Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-22T23:38:58.454Z Has data issue: false hasContentIssue false

6 - Molecular Basis of Biofilm Formation by Staphylococcus epidermidis

Published online by Cambridge University Press:  23 November 2009

Christine Heilmann
Affiliation:
Institute of Medical Microbiology, University of Münster, Muenster, Germany
Michael Wilson
Affiliation:
University College London
Deirdre Devine
Affiliation:
Leeds Dental Institute, University of Leeds
Get access

Summary

INTRODUCTION

Staphylococcus epidermidis is a ubiquitous commensal of human skin. In the past 20 years, this organism has emerged as a serious pathogen, causing frequent nosocomial infections. In contrast to S. aureus and except for rare cases of native valve endocarditis, S. epidermidis needs a predisposed host to cause infection. Individuals who are especially susceptible to S. epidermidis infections are immunocompromised patients, intravenous drug abusers, and, most commonly, patients with indwelling medical devices (Heilmann and Peters, 2000). Immunocompromised patients include those with malignant disease who are undergoing cytostatic and/or immunosuppressive therapy and premature newborns. In premature newborns, S. epidermidis is the most frequent cause of septicaemia with an onset later than 48 hours after birth. In drug abusers, continual injections of heroin containing crystals are believed to cause microlesions in the valvular endothelium leading to right-sided endocarditis; the damaged tissue is then infected with S. epidermidis that is introduced due to non-sterile conditions. By far, the largest number of infections caused by S. epidermidis are those associated with implanted foreign bodies such as orthopaedic devices, intravascular catheters, cerebrospinal fluid shunts, prosthetic heart valves, continuous ambulatory peritoneal dialysis (CAPD) catheters, and cardiac pacemakers (George, Leibrock, and Epstein, 1979; Karchmer, Archer, and Dismukes, 1983; Peters, Locci, and Pulverer, 1982; Peters et al., 1984; West et al., 1986). These devices are manufactured from various polymers, most commonly from polyvinylchloride, polyethylene, silicon rubber, and polyurethane.

Colonisation of the polymer surface by S. epidermidis is the most critical step in the pathogenesis of foreign-body-associated infections.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baldassarri, L., Donnelli, G., Gelosia, A., Voglino, M. C., Simpson, A. W. and Christensen, G. D. (1996). Purification and characterization of the staphylococcal slime-associated antigen and its occurrence among Staphylococcus epidermidis clinical isolates. Infection and Immunity, 64, 3410–3415Google Scholar
Becker, K., Haverkamper, G., Eiff, C., Roth, R. and Peters, G. (2001). Survey of staphylococcal enterotoxin genes, exfoliative toxin genes, and toxic shock syndrome toxin 1 gene in non-Staphylococcus aureus species. European Journal of Clinical Microbiology and Infectious Diseases, 20, 407–409Google ScholarPubMed
Bischoff, M., Entenza, J. M. and Giachino, P. (2001). Influence of a functional sigB operon on the global regulators sar and agr in Staphylococcus aureus. Journal of Bacteriology, 183, 5171–5179CrossRefGoogle ScholarPubMed
Bubert, A., Kuhn, M., Goebel, W. and Kohler, S. (1992). Structural and functional properties of the p60 proteins from different Listeria species. Journal of Bacteriology, 174, 8166–8171CrossRefGoogle ScholarPubMed
Chamberlain, N. R. and Brueggemann, S. A. (1997). Characterisation and expression of fatty acid modifying enzyme produced by Staphylococcus epidermidis. Journal of Medical Microbiology, 46, 693–697CrossRefGoogle ScholarPubMed
Chhatwal, G. S., Preissner, K. T., Muller-Berghaus, G. and Blobel, H. (1987). Specific binding of the human S protein (vitronectin) to streptococci, Staphylococcus aureus, and Escherichia coli. Infection and Immunity, 55, 1878–1883Google Scholar
Christensen, G. D., Baddour, L. M. and Simpson, W. A. (1987). Phenotypic variation of Staphylococcus epidermidis slime production in vitro and in vivo. Infection and Immunity, 55, 2870–2877Google ScholarPubMed
Christensen, G. D., Simpson, W. A., Bisno, A. L. and Beachey, E. H. (1982). Adherence of slime-producing strains of Staphylococcus epidermidis to smooth surfaces. Infection and Immunity, 37, 318–326Google ScholarPubMed
Cottonaro, C. N., Roohk, H. V., Shimizu, G. and Sperling, D. R. (1981). Quantitation and characterization of competitive protein binding to polymers. Transactions of the American Society for Artificial Internal Organs, 27, 391–395Google ScholarPubMed
Cramton, S. E., Gerke, C., Schnell, N. F., Nichols, W. W. and Götz, F. (1999). The intercellular adhesion (ica) locus is present in Staphylococcus aureus and is required for biofilm formation. Infection and Immunity, 67, 5427–5433Google ScholarPubMed
Cramton, S. E., Ulrich, M., Götz, F. and Döring, G. (2001). Anaerobic conditions induce expression of polysaccharide intercellular adhesin in Staphylococcus aureus and Staphylococcus epidermidis. Infection and Immunity, 69, 4079–4085CrossRefGoogle ScholarPubMed
Cucarella, C., Solano, C., Valle, J., Amorena, B., Lasa, I. and Penades, J. R. (2001). Bap, a Staphylococcus aureus surface protein involved in biofilm formation. Journal of Bacteriology, 183, 2888–2896CrossRefGoogle ScholarPubMed
Davis, S. L., Gurusiddappa, S., McCrea, K. W., Perkins, S. and Höök, M. (2001). SdrG, a fibrinogen-binding bacterial adhesin of the microbial surface components recognizing adhesive matrix molecules subfamily from Staphylococcus epidermidis, targets the thrombin cleavage site in the beta chain. Journal of Biological Chemistry, 276, 27799–27805CrossRefGoogle Scholar
Dickinson, G. M. and Bisno, A. L. (1989). Infections associated with indwelling devices: concepts of pathogenesis; infections associated with intravascular devices. Antimicrobial Agents and Chemotherapy, 33, 597–601CrossRefGoogle ScholarPubMed
Farrell, A. M., Foster, T. J. and Holland, K. T. (1993). Molecular analysis and expression of the lipase of Staphylococcus epidermidis. Journal of General Microbiology, 139, 267–277CrossRefGoogle ScholarPubMed
Fey, P. D., Ulphani, J. S., Götz, F., Heilmann, C., Mack, D. and Rupp, M. E. (1999). Characterization of the relationship between polysaccharide intercellular adhesin and hemagglutination in Staphylococcus epidermidis. Journal of Infectious Diseases, 179, 1561–1564CrossRefGoogle ScholarPubMed
Fluckiger, U., Wolz, C. and Cheung, A. L. (1998). Characterization of a sar homolog of Staphylococcus epidermidis. Infection and Immunity, 66, 2871–2878Google ScholarPubMed
Franson, T. R., Sheth, N. K., Rose, H. D. and Sohnle, P. G. (1984). Scanning electron microscopy of bacteria adherent to intravascular catheters. Journal of Clinical Microbiology, 20, 500–505Google ScholarPubMed
Geissler, S., Götz, F. and Kupke, T. (1996). Serine protease EpiP from Staphylococcus epidermidis catalyzes the processing of the epidermin precursor peptide. Journal of Bacteriology, 178, 284–288CrossRefGoogle ScholarPubMed
George, R., Leibrock, L. and Epstein, M. (1979). Long-term analysis of cerebrospinal fluid shunt infections. A 25-year experience. Journal of Neurosurgery, 51, 804–811CrossRefGoogle ScholarPubMed
Gerke, C., Kraft, A., Sussmuth, R., Schweitzer, O. and Götz, F. (1998). Characterization of the N-acetylglucosaminyltransferase activity involved in the biosynthesis of the Staphylococcus epidermidis polysaccharide intercellular adhesin. Journal of Biological Chemistry, 273, 18586–18593CrossRefGoogle ScholarPubMed
Gray, E. D., Peters, G., Verstegen, M. and Regelmann, W. E. (1984). Effect of extracellular slime substance from Staphylococcus epidermidis on the human cellular immune response. Lancet, 1, 365–367CrossRefGoogle ScholarPubMed
Gross, M., Cramton, S. E., Götz, F. and Peschel, A. (2001). Key role of teichoic acid net charge in Staphylococcus aureus colonization of artificial surfaces. Infection and Immunity, 69, 3423–3426CrossRefGoogle ScholarPubMed
Hartford, O., O'Brien, L., Schofield, K., Wells, J. and Foster, T. J. (2001). The Fbe (SdrG) protein of Staphylococcus epidermidis HB promotes bacterial adherence to fibrinogen. Microbiology, 147, 2545–2552CrossRefGoogle Scholar
Hartleib, J., Kohler, N., Dickinson, R. B., Chhatwal, G. S., Sixma, J. J., Hartford, O. M., Foster, T. J., Peters, G., Kehrel, B. E. and Herrmann, M. (2000). Protein A is the von Willebrand factor binding protein on Staphylococcus aureus. Blood, 96, 2149–2156Google ScholarPubMed
Heidrich, C., Pag, U., Josten, M., Metzger, J., Jack, R. W., Bierbaum, G., Jung, G. and Sahl, H. G. (1998). Isolation, characterization, and heterologous expression of the novel lantibiotic epicidin 280 and analysis of its biosynthetic gene cluster. Applied and Environmental Microbiology, 64, 3140–3146Google ScholarPubMed
Heilmann, C., Chhatwal, S. and Peters, G. (2000). In Microbiology 2000, Abstr. 15.P.18.14, Munich, Germany
Heilmann, C., Gerke, C., Perdreau-Remington, F. and Götz, F. (1996a). Characterization of Tn917 insertion mutants of Staphylococcus epidermidis affected in biofilm formation. Infection and Immunity, 64, 277–282Google Scholar
Heilmann, C. and Götz, F. (1998). Further characterization of Staphylococcus epidermidis transposon mutants deficient in primary attachment or intercellular adhesion. Zentralblatt fur Bakteriologie, 287, 69–83CrossRefGoogle ScholarPubMed
Heilmann, C., Hussain, M., Peters, G. and Götz, F. (1997). Evidence for autolysin-mediated primary attachment of Staphylococcus epidermidis to a polystyrene surface. Molecular Microbiology, 24, 1013–1024CrossRefGoogle ScholarPubMed
Heilmann, C. and Peters, G. (2000). In Gram Positive Pathogens (Eds. Fischetti, V. A., Novick, R. P., Ferretti, J. J., Portnoy, D. A., and Rood, J. I.), American Society for Microbiology, Washington, DC, pp. 442–449
Heilmann, C., Schweitzer, O., Gerke, C., Vanittanakom, N., Mack, D. and Götz, F. (1996b). Molecular basis of intercellular adhesion in the biofilm-forming Staphylococcus epidermidis. Molecular Microbiology, 20, 1083–1091CrossRefGoogle Scholar
Hell, W., Meyer, H. G. and Gatermann, S. G. (1998). Cloning of aas, a gene encoding a Staphylococcus saprophyticus surface protein with adhesive and autolytic properties. Molecular Microbiology, 29, 871–881CrossRefGoogle ScholarPubMed
Herrmann, M., Hartleib, J., Kehrel, B., Montgomery, R. R., Sixma, J. J. and Peters, G. (1997). Interaction of von Willebrand factor with Staphylococcus aureus. Journal of Infectious Diseases, 176, 984–991CrossRefGoogle ScholarPubMed
Herrmann, M., Vaudaux, P. E., Pittet, D., Auckenthaler, R., Lew, P. D., Schumacher-Perdreau, F., Peters, G. and Waldvogel, F. A. (1988). Fibronectin, fibrinogen, and laminin act as mediators of adherence of clinical staphylococcal isolates to foreign material. Journal of Infectious Diseases, 158, 693–701CrossRefGoogle ScholarPubMed
Hussain, M., Heilmann, C., Herrmann, M. and Peters, G. (2000). In 100th General Meeting of the American Society for Microbiology, Abstr. B-229, Los Angeles, CA
Hussain, M., Heilmann, C., Peters, G. and Herrmann, M. (2001). Teichoic acid enhances adhesion of Staphylococcus epidermidis to immobilized fibronectin. Microbial Pathogenesis, 31, 261–270CrossRefGoogle ScholarPubMed
Hussain, M., Herrmann, M., Eiff, C., Perdreau-Remington, F. and Peters, G. (1997). A 140-kilodalton extracellular protein is essential for the accumulation of Staphylococcus epidermidis strains on surfaces. Infection and Immunity, 65, 519–524Google ScholarPubMed
Hussain, M., Wilcox, M. H. and White, P. J. (1993). The slime of coagulase-negative staphylococci: biochemistry and relation to adherence. FEMS Microbiology Review, 10, 191–207CrossRefGoogle Scholar
Johnson, G. M., Lee, D. A., Regelmann, W. E., Gray, E. D., Peters, G. and Quie, P. G. (1986). Interference with granulocyte function by Staphylococcus epidermidis slime. Infection and Immunity, 54, 13–20Google ScholarPubMed
Josefsson, E., McCrea, K. W., Ni Eidhin, D., O'Connell, D., Cox, J., Höök, M. and Foster, T. J. (1998). Three new members of the serine-aspartate repeat protein multigene family of Staphylococcus aureus. Microbiology, 144, 3387–3395CrossRefGoogle ScholarPubMed
Karchmer, A. W., Archer, G. L. and Dismukes, W. E. (1983). Staphylococcus epidermidis causing prosthetic valve endocarditis: microbiologic and clinical observations as guides to therapy. Annals of Internal Medicine, 98, 447–455CrossRefGoogle Scholar
Kies, S., Otto, M., Vuong, C. and Götz, F. (2001). Identification of the sigB operon in Staphylococcus epidermidis: construction and characterization of a sigB deletion mutant. Infection and Immunity, 69, 7933–7936CrossRefGoogle ScholarPubMed
Knobloch, J. K., Bartscht, K., Sabottke, A., Rohde, H., Feucht, H. H. and Mack, D. (2001). Biofilm formation by Staphylococcus epidermidis depends on functional RsbU, an activator of the sigB operon: differential activation mechanisms due to ethanol and salt stress. Journal of Bacteriology, 183, 2624–2633CrossRefGoogle ScholarPubMed
Kochwa, S., Litwak, R. S., Rosenfield, R. E. and Leonard, E. F. (1977). Blood elements at foreign surfaces: a biochemical approach to the study of the adsorption of plasma proteins. Annals of the New York Academy of Science, 283, 37–49CrossRefGoogle Scholar
Kuhn, M. and Goebel, W. (1989). Identification of an extracellular protein of Listeria monocytogenes possibly involved in intracellular uptake by mammalian cells. Infection and Immunity, 57, 55–61Google ScholarPubMed
Kullik, I., Giachino, P. and Fuchs, T. (1998). Deletion of the alternative sigma factor sigmaB in Staphylococcus aureus reveals its function as a global regulator of virulence genes. Journal of Bacteriology, 180, 4814–4820Google ScholarPubMed
Kupke, T. and Götz, F. (1996). Expression, purification, and characterization of EpiC, an enzyme involved in the biosynthesis of the lantibiotic epidermin, and sequence analysis of Staphylococcus epidermidis epiC mutants. Journal of Bacteriology, 178, 1335–1340CrossRefGoogle ScholarPubMed
Kupke, T., Uebele, M., Schmid, D., Jung, G., Blaesse, M. and Steinbacher, S. (2000). Molecular characterization of lantibiotic-synthesizing enzyme EpiD reveals a function for bacterial Dfp proteins in coenzyme A biosynthesis. Journal of Biological Chemistry, 275, 31838–31846CrossRefGoogle ScholarPubMed
Longshaw, C. M., Farrell, A. M., Wright, J. D. and Holland, K. T. (2000). Identification of a second lipase gene, gehD, in Staphylococcus epidermidis: comparison of sequence with those of other staphylococcal lipases. Microbiology, 146, 1419–1427CrossRefGoogle ScholarPubMed
Lopes, J. D., dos Reis, M. and Brentani, R. R. (1985). Presence of laminin receptors in Staphylococcus aureus. Science, 229, 275–277CrossRefGoogle ScholarPubMed
Mack, D., Fischer, W., Krokotsch, A., Leopold, K., Hartmann, R., Egge, H. and Laufs, R. (1996). The intercellular adhesin involved in biofilm accumulation of Staphylococcus epidermidis is a linear beta-1,6-linked glucosaminoglycan: purification and structural analysis. Journal of Bacteriology, 178, 175–183CrossRefGoogle ScholarPubMed
Marin, M. E., Rosa, M. C. and Cornejo, I. (1992). Enterotoxigenicity of Staphylococcus strains isolated from Spanish dry-cured hams. Applied and Environmental Microbiology, 58, 1067–1069Google ScholarPubMed
Mattsson, E., Rollof, J., Verhoef, J., Dijk, H. and Fleer, A. (1994). Serum-induced potentiation of tumor necrosis factor alpha production by human monocytes in response to staphylococcal peptidoglycan: involvement of different serum factors. Infection and Immunity, 62, 3837–3843Google ScholarPubMed
McCrea, K. W., Hartford, O., Davis, S., Eidhin, D. N., Lina, G., Speziale, P., Foster, T. J. and Höök, M. (2000). The serine-aspartate repeat (Sdr) protein family in Staphylococcus epidermidis. Microbiology, 146, 1535–1546CrossRefGoogle ScholarPubMed
McDevitt, D., Francois, P., Vaudaux, P. and Foster, T. J. (1994). Molecular characterization of the clumping factor (fibrinogen receptor) of Staphylococcus aureus. Molecular Microbiology, 11, 237–248CrossRefGoogle ScholarPubMed
McKenney, D., Hubner, J., Muller, E., Wang, Y., Goldmann, D. A. and Pier, G. B. (1998). The ica locus of Staphylococcus epidermidis encodes production of the capsular polysaccharide/adhesin. Infection and Immunity, 66, 4711–4720Google ScholarPubMed
McKevitt, A. I., Bjornson, G. L., Mauracher, C. A. and Scheifele, D. W. (1990). Amino acid sequence of a deltalike toxin from Staphylococcus epidermidis. Infection and Immunity, 58, 1473–1475Google ScholarPubMed
Meyer, C., Bierbaum, G., Heidrich, C., Reis, M., Suling, J., Iglesias-Wind, M. I., Kempter, C., Molitor, E. and Sahl, H. G. (1995). Nucleotide sequence of the lantibiotic Pep5 biosynthetic gene cluster and functional analysis of PepP and PepC. Evidence for a role of PepC in thioether formation. European Journal of Biochemistry, 232, 478–489CrossRefGoogle ScholarPubMed
Milohanic, E., Jonquieres, R., Cossart, P., Berche, P. and Gaillard, J. L. (2001). The autolysin Ami contributes to the adhesion of Listeria monocytogenes to eukaryotic cells via its cell wall anchor. Molecular Microbiology, 39, 1212–1224CrossRefGoogle ScholarPubMed
Milohanic, E., Pron, B., Berche, P. and Gaillard, J. L. (2000). Identification of new loci involved in adhesion of Listeria monocytogenes to eukaryotic cells. European Listeria Genome Consortium. Microbiology, 146, 731–739CrossRefGoogle ScholarPubMed
Muller, E., Hubner, J., Gutierrez, N., Takeda, S., Goldmann, D. A. and Pier, G. B. (1993). Isolation and characterization of transposon mutants of Staphylococcus epidermidis deficient in capsular polysaccharide/adhesin and slime. Infection and Immunity, 61, 551–558Google ScholarPubMed
Ni Eidhin, D., Perkins, S., Francois, P., Vaudaux, P., Höök, M. and Foster, T. J. (1998). Clumping factor B (ClfB), a new surface-located fibrinogen-binding adhesin of Staphylococcus aureus. Molecular Microbiology, 30, 245–257CrossRefGoogle Scholar
Nilsson, M., Frykberg, L., Flock, J. I., Pei, L., Lindberg, M. and Guss, B. (1998). A fibrinogen-binding protein of Staphylococcus epidermidis. Infection and Immunity, 66, 2666–2673Google ScholarPubMed
Novick, R. P. (2000). In Gram-Positive Pathogens (Eds. Fischetti, V. A., Novick, R. P., Ferretti, J. J., Portnoy, D. A. and Rood, J. I.), American Society for Microbiology, Washington, D.C., pp. 392–407
Otto, M. (2001). Staphylococcus aureus and Staphylococcus epidermidis peptide pheromones produced by the accessory gene regulator agr system. Peptides, 22, 1603–1608CrossRefGoogle ScholarPubMed
Otto, M., Sussmuth, R., Jung, G. and Götz, F. (1998). Structure of the pheromone peptide of the Staphylococcus epidermidis agr system. FEBS Letters, 424, 89–94CrossRefGoogle ScholarPubMed
Pei, L. and Flock, J. I. (2001a). Functional study of antibodies against a fibrogenin-binding protein in Staphylococcus epidermidis adherence to polyethylene catheters. Journal of Infectious Diseases, 184, 1CrossRefGoogle Scholar
Pei, L. and Flock, J. I. (2001b). Lack of fbe, the gene for a fibrinogen-binding protein from Staphylococcus epidermidis, reduces its adherence to fibrinogen coated surfaces. Microbial Pathogenesis, 31, 185–193CrossRefGoogle Scholar
Pei, L., Palma, M., Nilsson, M., Guss, B. and Flock, J. I. (1999). Functional studies of a fibrinogen binding protein from Staphylococcus epidermidis. Infection and Immunity, 67, 4525–4530Google ScholarPubMed
Peters, G., Locci, R. and Pulverer, G. (1981). Microbial colonization of prosthetic devices. II. Scanning electron microscopy of naturally infected intravenous catheters. Zentralblatt fur Bakteriologie, 173, 293–299Google ScholarPubMed
Peters, G., Locci, R. and Pulverer, G. (1982). Adherence and growth of coagulase-negative staphylococci on surfaces of intravenous catheters. Journal of Infectious Diseases, 146, 479–482CrossRefGoogle ScholarPubMed
Peters, G., Saborowski, F., Locci, R. and Pulverer, G. (1984). Investigations on staphylococcal infection of transvenous endocardial pacemaker electrodes. American Heart Journal, 108, 359–365CrossRefGoogle ScholarPubMed
Rachid, S., Ohlsen, K., Wallner, U., Hacker, J., Hecker, M., and Ziebuhr, W. (2000a). Alternative transcription factor sigma(B) is involved in regulation of biofilm expression in a Staphylococcus aureus mucosal isolate. Journal of Bacteriology, 182, 6824–6826CrossRefGoogle Scholar
Rachid, S., Ohlsen, K., Witte, W., Hacker, J. and Ziebuhr, W. (2000b). Effect of subinhibitory antibiotic concentrations on polysaccharide intercellular adhesin expression in biofilm-forming Staphylococcus epidermidis. Antimicrobial Agents and Chemotherapy, 44, 3357–3363CrossRefGoogle Scholar
Rupp, M. E., Fey, P. D., Heilmann, C. and Götz, F. (2001). Characterization of the importance of Staphylococcus epidermidis autolysin and polysaccharide intercellular adhesin in the pathogenesis of intravascular catheter-associated infection in a rat model. Journal of Infectious Diseases, 183, 1038–1042CrossRefGoogle Scholar
Rupp, M. E., Ulphani, J. S., Fey, P. D., Bartscht, K. and Mack, D. (1999a). Characterization of the importance of polysaccharide intercellular adhesin/hemagglutinin of Staphylococcus epidermidis in the pathogenesis of biomaterial-based infection in a mouse foreign body infection model. Infection and Immunity, 67, 2627–2632Google Scholar
Rupp, M. E., Ulphani, J. S., Fey, P. D. and Mack, D. (1999b). Characterization of Staphylococcus epidermidis polysaccharide intercellular adhesin/hemagglutinin in the pathogenesis of intravascular catheter-associated infection in a rat model. Infection and Immunity, 67, 2656–2659Google Scholar
Saenz, H. L., Augsburger, V., Vuong, C., Jack, R. W., Götz, F. and Otto, M. (2000). Inducible expression and cellular location of AgrB, a protein involved in the maturation of the staphylococcal quorum-sensing pheromone. Archives of Microbiology, 174, 452–455CrossRefGoogle ScholarPubMed
Schneewind, O., Mihaylova-Petkov, D. and Model, P. (1993). Cell wall sorting signals in surface proteins of gram-positive bacteria. EMBO Journal, 12, 4803–4811Google ScholarPubMed
Schumacher-Perdreau, F., Heilmann, C., Peters, G., Götz, F. and Pulverer, G. (1994). Comparative analysis of a biofilm-forming Staphylococcus epidermidis strain and its adhesion-positive, accumulation-negative mutant M7. FEMS Microbiology Letters, 117, 71–78CrossRefGoogle ScholarPubMed
Shiro, H., Muller, E., Gutierrez, N., Boisot, S., Grout, M., Tosteson, T. D., Goldmann, D. and Pier, G. B. (1994). Transposon mutants of Staphylococcus epidermidis deficient in elaboration of capsular polysaccharide/adhesin and slime are avirulent in a rabbit model of endocarditis. Journal of Infectious Diseases, 169, 1042–1049CrossRefGoogle Scholar
Simons, J. W., Kampen, M. D., Riel, S., Götz, F., Egmond, M. R. and Verheij, H. M. (1998). Cloning, purification and characterisation of the lipase from Staphylococcus epidermidis – comparison of the substrate selectivity with those of other microbial lipases. European Journal of Biochemistry, 253, 675–683CrossRefGoogle ScholarPubMed
Sloot, N., Thomas, M., Marre, R. and Gatermann, S. (1992). Purification and characterisation of elastase from Staphylococcus epidermidis. Journal of Medical Microbiology, 37, 201–205CrossRefGoogle ScholarPubMed
Tegmark, K., Morfeldt, E. and Arvidson, S. (1998). Regulation of agr-dependent virulence genes in Staphylococcus aureus by RNAIII from coagulase-negative staphylococci. Journal of Bacteriology, 180, 3181–3186Google ScholarPubMed
Teufel, P. and Götz, F. (1993). Characterization of an extracellular metalloprotease with elastase activity from Staphylococcus epidermidis. Journal of Bacteriology, 175, 4218–4224CrossRefGoogle ScholarPubMed
Kamp, M., Hooven, H. W., Konings, R. N., Bierbaum, G., Sahl, H. G., Kuipers, O. P., Siezen, R. J., Vos, W. M., Hilbers, C. W. and Ven, F. J. (1995). Elucidation of the primary structure of the lantibiotic epilancin K7 from Staphylococcus epidermidis K7. Cloning and characterisation of the epilancin-K7-encoding gene and NMR analysis of mature epilancin K7. European Journal of Biochemistry, 230, 587–600CrossRefGoogle ScholarPubMed
Wamel, W. J., Rossum, G., Verhoef, J., Vandenbroucke-Grauls, C. M. and Fluit, A. C. (1998). Cloning and characterization of an accessory gene regulator (agr)-like locus from Staphylococcus epidermidis. FEMS Microbiology Letters, 163, 1–9CrossRefGoogle ScholarPubMed
Veenstra, G. J., Cremers, F. F., Dijk, H. and Fleer, A. (1996). Ultrastructural organization and regulation of a biomaterial adhesin of Staphylococcus epidermidis. Journal of Bacteriology, 178, 537–541CrossRefGoogle ScholarPubMed
Vuong, C., Götz, F. and Otto, M. (2000a). Construction and characterization of an agr deletion mutant of Staphylococcus epidermidis. Infection and Immunity, 68, 1048–1053CrossRefGoogle Scholar
Vuong, C., Saenz, H. L., Götz, F. and Otto, M. (2000b). Impact of the agr quorum-sensing system on adherence to polystyrene in Staphylococcus aureus. Journal of Infectious Diseases, 182, 1688–1693CrossRefGoogle Scholar
West, T. E., Walshe, J. J., Krol, C. P. and Amsterdam, D. (1986). Staphylococcal peritonitis in patients on continuous peritoneal dialysis. Journal of Clinical Microbiology, 23, 809–812Google ScholarPubMed
Ziebuhr, W., Heilmann, C., Götz, F., Meyer, P., Wilms, K., Straube, E. and Hacker, J. (1997). Detection of the intercellular adhesion gene cluster (ica) and phase variation in Staphylococcus epidermidis blood culture strains and mucosal isolates. Infection and Immunity, 65, 890–896Google ScholarPubMed
Ziebuhr, W., Krimmer, V., Rachid, S., Lössner, I., Götz, F. and Hacker, J. (1999). A novel mechanism of phase variation of virulence in Staphylococcus epidermidis: evidence for control of the polysaccharide intercellular adhesin synthesis by alternating insertion and excision of the insertion sequence element IS256. Molecular Microbiology, 32, 345–356CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×