Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-07T05:18:15.523Z Has data issue: false hasContentIssue false

5 - Detecting of deception and concealed information using neuroimaging techniques

Published online by Cambridge University Press:  05 June 2012

Matthias Gamer
Affiliation:
University Medical Center in Hamburg-Eppendorf, Germany
Bruno Verschuere
Affiliation:
Universiteit van Amsterdam
Gershon Ben-Shakhar
Affiliation:
Hebrew University of Jerusalem
Ewout Meijer
Affiliation:
Universiteit Maastricht, Netherlands
Get access

Summary

Overview: In the last decade, neuroimaging techniques became increasingly popular to study the neural underpinnings of psychological processes and consequently these methods were also applied in deception research. After giving a brief overview on neuroimaging methods, this chapter summarizes studies using functional magnetic resonance imaging or positron emission tomography to examine the neural underpinnings of deception and information concealment. A meta-analysis was carried out to determine the clustering of brain activation peaks across studies when contrasting deceptive with truthful answers in the Differentiation of Deception (DoD) paradigm or critical details with neutral items in the Concealed Information Test (CIT). A ventral frontoparietal network that is involved in detecting behaviorally relevant stimuli by matching them with previously acquired memory representations was recruited in both experimental paradigms. On this basis, first attempts to derive individual diagnoses from neuroimaging data will be described and the application of the DoD paradigm to forensic questions will be critically discussed. With respect to the CIT, neuroimaging techniques can be highly useful to shed light on the neural processes underlying information concealment and this knowledge can ultimately help to improve CIT validity.

Introduction

Traditionally, autonomic measures have been used to detect deception and there is a long tradition of utilizing these recordings for detecting concealed information as well (Lykken, 1959, 1998). However, new techniques emerged in the last decades that allow for examining brain activity with high temporal (e.g., techniques relying on electroencephalography) or spatial resolution (e.g., functional magnetic resonance imaging [fMRI]).

Type
Chapter
Information
Memory Detection
Theory and Application of the Concealed Information Test
, pp. 90 - 113
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abe, N. (2009). The neurobiology of deception: evidence from neuroimaging and loss-of-function studies. Current Opinion in Neurology, 22, 594–600.CrossRefGoogle ScholarPubMed
Abe, N., Suzuki, M., Mori, E., Itoh, M., and Fujii, T. (2007). Deceiving others: distinct neural responses of the prefrontal cortex and amygdala in simple fabrication and deception with social interactions. Journal of Cognitive Neuroscience, 19, 287–295.CrossRefGoogle ScholarPubMed
Abe, N., Suzuki, M., Tsukiura, T., Mori, E., Yamaguchi, K., Itoh, M., and Fujii, T. (2006). Dissociable roles of prefrontal and anterior cingulate cortices in deception. Cerebral Cortex, 16, 192–199.CrossRefGoogle ScholarPubMed
Abe, N., Okuda, J., Suzuki, M., Sasaki, H., Matsuda, T., Mori, E., Tsukada, M., and Fujii, T. (2008). Neural correlates of true memory, false memory, and deception. Cerebral Cortex, 18, 2811–2819.CrossRefGoogle ScholarPubMed
Abe, N., Fujii, T., Hirayama, K., Takeda, A., Hosokai, Y., Ishioka, T., Nishio, Y., Suzuki, K., Itoyama, Y., Takahashi, S., Fukuda, H., and Mori, E. (2009). Do parkinsonian patients have trouble telling lies? The neurobiological basis of deceptive behaviour. Brain, 132, 1386–1395.CrossRefGoogle ScholarPubMed
Aron, A. R., Robbins, T. W., and Poldrack, R. A. (2004). Inhibition and the right inferior frontal cortex. Trends in Cognitive Sciences, 8, 170–177.CrossRefGoogle ScholarPubMed
Beijk, J. (1980). Experimental and procedural influences on differential electrodermal activity. Psychophysiology, 17, 274–278.CrossRefGoogle ScholarPubMed
Ben-Shakhar, G. (1977). A further study of the dichotomization theory in detection of information. Psychophysiology, 14, 408–413.CrossRefGoogle Scholar
Ben-Shakhar, G., and Elaad, E. (2003). The validity of psychophysiological detection of information with the Guilty Knowledge Test: a meta-analytic review. Journal of Applied Psychology, 88, 131–151.CrossRefGoogle ScholarPubMed
Bhatt, S., Mbwana, J., Adeyemo, A., Sawyer, A., Hailu, A., and Vanmeter, J. (2009). Lying about facial recognition: an fMRI study. Brain and Cognition, 69, 382–390.CrossRefGoogle ScholarPubMed
Bles, M., and Haynes, J. (2008). Detecting concealed information using brain-imaging technology. Neurocase, 14, 82–92.CrossRefGoogle ScholarPubMed
Christ, S. E., Essen, D. C., Watson, J. M., Brubaker, L. E., and McDermott, K. B. (2009). The contributions of prefrontal cortex and executive control to deception: evidence from activation likelihood estimate meta-analyses. Cerebral Cortex, 19, 1557–1566.CrossRefGoogle ScholarPubMed
Corbetta, M., and Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3, 201–215.CrossRefGoogle Scholar
D'Esposito, M., Postle, B. R., and Rypma, B. (2000). Prefrontal cortical contributions to working memory: evidence from event-related fMRI studies. Experimental Brain Research, 133, 3–11.CrossRefGoogle ScholarPubMed
Davatzikos, C., Ruparel, K., Fan, Y., Shen, D. G., Acharyya, M., Loughead, J. W., Gur, R. C., and Langleben, D. D. (2005). Classifying spatial patterns of brain activity with machine learning methods: application to lie detection. Neuroimage, 28, 663–668.CrossRefGoogle ScholarPubMed
Davatzikos, C., Ruparel, K., Fan, Y., Shen, D. G., Acharyya, M., Loughead, J. W., Gur, R. C., and Langleben, D. D.Deceiving the law” (2008). Nature Neuroscience, 11, 1231.Google Scholar
Downar, J., Crawley, A. P., Mikulis, D. J., and Davis, K. D. (2000). A multimodal cortical network for the detection of changes in the sensory environment. Nature Neuroscience, 3, 277–283.CrossRefGoogle ScholarPubMed
Downar, J., Crawley, A. P., Mikulis, D. J., and Davis, K. D. (2002). A cortical network sensitive to stimulus salience in a neutral behavioral context across multiple sensory modalities. Journal of Neurophysiology, 87, 615–620.CrossRefGoogle Scholar
Duncan, J., and Owen, A. M. (2000). Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends in Neurosciences, 23, 475–483.CrossRefGoogle ScholarPubMed
Eickhoff, S. B., Laird, A. R., Grefkes, C., Wang, L. E., Zilles, K., and Fox, P. T. (2009). Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: a random-effects approach based on empirical estimates of spatial uncertainty. Human Brain Mapping, 30, 2907–2926.CrossRefGoogle ScholarPubMed
Farwell, L. A., and Donchin, E. (1991). The truth will out: interrogative polygraphy (lie detection) with event-related brain potentials. Psychophysiology, 28, 531–547.CrossRefGoogle ScholarPubMed
Friston, K. J. (2009). Modalities, modes, and models in functional neuroimaging. Science, 326, 399–403.CrossRefGoogle ScholarPubMed
Fullam, R. S., McKie, S., and Dolan, M. C. (2009). Psychopathic traits and deception: functional magnetic resonance imaging study. British Journal of Psychiatry, 194, 229–235.CrossRefGoogle ScholarPubMed
Furedy, J. J., Davis, C., and Gurevich, M. (1988). Differentiation of deception as a psychological process: a psychophysiological approach. Psychophysiology, 25, 683–688.CrossRefGoogle ScholarPubMed
Furedy, J. J., Gigliotti, F., and Ben-Shakhar, G. (1994). Electrodermal differentiation of deception: the effect of choice versus no choice of deceptive items. International Journal of Psychophysiology, 18, 13–22.CrossRefGoogle ScholarPubMed
Gamer, M., Bauermann, T., Stoeter, P., and Vossel, G. (2007). Covariations among fMRI, skin conductance, and behavioral data during processing of concealed information. Human Brain Mapping, 28, 1287–1301.CrossRefGoogle ScholarPubMed
Gamer, M., Verschuere, B., Crombez, G., and Vossel, G. (2008). Combining physiological measures in the detection of concealed information. Physiology & Behavior, 95, 333–340.CrossRefGoogle ScholarPubMed
Gamer, M., Klimecki, O., Bauermann, T., Stoeter, P., and Vossel, G. (in press). fMRI-activation patterns in the detection of concealed information rely on memory-related effects. Social Cognitive and Affective Neuroscience.
Ganis, G., Kosslyn, S. M., Stose, S., Thompson, W. L., and Yurgelun-Todd, D. A. (2003). Neural correlates of different types of deception: an fMRI investigation. Cerebral Cortex, 13, 830–836.CrossRefGoogle ScholarPubMed
Genovese, C.R., Lazar, N.A., and Nichols, T. (2002). Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage, 15, 870–878.CrossRefGoogle ScholarPubMed
Gödert, H. W., Rill, H.-G., and Vossel, G. (2001). Psychophysiological differentiation of deception: the effects of electrodermal lability and mode of responding on skin conductance and heart rate. International Journal of Psychophysiology, 40, 61–75.CrossRefGoogle ScholarPubMed
Greely, H. T., and Illes, J. (2007). Neuroscience-based lie detection: the urgent need for regulation. American Journal of Law & Medicine, 33, 377–431.CrossRefGoogle ScholarPubMed
Haynes, J., and Rees, G. (2006). Decoding mental states from brain activity in humans. Nature Reviews Neuroscience, 7, 523–534.CrossRefGoogle ScholarPubMed
Horowitz, S. W., Kircher, J. C., Honts, C. R., and Raskin, D. C. (1997). The role of comparison questions in physiological detection of deception. Psychophysiology, 34, 108–115.CrossRefGoogle ScholarPubMed
Iacono, W. G. (2007). Detection of deception. In Cacioppo, J. T., Tassinary, L. G., and Bernston, G. G. (eds.), Handbook of Psychophysiology (pp. 688–703). Cambridge University Press.Google Scholar
Iidaka, T., Matsumoto, A., Nogawa, J., Yamamoto, Y., and Sadato, N. (2006). Frontoparietal network involved in successful retrieval from episodic memory. Spatial and temporal analyses using fMRI and ERP. Cerebral Cortex, 16, 1349–1360.CrossRefGoogle ScholarPubMed
Karim, A. A., Schneider, M., Lotze, M., Veit, R., Sauseng, P., Braun, C., and Birbaumer, N. (2010). The truth about lying: Inhibition of the anterior prefrontal cortex improves deceptive behavior. Cerebral Cortex, 20, 205–213.CrossRefGoogle ScholarPubMed
Kiehl, K. A., Laurens, K. R., Duty, T. L., Forster, B. B., and Liddle, P. F. (2001). Neural sources involved in auditory target detection and novelty processing: an event-related fMRI study. Psychophysiology, 38, 133–142.CrossRefGoogle Scholar
Konishi, S., Wheeler, M. E., Donaldson, D. I., and Buckner, R. L. (2000). Neural correlates of episodic retrieval success. Neuroimage, 12, 276–286.CrossRefGoogle ScholarPubMed
Kozel, F. A., Padgett, T. M., and George, M. S. (2004a). A replication study of the neural correlates of deception. Behavioral Neuroscience, 118, 852–856.CrossRefGoogle ScholarPubMed
Kozel, F. A., Johnson, K. A., Mu, Q., Grenesko, E. L., Laken, S. J., and George, M. S. (2005). Detecting deception using functional magnetic resonance imaging. Biological Psychiatry, 58, 605–613.CrossRefGoogle ScholarPubMed
Kozel, F. A., Johnson, K. A., Laken, S. J., Grenesko, E. L., Smith, J. A., Walker, J., and George, M. S. (2009a). Can simultaneously acquired electrodermal activity improve accuracy of fMRI detection of deception?Social Neuroscience, 4, 510–517.CrossRefGoogle ScholarPubMed
Kozel, F. A., Laken, S. J., Johnson, K. A., Boren, B., Mapes, K. S., Morgan, P. S., and George, M. S. (2009b). Replication of functional MRI detection of deception. Open Forensic Science Journal, 2, 6–11.CrossRefGoogle ScholarPubMed
Kozel, F. A., Johnson, K. A., Grenesko, E. L., Laken, S. J., Kose, S., Lu, X., Pollina, D., Ryan, A., and George, M. S. (2009c). Functional MRI detection of deception after committing a mock sabotage crime. Journal of Forensic Sciences, 54, 220–231.CrossRefGoogle ScholarPubMed
Kozel, F. A., Revell, L. J., Lorberbaum, J. P., Shastri, A., Elhai, J. D., Horner, M. D., Smith, A., Nahas, Z., Bohning, D. E., and George, M. S. (2004b). A pilot study of functional magnetic resonance imaging brain correlates of deception in healthy young men. Journal of Neuropsychiatry and Clinical Neurosciences, 16, 295–305.CrossRefGoogle ScholarPubMed
Langleben, D. D., and Dattilio, F. M. (2008). Commentary: the future of forensic functional brain imaging. Journal of the American Academy of Psychiatry and the Law, 36, 502–504.Google ScholarPubMed
Langleben, D. D., Loughead, J. W., Bilker, W. B., Ruparel, K., Childress, A. R., Busch, S. I., and Gur, R. C. (2005). Telling truth from lie in individual subjects with fast event-related fMRI. Human Brain Mapping, 26, 262–272.CrossRefGoogle ScholarPubMed
Langleben, D. D., Schroeder, L., Maldjian, J. A., Gur, R. C., McDonald, S., Ragland, J. D., O'Brien, C. P., and Childress, A. R. (2002). Brain activity during simulated deception: an event-related functional magnetic resonance study. Neuroimage, 15, 727–732.CrossRefGoogle ScholarPubMed
Lee, T. M. C., Liu, H., Chan, C. C. H., Ng, Y., Fox, P. T., and Gao, J. (2005). Neural correlates of feigned memory impairment. Neuroimage, 28, 305–313.CrossRefGoogle ScholarPubMed
Lee, T. M. C., Liu, H., Tan, L., Chan, C. C. H., Mahankali, S., Feng, C., Hou, J., Fox, P. T., and Gao, J. (2002). Lie detection by functional magnetic resonance imaging. Human Brain Mapping, 15, 157–164.CrossRefGoogle ScholarPubMed
Logothetis, N. K. (2002). The neural basis of the blood-oxygen-level-dependent functional magnetic resonance imaging signal. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 357, 1003–1037.CrossRefGoogle ScholarPubMed
Lykken, D. T. (1959). The GSR in the detection of guilt. Journal of Applied Psychology, 43, 385–388.CrossRefGoogle Scholar
Lykken, D. T. (1974). Psychology and the lie detector industry. American Psychologist, 29, 725–739.CrossRefGoogle ScholarPubMed
Lykken, D. T. (1998). A Tremor in the Blood: Uses and Abuses of the Lie Detector, 2nd edn. New York: Plenum Press.Google Scholar
Merikangas, J. R. (2008). Commentary: functional MRI lie detection. Journal of the American Academy of Psychiatry and the Law, 36, 499–501.Google ScholarPubMed
Mohamed, F. B., Faro, S. H., Gordon, N. J., Platek, S. M., Ahmad, H., and Williams, J. M. (2006). Brain mapping of deception and truth telling about an ecologically valid situation: functional MR imaging and polygraph investigation – initial experience. Radiology, 238, 679–688.CrossRefGoogle ScholarPubMed
Monteleone, G. T., Phan, K. L., Nusbaum, H. C., Fitzgerald, D., and Irick, J. (2009). Detection of deception using fMRI: better than chance, but well below perfection. Social Neuroscience, 4, 528–538.CrossRefGoogle ScholarPubMed
Nose, I., Murai, J., and Taira, M. (2009). Disclosing concealed information on the basis of cortical activations. Neuroimage, 44, 1380–1386.CrossRefGoogle ScholarPubMed
Nuñez, J. M., Casey, B. J., Egner, T., Hare, T., and Hirsch, J. (2005). Intentional false responding shares neural substrates with response conflict and cognitive control. Neuroimage, 25, 267–277.CrossRefGoogle ScholarPubMed
Nyberg, L., Marklund, P., Persson, J., Cabeza, R., Forkstam, C., Petersson, K. M., and Ingvar, M. (2003). Common prefrontal activations during working memory, episodic memory, and semantic memory. Neuropsychologia, 41, 371–377.CrossRefGoogle ScholarPubMed
Phan, K. L., Magalhaes, A., Ziemlewicz, T. J., Fitzgerald, D. A., Green, C., and Smith, W. (2005). Neural correlates of telling lies: a functional magnetic resonance imaging study at 4 Tesla. Academic Radiology, 12, 164–172.CrossRefGoogle ScholarPubMed
Priori, A., Mameli, F., Cogiamanian, F., Marceglia, S., Tiriticco, M., Mrakic-Sposta, S., Ferrucci, R., Zago, S., Polezzi, D., and Sartori, G. (2008). Lie-specific involvement of dorsolateral prefrontal cortex in deception. Cerebral Cortex, 18, 451–455.CrossRefGoogle ScholarPubMed
Ranganath, C., Johnson, M. K., and D'Esposito, M. (2003). Prefrontal activity associated with working memory and episodic long-term memory. Neuropsychologia, 41, 378–389.CrossRefGoogle ScholarPubMed
Rosenfeld, J. P., Cantwell, B., Nasman, V. T., Wojdac, V., Ivanov, S., and Mazzeri, L. (1988). A modified, event-related potential-based guilty knowledge test. International Journal of Neuroscience, 42, 157–161.CrossRefGoogle ScholarPubMed
Simpson, J. R. (2008). Functional MRI lie detection: too good to be true?Journal of the American Academy of Psychiatry and the Law, 36, 491–498.Google ScholarPubMed
Sip, K. E., Roepstorff, A., McGregor, W., and Frith, C. D. (2008). Detecting deception: the scope and limits. Trends in Cognitive Sciences, 12, 48–53.CrossRefGoogle ScholarPubMed
Sokolov, E. N. (1963). Perception and the Conditioned Reflex. Oxford: Pergamon Press.Google Scholar
Spence, S. A. (2008). Playing Devil's advocate: the case against fMRI lie detection. Legal and Criminological Psychology, 13, 11–25.CrossRefGoogle Scholar
Spence, S. A., Kaylor-Hughes, C. J., Farrow, T. F. D., and Wilkinson, I. D. (2008b). Speaking of secrets and lies: the contribution of ventrolateral prefrontal cortex to vocal deception. Neuroimage, 40, 1411–1418.CrossRefGoogle ScholarPubMed
Spence, S. A., Kaylor-Hughes, C. J., Brook, M. L., Lankappa, S. T., and Wilkinson, I. D. (2008a). “Munchausen's syndrome by proxy” or a “miscarriage of justice”? An initial application of functional neuroimaging to the question of guilt versus innocence. European Psychiatry, 23, 309–314.CrossRefGoogle Scholar
Spence, S. A., Farrow, T. F., Herford, A. E., Wilkinson, I. D., Zheng, Y., and Woodruff, P. W. (2001). Behavioural and functional anatomical correlates of deception in humans. Neuroreport, 12, 2849–2853.CrossRefGoogle ScholarPubMed
Turkeltaub, P. E., Eden, G. F., Jones, K. M., and Zeffiro, T. A. (2002). Meta-analysis of the functional neuroanatomy of single-word reading: method and validation. Neuroimage, 16, 765–780.CrossRefGoogle Scholar
Verschuere, B., Crombez, G., Clercq, A., and Koster, E. H. W. (2004). Autonomic and behavioral responding to concealed information: differentiating orienting and defensive responses. Psychophysiology, 41, 461–466.CrossRefGoogle ScholarPubMed
Wolpe, P. R., Foster, K. R., and Langleben, D. D. (2005). Emerging neurotechnologies for lie-detection: promises and perils. American Journal of Bioethics, 5, 39–49.CrossRefGoogle ScholarPubMed
Worsley, K. J., Marrett, S., Neelin, P., Vandal, A. C., Friston, K. J., and Evans, A. C. (1996). A unified statistical approach for determining significant signals in images of cerebral activation. Human Brain Mapping, 4, 58–73.3.0.CO;2-O>CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×