google Scholar
Evans, L. G., Peplowski, P. N., Rhodes, E. A., Lawrence, D. J., McCoy, T. J., Nittler, L. R., Solomon, S. C., Sprague, A. L., Stockstill-Cahill, K. R., Starr, R. D., Weider, S. Z., Boynton, W. V., Hamara, D. K. and Goldsten, J. O. (2012). Major-element abundances on the surface of Mercury: Results from the MESSENGER Gamma-Ray Spectrometer. J. Geophys. Res., 117, E00L07, doi:10.1029/2012je004178.Google Scholar
Evans, L. G., Peplowski, P. N., McCubbin, F. M., McCoy, T. J., Nittler, L. R., Zolotov, M. Yu., Ebel, D. S., Lawrence, D. J., Starr, R. D., Weider, S. Z. and Solomon, S. C. (2015). Chlorine on the surface of Mercury: MESSENGER gamma-ray measurements and implications for the planet’s formation and evolution. Icarus, 257, 417427.CrossRefGoogle Scholar
Fischer, R. A., Nakajima, Y., Campbell, A. J., Frost, D. J., Harries, D., Langenhorst, F., Miyajima, N., Pollok, K. and Rubie, D. C. (2015). High pressure metal-silicate partitioning of Ni, Co, V, Cr, Si, and O. Geochim. Cosmochim. Acta, 167, 177194.Google Scholar
Frank, E. A., Nittler, L. R., Vorburger, A. H., Weider, S. Z., Starr, R. D. and Solomon, S. C. (2015). High-resolution measurements of Mercury’s surface composition with the MESSENGER X-Ray Spectrometer. Lunar Planet. Sci., 46, abstract 1949.Google Scholar
Fukai, Y. (1984). The iron-water reaction and the evolution of the Earth. Nature, 308, 174175.Google Scholar
Gessmann, C. K., Wood, B. J., Rubie, D. C. and Kilburn, M. R. (2001). Solubility of silicon in liquid metal at high pressure: Implications for the composition of the Earth’s core. Earth Planet. Sci. Lett., 184, 367376.Google Scholar
Ghiorso, M. S. and Sack, R. O. (1995). Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpretation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib. Mineral. Petrol., 119, 197212.Google Scholar
Giletti, B. J. and Shanahan, T. M. (1997). Alkali diffusion in plagioclase feldspar. Chemical Geology, 139, 320, doi:10.1016/S0009-2541(97)00026-0.CrossRefGoogle Scholar
Goettel, K. A. (1988). Present bounds on the bulk composition of Mercury: Implications for planetary formation processes. In Mercury, ed. Vilas, F., Chapman, C. R. and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 613621.Google Scholar
Goldstein, J. I., Scott, E. R. D. and Chabot, N. L. (2009). Iron meteorites: Crystallization, thermal history, parent bodies, and origin. Chemie der Erde – Geochemistry, 69, 293325, doi:10.1016/j.chemer.2009.01.002.Google Scholar
Goldsten, J. O., Rhodes, E. A., Boynton, W. V., Feldman, W. C., Lawrence, D. J., Trombka, J. I., Smith, D. M., Evans, L. G., White, J., Madden, N. W., Berg, P. C., Murphy, G. A., Gurnee, R. S., Strohbehn, K., Williams, B. D., Schaefer, E. D., Monaco, C. A., Cork, C. P., Del Eckels, J., Miller, W. O., Burks, M. T., Hagler, L. B., Deteresa, S. J. and Witte, M. C. (2007). The MESSENGER Gamma-Ray and Neutron Spectrometer. Space Sci. Rev., 131, 339391.Google Scholar
Goudge, T. A., Head, J. W., Kerber, L., Blewett, D. T., Denevi, B. W., Domingue, D. L., Gillis-Davis, J. J., Gwinner, K., Helbert, J., Holsclaw, G. M., Izenberg, N. R., Klima, R. L., McClintock, W. E., Murchie, S. L., Neumann, G. A., Smith, D. E., Strom, R. G., Xiao, Z., Zuber, M. T. and Solomon, S. C. (2014). Global inventory and characterization of pyroclastic deposits on Mercury: New insights into pyroclastic activity from MESSENGER orbital data. J. Geophys. Res. Planets, 119, 635658.CrossRefGoogle Scholar
Grossman, L. (1972). Condensation in the primitive solar nebula. Geochim. Cosmochim. Acta, 36, 597619.Google Scholar
Grott, M., Breuer, D. and Laneuville, M. (2011). Thermo-chemical evolution and global contraction of Mercury. Earth Planet. Sci. Lett., 307, 135146.Google Scholar
Hart, S. R. and Zindler, A. (1986). In search of a bulk Earth composition. Chemical Geology, 57, 247267.Google Scholar
Hauck, S. A. II, Dombard, A. J., Phillips, R. J. and Solomon, S. C. (2004). Internal and tectonic evolution of Mercury. Earth Planet. Sci. Lett., 222, 713728.Google Scholar
Hauck, S. A. II, Margot, J.-L., Solomon, S. C., Phillips, R. J., Johnson, C. L., Lemoine, F. G., Mazarico, E., McCoy, T. J., Padovan, S., Peale, S. J., Perry, M. E., Smith, D. E. and Zuber, M. T. (2013). The curious case of Mercury’s internal structure. J. Geophys. Res. Planets, 118, 12041220.Google Scholar
Haughton, D. R., Roeder, P. L. and Skinner, B. J. (1974). Solubility of sulfur in mafic magmas. Economic Geology, 69, 451467, doi:10.2113/gsecongeo.69.4.451.Google Scholar
Head, J. W., Murchie, S. L., Prockter, L. M., Robinson, M. S., Solomon, S. C., Strom, R. G., Chapman, C. R., Watters, T. R., McClintock, W. E., Blewett, D. T. and Gillis-Davis, J. J. (2008). Volcanism on Mercury: Evidence from the first MESSENGER flyby. Science, 321, 6972.Google Scholar
Head, J. W., Chapman, C. R., Strom, R. G., Fassett, C. I., Denevi, B. W., Blewett, D. T., Ernst, C. M., Watters, T. R., Solomon, S. C., Murchie, S. L., Prockter, L. M., Chabot, N. L., Gillis-Davis, J. J., Whitten, J. L., Goudge, T. A., Baker, D. M. H., Hurwitz, D. M., Ostrach, L. R., Xiao, Z., Merline, W. J., Kerber, L., Dickson, J. L., Oberst, J., Byrne, P. K., Klimczak, C. and Nittler, L. R. (2011). Flood volcanism in the northern high latitudes of Mercury revealed by MESSENGER. Science, 333, 18531856, doi:10.1126/science.1211997.Google Scholar
Hillgren, V. J., Gessmann, C. K., Li, J. and Righter, K. (2000). An experimental perspective on the light element in Earth’s core. In Origin of the Earth and Moon, ed. Canup, R. M. and Righter, K.. Tucson, AZ: University of Arizona Press, pp. 245263.Google Scholar
Jarosewich, E. (1990). Chemical analyses of meteorites: A compilation of stony and iron meteorite analyses. Meteoritics, 25, 323338.Google Scholar
Jeanloz, R. (1990). The nature of the Earth’s core. Annu. Rev. Earth Planet. Sci., 18, 357386, doi:10.1146/annurev.ea.18.050190.002041.Google Scholar
Johnson, C. L., Phillips, R. J., Purucker, M. E., Anderson, B. J., Byrne, P. K., Denevi, B. W., Feinberg, J. M., Hauck, S. A., Head, J. W., Korth, H., James, P. B., Mazarico, E., Neumann, G. A., Philpott, L. C., Siegler, M. A., Tsyganenko, N. A. and Solomon, S. C. (2015). Low-altitude magnetic field measurements by MESSENGER reveal Mercury’s ancient crustal field. Science, 348, 892895, doi:10.1126/science.aaa8720.Google Scholar
Kasper, R. B. (1975). Cation and oxygen diffusion in albite. Ph.D. thesis, Brown University, Providence, RI, 143 pp.Google Scholar
Kerber, L., Head, J. W., Solomon, S. C., Murchie, S. L., Blewett, D. T. and Wilson, L. (2009). Explosive volcanic eruptions on Mercury: Eruption conditions, magma volatile content, and implications for interior volatile abundances. Earth Planet. Sci. Lett., 285, 263271.Google Scholar
Kilburn, M. R. and Wood, B. J. (1997). Metal-silicate partitioning and the incompatibility of S and Si during core formation. Earth Planet. Sci. Lett., 152, 139148.CrossRefGoogle Scholar
Kuwayama, Y. and Hirose, K. (2004). Phase relations in the system Fe–FeSi at 21 GPa. Amer. Mineral., 89, 273276.Google Scholar
Lawrence, D. J., Feldman, W. C., Goldsten, J. O., McCoy, T. J., Blewett, D. T., Boynton, W. V., Evans, L. G., Nittler, L. R., Rhodes, E. A. and Solomon, S. C. (2010). Identification and measurement of neutron-absorbing elements on Mercury’s surface. Icarus, 209, 195209.CrossRefGoogle Scholar
Lawrence, D. J., Feldman, W. C., Goldsten, J. O., Maurice, S., Peplowski, P. N., Anderson, B. J., Bazell, D., McNutt, R. L., Nittler, L. R., Prettyman, T. H., Rodgers, D. J., Solomon, S. C. and Weider, S. Z. (2013). Evidence for water ice near Mercury’s north pole from MESSENGER Neutron Spectrometer measurements. Science, 339, 292296.Google Scholar
Lawrence, D. J., Peplowski, P. N., Beck, A. W., Feldman, W. C., Frank, E. A., McCoy, T. J., Nittler, L. R. and Solomon, S. C. (2017). Compositional terranes on Mercury: Information from fast neutrons. Icarus, 281, 3245, doi.org/10.1016/j.icarus.2016.07.018.Google Scholar
Li, J. and Fei, Y. (2014). Experimental constraints on core composition. In The Mantle and Core, ed. Carlson, R. W.. Treatise on Geochemistry, 2nd edn, Vol. 3, ed. Holland, H. D. and Turekian, K. K.. Amsterdam, Oxford: Elsevier, pp. 527557.Google Scholar
Li, Y., Dasgupta, R. and Tsuno, K. (2015). The effects of sulfur, silicon, water, and oxygen fugacity on carbon solubility and partitioning in Fe-rich alloy and silicate melt systems at 3 GPa and 1600°C: Implications for core-mantle differentiation and degassing of magma oceans and reduced planetary mantles. Earth Planet. Sci. Lett., 415, 5466.CrossRefGoogle Scholar
Li, Y., Dasgupta, R., Tsuno, K., Monteleone, B. and Shimizu, N. (2016). Establishing the carbon and sulfur budget of the Earth’s silicate reservoir by accretion and core formation process. Lunar Planet. Sci., 47, abstract 2486.Google Scholar
Lodders, K. (2003). Solar system abundances and condensation temperatures of the elements. Astrophys. J., 591, 12201247.Google Scholar
Lodders, K. and Fegley, B. (1998). The Planetary Scientists’s Companion, New York: Oxford University Press.CrossRefGoogle Scholar
Lord, O. T., Walter, M. J., Dasgupta, R., Walker, D. and Clark, S. M. (2009). Melting in the Fe–C system to 70 GPa. Earth Planet. Sci. Lett., 284, 157167.Google Scholar
Malavergne, V., Siebert, J., Guyot, F., Gautron, L., Combes, R., Hammouda, T., Borensztajn, S., Frost, D. and Martinez, I. (2004). Si in the core? New high-pressure and high-temperature experimental data. Geochim. Cosmochim. Acta, 68, 42014211.Google Scholar
Malavergne, V., Toplis, M. J., Berthet, S. and Jones, J. (2010). Highly reducing conditions during core formation on Mercury: Implications for internal structure and the origin of a magnetic field. Icarus, 206, 199209.CrossRefGoogle Scholar
Malavergne, V., Cordier, P., Righter, K., Brunet, F., Zanda, B., Addad, A., Smith, T., Bureau, H., Surblé, S., Raepsaet, C., Charon, E. and Hewins, R. H. (2014). How Mercury can be the most reduced terrestrial planet and still store iron in its mantle. Earth Planet. Sci. Lett., 394, 186197.CrossRefGoogle Scholar
Manglik, A., Wicht, J. and Christensen, U. R. (2010). A dynamo model with double diffusive convection for Mercury’s core. Earth Planet. Sci. Lett., 289, 619628.Google Scholar
Marchi, S., Chapman, C. R., Fassett, C. I., Head, J. W., Bottke, W. F. and Strom, R. G. (2013). Global resurfacing of Mercury 4.0–4.1 billion years ago by heavy bombardment and volcanism. Nature, 499, 5961, doi:10.1038/nature12280.Google Scholar
Margot, J.-L., Peale, S. J., Jurgens, R. F., Slade, M. A. and Holin, I. V. (2007). Large longitude libration of Mercury reveals a molten core. Science, 316, 710714, doi:10.1126/science.1140514.Google Scholar
Margot, J.-L., Peale, S. J., Solomon, S. C., Hauck, S. A. II, Ghigo, F. D., Jurgens, R. F., Yseboodt, M., Giorgini, J. D., Padovan, S. and Campbell, D. B. (2012). Mercury’s moment of inertia from spin and gravity data. J. Geophys. Res. Planets, 117, doi:10.1029/2012JE004161.Google Scholar
McCord, T. B. and Adams, J. B. (1972). Mercury: Interpretation of optical observations. Icarus, 17, 585588.CrossRefGoogle Scholar
McCoy, T. J. and Bullock, E. S. (2017). Differentiation under highly reducing conditions: New insights from enstatite meteorites and Mercury. In Planetesimals: Early Differentiation and Consequences for Planets, ed. Elkins-Tanton, L. T. and Weiss, B. P.. Cambridge: Cambridge University Press, pp. 7191.Google Scholar
McCoy, T. J., Dickinson, T. L. and Lofgren, G. E. (1999). Partial melting of the Indarch (EH4) meteorite: A textural, chemical and phase relations view of melting and melt migration. Meteorit. Planet. Sci., 34, 735746.Google Scholar
McCubbin, F. M., Riner, M. A., Vander Kaaden, K. E. and Burkemper, L. K. (2012). Is Mercury a volatile-rich planet? Geophys. Res. Lett., 39, L09202, doi:10.1029/2012GL051711.Google Scholar
McCubbin, F. M., Vander Kaaden, K. E., Peplowski, P. N., Bell, A. S., Nittler, L. R., Boyce, J. W., Evans, L. G., Keller, L. P., Elardo, S. M. and McCoy, T. J. (2017). A low O/Si ratio on the surface of Mercury: Evidence for silicon smelting? J. Geophys. Res. Planets, 122, 20532076, doi:10.1002/2017JE005367Google Scholar
McDonough, W. F. (2014). Compositional model for the Earth’s core. In The Mantle and Core, ed. Carlson, R. W.. Treatise on Geochemistry, 2nd edn, Vol. 3, ed. Holland, H. D. and Turekian, K. K.. Amsterdam, Oxford: Elsevier, pp. 559577.Google Scholar
Meslin, P.-Y. and Déprez, G. (2012). Radon exhalation as a possible explanation to the low Th/U ratio measured by MESSENGER GRS on Mercury. Lunar Planet. Sci., 43, abstract 2800.Google Scholar
Morgan, J. W. and Anders, E. (1980). Chemical composition of Earth, Venus, and Mercury. Proc. Natl. Acad. Sci. USA, 77, 69736977.Google Scholar
Murchie, S. L., Klima, R. L., Denevi, B. W., Ernst, C. M., Keller, M. R., Blewett, D. T., Domingue, D. L., Chabot, N. L., Hash, C. D., Malaret, E., Izenberg, N. R., Vilas, F., Nittler, L. R., Gillis-Davis, J. J., Head, J. W. and Solomon, S. C. (2015). Orbital multispectral mapping of Mercury with the MESSENGER Mercury Dual Imaging System: Evidence for the origins of plains units and low-reflectance material. Icarus, 254, 287305.CrossRefGoogle Scholar
Namur, O., Collinet, M., Charlier, B., Grove, T. L., Holtz, F. and McCammon, C. (2016a). Melting processes and mantle sources of lavas on Mercury. Earth Planet. Sci. Lett., 439, 117128.Google Scholar
Namur, O., Charlier, B., Holtz, F., Cartier, C. and McCammon, C. (2016b). Sulfur solubility in reduced mafic silicate melts: Implications for the speciation and distribution of sulfur on Mercury. Earth Planet. Sci. Lett., 448, 102114.Google Scholar
Narendranath, S., Athiray, P. S., Sreekumar, P., Kellett, B. J., Alha, L., Howe, C. J., Joy, K. H., Grande, M., Huovelin, J., Crawford, I. A., Unnikrishnan, U., Lalita, S., Subramaniam, S., Weider, S. Z., Nittler, L. R., Gasnault, O., Rothery, D., Fernandes, V. A., Bhandari, N., Goswami, J. N. and Wieczorek, M. A. (2011). Lunar X-ray fluorescence observations by the Chandrayaan-1 X-ray Spectrometer (C1XS): Results from the nearside southern highlands. Icarus, 214, 5366.Google Scholar
Ness, N. F., Behannon, K. W., Lepping, R. P. and Whang, Y. C. (1975). The magnetic field of Mercury, 1. J. Geophys. Res., 80, 27082716, doi:10.1029/JA080i019p02708.Google Scholar
Neumann, G. A., Cavanaugh, J. F., Sun, X., Mazarico, E. M., Smith, D. E., Zuber, M. T., Mao, D., Paige, D. A., Solomon, S. C., Ernst, C. M. and Barnouin, O. S. (2013). Bright and dark polar deposits on Mercury: Evidence for surface volatiles. Science, 339, 296300, doi:10.1126/science.1229764.CrossRefGoogle Scholar
Nittler, L. R., Starr, R. D., Lim, L., McCoy, T. J., Burbine, T. H., Reedy, R. C., Trombka, J. I., Gorenstein, P., Squyres, S. W., Boynton, W. V., McClanahan, T. P., Bhangoo, J. S., Clark, P. E., Murphy, M. E. and Killen, R. (2001). X-ray fluorescence measurements of the surface elemental composition of asteroid 433 Eros. Meteorit. Planet. Sci., 36, 16731695.Google Scholar
Nittler, L. R., Starr, R. D., Weider, S. Z., McCoy, T. J., Boynton, W. V., Ebel, D. S., Ernst, C. M., Evans, L. G., Goldsten, J. O., Hamara, D. K., Lawrence, D. J., McNutt, R. L. Jr., Schlemm, C. E. II, Solomon, S. C. and Sprague, A. L. (2011). The major-element composition of Mercury’s surface from MESSENGER X-ray spectrometry. Science, 333, 18471850, doi:10.1126/science.1211567.Google Scholar
Nittler, L. R., Frank, E. A., Weider, S. Z., Crapster-Pregont, E., Vorburger, A., Starr, R. D. and Solomon, S. C. (2016). Global major-element maps of Mercury updated from four years of MESSENGER X-ray observations. Lunar Planet. Sci., 47, abstract 1237.Google Scholar
Okuchi, T. (1997). Hydrogen partitioning into molten iron at high pressure: Implications for Earth’s core. Science, 278, 17811784, doi:10.1126/science.278.5344.1781.CrossRefGoogle ScholarPubMed
Paige, D. A., Siegler, M. A., Harmon, J. K., Neumann, G. A., Mazarico, E. M., Smith, D. E., Zuber, M. T., Harju, E., Delitsky, M. L. and Solomon, S. C. (2013). Thermal stability of volatiles in the north polar region of Mercury. Science, 339, 300303, doi:10.1126/science.1231106.Google Scholar
Peplowski, P. N., Evans, L. G., Hauck, S. A., McCoy, T. J., Boynton, W. V., Gillis-Davis, J. J., Ebel, D. S., Goldsten, J. O., Hamara, D. K., Lawrence, D. J., McNutt, R. L. Jr., Nittler, L. R., Solomon, S. C., Rhodes, E. A., Sprague, A. L., Starr, R. D. and Stockstill-Cahill, K. R. (2011). Radioactive elements on Mercury’s surface from MESSENGER: Implications for the planet’s formation and evolution. Science, 333, 18501852, doi:10.1126/science.1211576.Google Scholar
Peplowski, P. N., Lawrence, D. J., Rhodes, E. A., Sprague, A. L., McCoy, T. J., Denevi, B. W., Evans, L. G., Head, J. W., Nittler, L. R., Solomon, S. C., Stockstill-Cahill, K. R. and Weider, S. Z. (2012a). Variations in the abundances of potassium and thorium on the surface of Mercury: Results from the MESSENGER Gamma-Ray Spectrometer. J. Geophys. Res., 117, E00L04, doi:10.1029/2012JE004141.Google Scholar
Peplowski, P. N., Rhodes, E. A., Hamara, D. K., Lawrence, D. J., Evans, L. G., Nittler, L. R. and Solomon, S. C. (2012b). Aluminum abundance on the surface of Mercury: Application of a new background-reduction technique for the analysis of gamma-ray spectroscopy data. J. Geophys. Res., 117, E00L10, doi:10.1029/2012JE004181.Google Scholar
Peplowski, P. N., Evans, L. G., Stockstill-Cahill, K. R., Lawrence, D. J., Goldsten, J. O., McCoy, T. J., Nittler, L. R., Solomon, S. C., Sprague, A. L., Starr, R. D. and Weider, S. Z. (2014). Enhanced sodium abundance in Mercury’s north polar region revealed by the MESSENGER Gamma-Ray Spectrometer. Icarus, 228, 8695.Google Scholar
Peplowski, P. N., Lawrence, D. J., Evans, L. G., Klima, R. L., Blewett, D. T., Goldsten, J. O., Murchie, S. L., McCoy, T. J., Nittler, L. R., Solomon, S. C., Starr, R. D. and Weider, S. Z. (2015a). Constraints on the abundance of carbon in near-surface materials on Mercury: Results from the MESSENGER Gamma-Ray Spectrometer. Planet. Space Sci., 108, 98107, doi:10.1016/j.pss.2015.01.008.Google Scholar
Peplowski, P. N., Lawrence, D. J., Feldman, W. C., Goldsten, J. O., Bazell, D., Evans, L. G., Head, J. W., Nittler, L. R., Solomon, S. C. and Weider, S. Z. (2015b). Geochemical terranes of Mercury’s northern hemisphere as revealed by MESSENGER neutron measurements. Icarus, 253, 346363.Google Scholar
Peplowski, P. N., Klima, R. L., Lawrence, D. J., Ernst, C. M., Denevi, B. W., Frank, E. A., Goldsten, J. O., Murchie, S. L., Nittler, L. R. and Solomon, S. C. (2016). Remote sensing evidence for an ancient carbon-bearing crust on Mercury. Nature Geosci., 9, 273276, doi:10.1038/ngeo2669.Google Scholar
Potter, A. and Morgan, T. (1985). Discovery of sodium in the atmosphere of Mercury. Science, 229, 651653.Google Scholar
Potter, A. E. and Morgan, T. H. (1986). Potassium in the atmosphere of Mercury. Icarus, 67, 336340.Google Scholar
Prettyman, T. H., Hagerty, J. J., Elphic, R. C., Feldman, W. C., Lawrence, D. J., McKinney, G. W. and Vaniman, D. T. (2006). Elemental composition of the lunar surface: Analysis of gamma ray spectroscopy data from Lunar Prospector. J. Geophys. Res., 111, E12007, doi:10.1029/2005JE002656.Google Scholar
Prettyman, T. H., Yamashita, N., Reedy, R. C., McSween, H. Y., Mittlefehldt, D. W., Hendricks, J. S. and Toplis, M. J. (2015). Concentrations of potassium and thorium within Vesta’s regolith. Icarus, 259, 3952.Google Scholar
Rhodes, E. A., Evans, L. G., Nittler, L. R., Starr, R. D., Sprague, A. L., Lawrence, D. J., McCoy, T. J., Stockstill-Cahill, K. R., Goldsten, J. O., Peplowski, P. N., Boynton, W. V. and Solomon, S. C. (2011). Analysis of MESSENGER Gamma-Ray Spectrometer data from Mercury flybys. Planet. Space Sci., 59, 18291841, doi:10.1016/j.pss.2011.07.018.Google Scholar
Riner, M. A., Bina, C. R., Robinson, M. S. and Desch, S. J. (2008). Internal structure of Mercury: Implications of a molten core. J. Geophys. Res., 113, E08013, doi:10.1029/2007JE002993.Google Scholar
Rivoldini, A., Van Hoolst, T. and Verhoeven, O. (2009). The interior structure of Mercury and its core sulfur content. Icarus, 201, 1230.Google Scholar
Robinson, M. S. and Lucey, P. G. (1997). Recalibrated Mariner 10 color mosaics: Implications for mercurian volcanism. Science, 275, 197200.CrossRefGoogle ScholarPubMed
Robinson, M. S., Murchie, S. L., Blewett, D. T., Domingue, D. L., Hawkins, S. E., Head, J. W., Holsclaw, G. M., McClintock, W. E., McCoy, T. J., McNutt, R. L. Jr., Prockter, L. M., Solomon, S. C. and Watters, T. R. (2008). Reflectance and color variations on Mercury: Regolith processes and compositional heterogeneity. Science, 321, 6669, doi:10.1126/science.1160080.Google Scholar
Rubie, D. C., Gessmann, C. K. and Frost, D. J. (2004). Partitioning of oxygen during core formation on the Earth and Mars. Nature, 429, 5861.Google Scholar
Rubie, D. C., Nimmo, F. and Melosh, H. J. (2015). Formation of the Earth’s core. In Evolution of the Earth, ed. Stevenson, D. J.. Treatise on Geophysics, 2nd edn, Vol. 9, ed. Schubert, G.. Amsterdam, Oxford: Elsevier, pp. 4379.Google Scholar
Schlemm, C. E. II, Starr, R. D., Ho, G. C., Bechtold, K. E., Benedict, S. A., Boldt, J. D., Boynton, W. V., Bradley, W., Fraeman, M. E., Gold, R. E., Goldsten, J. O., Hayes, J. R., Jaskulek, S. E., Rossano, E., Rumpf, R. A., Schaefer, E. D., Strohbehn, K., Shelton, R. G., Thompson, R. E., Trombka, J. I. and Williams, B. D. (2007). The X-Ray Spectrometer on the MESSENGER spacecraft. Space Sci. Rev., 131, 393415.Google Scholar
Schubert, G., Ross, M. N., Stevenson, D. J. and Spohn, T. (1988). Mercury’s thermal history and the generation of its magnetic field. In Mercury, ed. Vilas, F., Chapman, C. R. and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 429460.Google Scholar
Sharp, Z. D. and Draper, D. S. (2013). The chlorine abundance of Earth: Implications for a habitable planet. Earth Planet. Sci. Lett., 369, 7177.Google Scholar
Siebert, J., Badro, J., Antonangeli, D. and Ryerson, F. J. (2013). Terrestrial accretion under oxidizing conditions. Science, 339, 11941197, doi:10.1126/science.1227923.CrossRefGoogle ScholarPubMed
Siegfried, R. W. II and Solomon, S. C. (1974). Mercury: Internal structure and thermal evolution. Icarus, 23, 192205.Google Scholar
Smith, D. E., Zuber, M. T., Phillips, R. J., Solomon, S. C., Hauck, S. A., Lemoine, F. G., Mazarico, E., Neumann, G. A., Peale, S. J., Margot, J.-L., Johnson, C. L., Torrence, M. H., Perry, M. E., Rowlands, D. D., Goossens, S., Head, J. W. and Taylor, A. H. (2012). Gravity field and internal structure of Mercury from MESSENGER. Science, 336, 214217.Google Scholar
Starr, R. D., Schlemm, C. E. II, Ho, G. C., Nittler, L. R., Gold, R. E. and Solomon, S. C. (2016). Calibration of the MESSENGER X-Ray Spectrometer. Planet. Space Sci., 122, 1325.Google Scholar
Stockstill-Cahill, K. R., McCoy, T. J., Nittler, L. R., Weider, S. Z. and Hauck, S. A. II (2012). Magnesium-rich crustal compositions on Mercury: Implications for magmatism from petrologic modeling. J. Geophys. Res., 117, E00L15, doi:10.1029/2012je004140.Google Scholar
Taylor, G. J. and Scott, E. R. D. (2003). Mercury. In Meteorites, Comets, and Planets, ed. Davis, A. M.. Treatise on Geochemistry, Vol. 1, ed. Holland, H. D. and Turekian, K. K..Oxford: Pergamon, pp. 477485.Google Scholar
Taylor, G. J., Stopar, J. D., Boynton, W. V., Karunatillake, S., Keller, J. M., Brückner, J., Wänke, H., Dreibus, G., Kerry, K. E., Reedy, R. C., Evans, L. G., Starr, R. D., Martel, L. M. V., Squyres, S. W., Gasnault, O., Maurice, S., d’Uston, C., Englert, P., Dohm, J. M., Baker, V. R., Hamara, D., Janes, D., Sprague, A. L., Kim, K. J., Drake, D. M., McLennan, S. M. and Hahn, B. C. (2006). Variations in K/Th on Mars. J. Geophys. Res., 111, E03S06, doi:10.1029/2006JE002676.Google Scholar
Terasaki, H., Ohtani, E., Sakai, T., Kamada, S., Asanuma, H., Shibazaki, Y., Hirao, N., Sata, N., Ohishi, Y., Sakamaki, T., Suzuki, A. and Funakoshi, K.-i. (2012). Stability of Fe–Ni hydride after the reaction between Fe–Ni alloy and hydrous phase (δ-AlOOH) up to 1.2 Mbar: Possibility of H contribution to the core density deficit. Phys. Earth Planet. Inter., 194–195, 1824, doi:10.1016/j.pepi.2012.01.002.Google Scholar
Tosi, N., Grott, M., Plesa, A. C. and Breuer, D. (2013). Thermochemical evolution of Mercury’s interior. J. Geophys. Res., 118, 24742487, doi:10.1002/jgre.20168.Google Scholar
Trombka, J. I., Squyres, S. W., Bruckner, J., Boynton, W. V., Reedy, R. C., McCoy, T. J., Gorenstein, P., Evans, L. G., Arnold, J. R., Starr, R. D., Nittler, L. R., Murphy, M. E., Mikheeva, I., McNutt, R. L. Jr., McClanahan, T. P., McCartney, E., Goldsten, J. O., Gold, R. E., Floyd, S. R., Clark, P. E., Burbine, T. H., Bhangoo, J. S., Bailey, S. H. and Petaev, M. (2000). The elemental composition of asteroid 433 Eros: Results of the NEAR-Shoemaker X-ray spectrometer. Science, 289, 21012105.Google Scholar
Tsuno, K., Frost, D. J. and Rubie, D. C. (2011). The effects of nickel and sulphur on the core-mantle partitioning of oxygen in Earth and Mars. Phys. Earth Planet. Inter., 185, 112.Google Scholar
Tsuno, K., Frost, D. J. and Rubie, D. C. (2013). Simultaneous partitioning of silicon and oxygen into the Earth’s core during early Earth differentiation. Geophys. Res. Lett., 40, 6671, doi:10.1029/2012GL054116.Google Scholar
Vander Kaaden, K. E. and McCubbin, F. M. (2015). Exotic crust formation on Mercury: Consequences of a shallow, FeO-poor mantle. J. Geophys. Res. Planets, 120, 195209.CrossRefGoogle Scholar
Vander Kaaden, K. E. and McCubbin, F. M. (2016). The origin of boninites on Mercury: An experimental study of the northern volcanic plains lavas. Geochim. Cosmochim. Acta, 173, 246263, doi:10.1016/j.gca.2015.10.016.Google Scholar
Vander Kaaden, K. E., McCubbin, F. M., Ross, D. K., Rapp, J. F., Danielson, L. R., Keller, L. P. and Righter, K. (2016). Carbon solubility in Si-Fe-bearing metals during core formation on Mercury. Lunar Planet. Sci., 47, abstract 1474.Google Scholar
Vilim, R., Stanley, S. and Hauck, S. A. II (2010). Iron snow zones as a mechanism for generating Mercury’s weak observed magnetic field. J. Geophys. Res., 115, E11003, doi:10.1029/2009JE003528.Google Scholar
Wasson, J. T. (1988). The building stones of the planets. In Mercury, ed. Vilas, F., Chapman, C. R. and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 622650.Google Scholar
Weider, S. Z., Kellett, B. J., Swinyard, B. M., Crawford, I. A., Joy, K. H., Grande, M., Howe, C. J., Huovelin, J., Narendranath, S., Alha, L., Anand, M., Athiray, P. S., Bhandari, N., Carter, J. A., Cook, A. C., d’Uston, L. C., Fernandes, V. A., Gasnault, O., Goswami, J. N., Gow, J. P. D., Holland, A. D., Koschny, D., Lawrence, D. J., Maddison, B. J., Maurice, S., McKay, D. J., Okada, T., Pieters, C., Rothery, D. A., Russell, S. S., Shrivastava, A., Smith, D. R. and Wieczorek, M. (2012a). The Chandrayaan-1 X-ray Spectrometer: First results. Planet. Space Sci., 60, 217228, doi:10.1016/j.pss.2011.08.014.Google Scholar
Weider, S. Z., Nittler, L. R., Starr, R. D., McCoy, T. J., Stockstill-Cahill, K. R., Byrne, P. K., Denevi, B. W., Head, J. W. and Solomon, S. C. (2012b). Chemical heterogeneity on Mercury’s surface revealed by the MESSENGER X-Ray Spectrometer. J. Geophys. Res., 117, E00L05, doi:10.1029/2012je004153.Google Scholar
Weider, S. Z., Nittler, L. R., Starr, R. D., McCoy, T. J. and Solomon, S. C. (2014). Variations in the abundance of iron on Mercury’s surface from MESSENGER X-Ray Spectrometer observations. Icarus, 235, 170186, doi:10.1016/j.icarus.2014.03.002.Google Scholar
Weider, S. Z., Nittler, L. R., Starr, R. D., Crapster-Pregont, E. J., Peplowski, P. N., Denevi, B. W., Head, J. W., Byrne, P. K., Hauck, S. A. II , Ebel, D. S. and Solomon, S. C. (2015). Evidence for geochemical terranes on Mercury: Global mapping of major elements with MESSENGER’s X-Ray Spectrometer. Earth Planet. Sci. Lett., 416, 109120.Google Scholar
Weider, S. Z., Nittler, L. R., Murchie, S. L., Peplowski, P. N., McCoy, T. J., Kerber, L., Klimczak, C., Ernst, C. M., Goudge, T. A., Starr, R. D., Izenberg, N. R., Klima, R. L. and Solomon, S. C. (2016). Evidence from MESSENGER for sulfur- and carbon-driven explosive volcanism on Mercury. Geophys. Res. Lett., 43, 36533661.Google Scholar
Williams, Q. and Hemley, R. J. (2001). Hydrogen in the deep Earth. Annu. Rev. Earth Planet. Sci., 29, 365418.Google Scholar
Wurz, P., Whitby, J. A., Rohner, U., Martín-Fernández, J. A., Lammer, H. and Kolb, C. (2010). Self-consistent modelling of Mercury’s exosphere by sputtering, micro-meteorite impact and photon-stimulated desorption. Planet. Space Sci., 58, 15991616.Google Scholar
Zolotov, M. Yu., Sprague, A. L., Hauck, S. A. II, Nittler, L. R., Solomon, S. C. and Weider, S. Z. (2013). The redox state, FeO content, and origin of sulfur-rich magmas on Mercury. J. Geophys. Res. Planets, 118, 138146.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×