Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-09T12:48:06.663Z Has data issue: false hasContentIssue false

9 - Oral Streptococcal Genes That Encode Biofilm Formation

Published online by Cambridge University Press:  23 November 2009

C. Y. Loo
Affiliation:
Boston University, Goldman School of Dental Medicine, Department of Paediatric Dentistry, Boston, Massachusetts, USA
Michael Wilson
Affiliation:
University College London
Deirdre Devine
Affiliation:
Leeds Dental Institute, University of Leeds
Get access

Summary

INTRODUCTION

Oral Biofilms

Biofilms are surface-attached bacterial communities formed by unicellular organisms of single or multiple species. Most bacteria in their natural ecosystems colonise surfaces and are found in biofilm communities, rather than as planktonic cells. Biofilm formation is a highly structured process that occurs for numerous reasons, including protection from host immune systems, nutrient availability, and protection from harsh changes in the environment (Costerton et al., 1995; Costerton, Stewart, and Greenberg, 1999). A number of studies examining planktonic cells grown in batch culture have usually treated bacteria as unicellular species, even though they often exist in biofilms.

Although biofilm formation has been recognised and documented for approximately 100 years, we are just beginning to understand this process at the molecular level. Increasingly, bacteria have been studied as multicellular populations and, in some cases, viewed as interactive multicellular organisms (Shapiro, 1998), partly due to the fact that biofilm cells exist in a physical and physiological state that can increase their resistance to antimicrobials and mechanical forces (Costerton et al., 1995, 1999). Bacteria in a biofilm often display a dramatically different phenotype when compared with their counterparts in liquid culture. For example, biofilm cells often display higher resistance to antimicrobial agents, and they often exist in localised anoxic microenvironments and/or microenvironments that vary significantly in pH and ionic strength (Costerton et al., 1995, 1999).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bleiweis, A. S., Oyston, P. C. and Brady, L. J. (1992). Molecular, immunological and functional characterization of the major surface adhesin of Streptococcus mutans. Advances in Experimental Medical Biology, 327, 229–241CrossRefGoogle ScholarPubMed
Bloomquist, C. G., Reilly, B. E. and Liljemark, W. F. (1996). Adherence, accumulation, and cell division of a natural adherent bacterial population. Journal of Bacteriology, 178, 1172–1177CrossRefGoogle ScholarPubMed
Bowden, G. H. and Hamilton, I. R. (1998). Survival of oral bacteria. Critical Reviews in Oral Biology and Medicine, 9, 54–85CrossRefGoogle ScholarPubMed
Bradshaw, D. J., Marsh, P. D., Watson, G. K. and Allison, C. (1998). Role of Fusobacterium nucleatum and coaggregation in anaerobe survival in planktonic and biofilm oral microbial communities during aeration. Infection and Immunity, 66, 4729–4732Google ScholarPubMed
Brooun, A., Liu, S. and Lewis, K. (2000). A dose-response study of antibiotic resistance in Pseudomonas aeruginosa biofilms. Antimicrobial Agents and Chemotherapy, 44, 640–646CrossRefGoogle ScholarPubMed
Brown, A. E., Rogers, J. D., Hassse, E. M., Zelasko, P. M. and Scannapieco, F. A., (1999). Prevalence of the amylase-binding protein A gene (abpA) in oral streptococci. Journal of Clinical Microbiology, 37, 4081–4085Google Scholar
Cain, B. D., Norton, P. J., Eubanks, W., Nick, H. S. and Allen, C. M. (1993). Amplification of the bacA gene confers bacitracin resistance to Escherichia coli. Journal of Bacteriology, 175, 3784–3789CrossRefGoogle ScholarPubMed
Chalker, A. F., Ingraham, K. A., Lundsford, R. D., Bryant, A. P., Bryant, J., Wallis, N. G., Broskey, J. P., Pearson, S. C. and Holmes, D. J. (2000). The bacA gene, which determines bacitracin susceptibility in Streptococcus pneumoniae and Staphylococcus aureus, is also required for virulence. Microbiology, 146, 1547–1553CrossRefGoogle ScholarPubMed
Chia, J.-S., Lee, Y.-Y., Huang, P.-T. and Chen, J.-Y. (2001). Identification of stressresponsive genes in Streptococcus mutans by differential display reverse transcription-PCR. Infection and Immunity, 69, 2493–2501CrossRefGoogle Scholar
Chung, W. O., Park, Y., Lamont, R. J., McNab, R., Barbieri, B. and Demuth, D. R. (2001). Signalling system in Porphyromonas gingivalis based on a LuxS protein. Journal of Bacteriology, 183, 3903–3909CrossRefGoogle Scholar
Clemans, D. L. and Kolenbrander, P. E. (1995). Identification of a 100-kDa putative coaggregation-mediating adhesin of Streptococcus gordonii DL1 (Challis). Infection and Immunity, 63, 4890–4893Google Scholar
Costerton, J. W., Lewandowski, Z., Caldwell, D. E., Korber, D. R. and Lappin-Scott, H. M. (1995). Microbial biofilms. Annual Review of Microbiology, 49, 711–745CrossRefGoogle ScholarPubMed
Costerton, J. W., Stewart, P. S. and Greenberg, E. P. (1999). Bacterial biofilms: a common cause of persistent infections. Science, 284, 1318–1322CrossRefGoogle ScholarPubMed
Cvitkovitch, D. G., (2001). Genetic competence and transformation in oral streptococci. Critical Reviews in Oral Biology and Medicine, 12, 217–243CrossRefGoogle ScholarPubMed
Davey, M. E. and O'Toole, G. A. (2000). Microbial biofilms: from ecology to molecular genetics. Microbiology and Molecular Biology Reviews, 64, 847–867CrossRefGoogle ScholarPubMed
Davies, D. G., Parsek, M. R., Pearson, J. P., Iglewski, B. H., Costerton, J. W. and Greenberg, E. P. (1998). The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science, 280, 295–298CrossRefGoogle ScholarPubMed
Demuth, D. R., Duan, Y., Brooks, W., Holmes, A. R., McNab, R. and Jenkinson, H. F. (1996). Tandem genes encode cell-surface polypeptides SspA and SspB which mediate adhesion of the oral bacterium Streptococcus gordonii to human and bacterial receptors. Molecular Microbiology, 20, 403–413CrossRefGoogle ScholarPubMed
Demuth, D. R., Irvine, D. C., Costerton, J. W., Cook, G. S. and Lamont, R. J. (2001). Discrete protein determinant directs the species-specific adherence of Porphyromonas gingivalis to oral streptococci. Infection and Immunity, 69, 5736–5741CrossRefGoogle ScholarPubMed
Dorel, C., Vidal, O., Prigent-Combaret, C., Vallet, I. and Lejeune, P. (1999). Involvement of the Cpx signal transduction pathway of Escherichia coli in biofilm formation. FEMS Microbiology Letters, 178, 169–175CrossRefGoogle ScholarPubMed
Dowson, C. G., Hutchison, A., Woodford, N., Johnson, A. P., George, R. C. and Spratt, B. G. (1990). Penicillin-resistant viridans streptococci have obtained altered penicillin-binding protein genes from penicillin-resistant strains of Streptococcus pneumoniae. Proceedings of the National Academy of Sciences USA, 87, 5858–5862CrossRefGoogle ScholarPubMed
Du, L. D. and Kolenbrander, P. E. (2000). Identification of saliva-regulated genes of Streptococcus gordonii DL1 by differential display using random arbitrarily primed PCR. Infection and Immunity, 68, 4834–4837CrossRefGoogle ScholarPubMed
Dunny, G. M. and Leonard, B. A. B. (1997). Cell-cell communication in Gram-positive bacteria. Annual Review of Microbiology, 51, 527–564CrossRefGoogle ScholarPubMed
Egland, P. G., Du, L. D. and Kolenbrander, P. E. (2001). Identification of independent Streptococcus gordonii SspA and SspB functions in coaggregation with Actinomyces naeslundii. Infection and Immunity, 69, 7512–7516CrossRefGoogle ScholarPubMed
El-Sabaeny, A., Demuth, D. R. and Lamont, R. J. (2001). Regulation of Streptococcus gordonii sspB by the sspA gene product. Infection and Immunity, 69, 6520–6522CrossRefGoogle ScholarPubMed
El-Sabaeny, A., Demuth, D. R., Park, Y. and Lamont, R. J., (2000). Environmental conditions modulate the expression of the sspA and ssB genes inStreptococcus gordonii. Microbial Pathogenesis, 29, 101–113CrossRefGoogle Scholar
Embleton, J. V., Newman, H. M. and Wilson, M. (1998). Influence of growth mode and sucrose on susceptibility of Streptococcus sanguis to amine fluorides and amine fluoride-inorganic fluoride combinations. Applied and Environmental Microbiology, 64, 3503–3506Google ScholarPubMed
Fenno, J. C., LeBlanc, D. J. and Fives-Taylor, P. (1989). Nucleotide sequence analysis of a type 1 fimbrial gene of Streptococcus sanguis FW213. Infection and Immunity, 57, 3527–3533Google ScholarPubMed
Fong, K. P., Chung, W. O., Lamont, R. J. and Demuth, D. R. (2001). Intra- and interspecies regulation of gene expression by Actinobacillus actinomycetemcomitans LuxS. Infection and Immunity, 69, 7625–7634CrossRefGoogle ScholarPubMed
Fowler, R. G. and Schaaper, R. M. (1997). The role of mutT gene of Escherichia coli in maintaining replication fidelity. FEMS Microbiology Reviews, 21, 43–54CrossRefGoogle ScholarPubMed
Frias, J., Olle, E., and Alsina, M., (2001). Periodontal pathogens produce quorum sensing signal molecules. Infection and Immunity, 69, 3431–3434CrossRefGoogle ScholarPubMed
Froeliger, E. H. and Fives-Taylor, P. (2001). Streptococcus parasanguis fimbria-associated adhesin Fap1 is required for biofilm formation. Infection and Immunity, 69, 2512–2519CrossRefGoogle ScholarPubMed
Ganeshkumar, N., Song, M. and McBride, B. C. (1988). Cloning of a Streptococcus sanguis adhesin which mediates binding to a saliva-coated hydroxyapatite. Infection and Immunity, 56, 1150–1157Google ScholarPubMed
Genevaux, P., Muller, S. and Bauda, P. (1996). A rapid screening procedure to identify mini-Tn10 insertion mutants of Escherichia coli K-12 with altered adhesion properties. FEMS Microbiology Letters, 142, 27–30CrossRefGoogle ScholarPubMed
Gibbons, R. J. (1989). Bacterial adhesion to oral tissues: a model for infectious diseases. Journal of Dental Research, 68, 750–760CrossRefGoogle ScholarPubMed
Glanzmann, P., Gustafson, J., Komatsuzawa, H., Ohta, K. and Berger-Bachi, B. (1999). glmM operon and methicillin-resistant glmM supressor mutants in Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 43, 240–245Google Scholar
Gong, K. and Herzberg, M. C. (1997). Streptococcus sanguis expresses a 150-kilodalton two-domain adhesin: characterization of several independent adhesin epitopes. Infection and Immunity, 65, 3815–3821Google ScholarPubMed
Havarstein, L. S., Gaustad, P., Nes, I. F. and Morrison, D. A. (1996). Identification of the streptococcal competence-pheromone receptor. Molecular Microbiology, 21, 863–869CrossRefGoogle ScholarPubMed
Hazlett, K. O., Mazurkiewicz, J. E. and Banas, J. A. (1999). Inactivation of the gbpA gene of Streptococcus mutans alters structural and functional aspects of plaque biofilms, which are compensated by recombination of the gtfB and gtfC genes. Infection and Immunity, 67, 3909–3914Google ScholarPubMed
Jenkinson, H. F. and Demuth, D. R. (1997). Structure, function and immunogenicity of streptococcal antigen I/I polypeptides. Molecular Microbiology, 23, 183–190CrossRefGoogle Scholar
Jenkinson, H. F. and Lamont, R. J. (1997). Streptococcal adhesion and colonization. Critical Reviews in Oral Biology and Medicine, 8, 175–200CrossRefGoogle ScholarPubMed
Jolly, L., Wu, S., Heijenoort, J., Lencastre, H., Mengin-Lecreulx, D. and Tomasz, A. (1997). The femR315 gene from Staphylococcus aureus, the interruption of which results in reduced methicillin resistance, encodes a phoshoglucosamine mutase. Journal of Bacteriology, 179, 5321–5325CrossRefGoogle ScholarPubMed
Kolenbrander, P. E. (2000). Oral microbial communities: biofilms, interactions and genetic systems. Annual Review of Microbiology, 54, 413–437CrossRefGoogle ScholarPubMed
Kuramitsu, H. K. (2001). Virulence properties of oral bacteria: impact of molecular biology. Current Issues in Molecular Biology, 3, 35–36Google ScholarPubMed
Lamont, R. J., Gil, S., Demuth, D. R., Malamud, D. and Rosan, B. (1994). Molecules of Streptococcus gordonii that bind to Porphyromonas gingivalis. Microbiology, 140, 867–872CrossRefGoogle ScholarPubMed
Larsen, T. and Fiehn, N.-E. (1996). Resistance of Streptococcus sanguis biofilms to antimicrobial agents. APMIS, 104, 280–284CrossRefGoogle ScholarPubMed
Lee, S. F., Li, Y. H. and Bowden, G. H. (1996). Detachment of Streptococcus mutans biofilm cells by an endogenous enzymatic activity. Infection and Immunity, 64, 1035–1038Google ScholarPubMed
Lewis, K. (2001). Riddle of biofilm resistance. Antimicrobial Agents and Chemotherapy, 45, 999–1007CrossRefGoogle ScholarPubMed
Li, X., Kolliveit, K. M., Tronstad, L. and Olsen, I. (2000). Systemic diseases caused by oral infection. Clinical Microbiology Reviews, 13, 547–558CrossRefGoogle ScholarPubMed
Li, Y.-H., Hanna, M. N., Svensater, G., Ellen, R. P. and Cvitkovitch, D. G. (2001a). Cell density modulates acid adaptation in Streptococcus mutans: implications for survival in biofilms. Journal of Bacteriology, 183, 6875–6844CrossRefGoogle Scholar
Li, Y.-H., Lau, P. C. Y., Lee, J. H., Ellen, R. P. and Cvitkovitch, D. G. (2001b). Natural genetic transformation of Streptococcus mutans growing in biofilms. Journal of Bacteriology, 193, 897–908CrossRefGoogle Scholar
Liljemark, W. F., Bloomquist, C. G., Reilly, B. E., Bernards, C. J., Townsend, D. W., Pennock, A. T. and LeMoine, J. L. (1997). Growth dynamics in a natural biofilm and its impact on oral disease management. Advances in Dental Research, 11, 14–23CrossRefGoogle Scholar
Listgarten, M. A. (1994). The structure of dental plaque. Periodontology, 2000 5, 52–65CrossRefGoogle ScholarPubMed
Loesche, W. J. (1986). Role of Streptococcus mutans in human dental decay. Microbiology Reviews, 50, 353–380Google ScholarPubMed
Loo, C. Y., Corliss, D. A. and Ganeshkumar, N. (2000). Streptococcus gordonii biofilm formation: identification of genes that code for biofilm phenotypes. Journal of Bacteriology, 182, 1374–1382CrossRefGoogle ScholarPubMed
Lunsford, R. D. and London, J., (1996). Natural genetic transformation in Streptococcus gordonii: comX imparts spontaneous competence on strain Wicky. Journal of Bacteriology, 178, 5831–5835CrossRefGoogle ScholarPubMed
Marsh, P. D. (1999). Microbiologic aspects of dental plaque and dental caries. Dental Clinics of North America, 43, 599–614Google ScholarPubMed
Massidda, O., Anderluzzi, D., Friedli, L. and Feger, G. (1998). Unconventional organization of the division and cell wall gene cluster of Streptococcus pneumoniae. Microbiology, 144, 3069–3078CrossRefGoogle ScholarPubMed
Mattos-Graner, R. O., Jin, S., King, W. F., Chen, T., Smith, D. J. and Duncan, M. J. (2001). Cloning of the Streptococcus mutans gene encoding glucan binding protein B and analysis of genetic diversity and protein production in clinical isolates. Infection and Immunity, 69, 6931–6941CrossRefGoogle ScholarPubMed
Mengin-Lecreulx, D. and Heijenoort, J. (1996). Characterization of the essential gene glmM encoding phosphoglucosamine mutase in Escherichia coli. Journal of Biological Chemistry, 271, 32–39CrossRefGoogle ScholarPubMed
Nyvad, B. and Kilian, M. (1990). Comparison of the initial streptococcal microflora on dental enamel in caries-active and in caries-inactive individuals. Caries Research, 24, 267–272CrossRefGoogle ScholarPubMed
O'Toole, G. A., Gibbs, K. A., Hager, P. W., phibbs, P. V. Jr. and Kolter, R. (2000a). The global carbon metabolism regulator Crc is a component of a signal transduction pathway required for biofilm development by Pseudomonas aeruginosa. Journal of Bacteriology, 182, 425–431CrossRefGoogle Scholar
O'Toole, G. A., Kaplan, H. B. and Kolter, R. (2000b). Biofilm formation as microbial development. Annual Review of Microbiology, 54, 49–79CrossRefGoogle Scholar
Pestova, E. V., Havarstein, L. S. and Morrison, D. A. (1996). Regulation of competence for genetic transformation in Streptococcus pneumoniae by an auto-induced peptide pheromone and two-component regulatory system. Molecular Microbiology, 21, 853–862CrossRefGoogle ScholarPubMed
Pratten, J., Barnett, P. and Wilson, M. (1998). Composition and susceptibility to chlorhexidine of multispecies biofilms of oral bacteria. Applied and Environmental Microbiology, 64, 3515–3519Google ScholarPubMed
Pringent-Combaret, C., Vidal, O., Dorel, C. and Lejeune, P. (1999). Abiotic surface sensing and biofilm-dependent regulation of gene expression in Escherichia coli. Journal of Bacteriology, 181, 5993–6002Google Scholar
Roberts, A. P., Cheah, C., Ready, D., Pratten, J., Wilson, M. and Mullany, P. (2001). Transfer of Tn916-like elements in microcosm dental plaques. Antimicrobial Agents and Chemotherapy, 45, 2943–2946CrossRefGoogle ScholarPubMed
Roberts, A. P., Pratten, J., Wilson, M. and Mullany, P. (1999). Transfer of a conjugative transposon, Tn5397 in a model oral biofilm. FEMS Microbiology Letters, 177, 63–66CrossRefGoogle Scholar
Rogers, J. D., Haase, E. M., Brown, A. E., Douglas, C. W. I., Gwynn, J. P. and Scannapieco, F. A. (1998). Identification and analysis of a gene (abpA) encoding a major amylase-binding protein in Streptococcus gordonii. Microbiology, 144, 1223–1233CrossRefGoogle Scholar
Rogers, J. D., Palmer, R. J. Jr., Kolenbrander, P. E. and Scannapieco, F. A. (2001). Role of Streptococcus gordonii amylase-binding protein A in adhesion to hydroxyapatite, starch metabolism and biofilm formation. Infection and Immunity, 69, 7046–7056CrossRefGoogle ScholarPubMed
Rosan, B. C. T., Nelson, Baker G. M., Berman, R., Lamont, R. J. and Demuth, D. R. (1989). Cloning and expression of an adhesin antigen of Streptococcus sanguis G9B in Escherichia coli. Journal of General Microbiology, 135, 531–538Google ScholarPubMed
Rosan, B., and Lamont, R. J. (2000). Dental plaque formation. Microbes and Infection, 2, 1599–1607CrossRefGoogle ScholarPubMed
Scannapieco, F. A. (1994). Saliva-bacterium interactions in the oral microbial ecology. Critical Reviews in Oral Biology and Medicine, 5, 203–248CrossRefGoogle ScholarPubMed
Scannapieco, F. A., Bergey, E. J., Reddy, M. S. and Levine, M. J. (1989). Characterization of salivary α-amylase binding to Streptococcus sanguis. Infection and Immunity, 57, 2853–2863Google ScholarPubMed
Scannapieco, F. A. and Genco, R. J. (1999). Association of periodontal infections with atherosclerotic and pulmonary diseases. Journal of Periodontal Research, 34, 340–345CrossRefGoogle ScholarPubMed
Schilling, K. M. and Bowen, W. H. (1992). Glucans synthesized in situ in experimental salivary pellicle function as specific binding sites for Streptococcus mutans. Infection and Immunity, 60, 284–295Google ScholarPubMed
Shapiro, J. A. (1998). Thinking about bacterial populations as multicellular organisms. Annual Review of Microbiology, 52, 81–104CrossRefGoogle ScholarPubMed
Socransky, S. S. and Haffajee, A. D. (1994). Evidence of bacterial etiology: a historical perspective. Periodontology 2000, 5, 7–25CrossRefGoogle ScholarPubMed
Stingele, F. and Bollet, B. (1996). Disruption of the gene encoding penicillin-binding protein 2b (pbp2b) causes altered cell morphology and cease in exopolysaccharide production in Streptococcus thermophilus Sfi6. Molecular Microbiology, 22, 357–366CrossRefGoogle ScholarPubMed
Svensater, G., Welin, J., Wilkins, J. C., Beighton, D. and Hamilton, I. R. (2001). Protein expression by planktonic and biofilm cells of Streptococcus mutans. FEMS Microbiology Letters, 205, 139–146CrossRefGoogle ScholarPubMed
Tao, L. and Herzberg, M. C. (1999). Identifying in vivo expressed streptococcal genes in endocarditis. Methods in Enzymology, 310, 109–116CrossRefGoogle ScholarPubMed
Tavares, I. M., Jolly, L., Pompeo, F., Leitao, J. H., Fialho, A. M., Sa-Correia, I. and Mengin-Lecreulx, D. (2000). Identification of the Pseudomonas aeruginosa glmM gene, encoding phosphoglucosamine mutase. Journal of Bacteriology, 182, 4453–4457CrossRefGoogle ScholarPubMed
Upton, M., Tagg, J. R., Wescombe, P. and Jenkinson, H. F. (2001). Intra- and interspecies signalling between Streptococcus salivarius and Streptococcus pyogenes mediated by SalA and SalA1 lantibiotic peptides. Journal of Bacteriology, 183, 3931–3938CrossRefGoogle Scholar
Vickerman, M. M. D., Clewell, B. and Jones, G. W. (1991). Sucrose-promoted accumulation of growing glucosyltransferase variants of Streptococcus gordonii on hydroxyapatite surfaces. Infection and Immunity, 59, 3523–3530Google ScholarPubMed
Whittaker, C. J., Klier, C. M. and Kolenbrander, P. E. (1996). Mechanisms of adhesion by oral bacteria. Annual Review of Microbiology, 50, 513–552CrossRefGoogle ScholarPubMed
Wilson, M. (1996). Susceptibility of oral bacterial biofilms to antimicrobial agents. Journal of Medical Microbiology, 44, 79–87CrossRefGoogle ScholarPubMed
Wu, H. and Fives-Taylor, P. M. (1999). Identification of dipeptide repeats and a cell wall sorting signal in the fimbriae-associated adhesin, Fap1, of Streptococcus parasanguis. Molecular Microbiology, 34, 1070–1081CrossRefGoogle Scholar
Wu, T., Trevisan, M., Genco, R. J., Dorn, J. P., Falkner, K. L. and Sempos, C. T. (2000). Periodontal disease and risk of cerebrovascular disease: the first national health and nutrition examination survey and its follow-up study. Archives of Internal Medicine, 160, 2749–2755CrossRefGoogle ScholarPubMed
Xie, H., Cook, G. S., Costerton, J. W., Bruce, G., Rose, T. M. and Lamont, R. J. (2000). Intergeneric communication in dental plaque biofilms. Journal of Bacteriology, 182, 7067–7069CrossRefGoogle ScholarPubMed
Yun, C., Ely, B. and Smit, J. (1994). Identification of genes affecting production of the adhesive holdfast of a marine caulobacter. Journal of Bacteriology, 176, 796–803CrossRefGoogle ScholarPubMed
Zhang, J. P. and Normark, S. (1996). Induction of gene expression in Escherichia coli after pilus-mediated adherence. Science, 273, 1234–1236CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×