Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-09T00:52:06.681Z Has data issue: false hasContentIssue false

4 - Animal Models of Orthopaedic Implant Infection

Published online by Cambridge University Press:  23 November 2009

Yuehuei H. An
Affiliation:
Orthopaedic Research Laboratory, Medical University of South Carolina, Charleston, South Carolina, USA
Christopher M. Hill
Affiliation:
Orthopaedic Research Laboratory, Medical University of South Carolina, Charleston, South Carolina, USA
Richard J. Friedman
Affiliation:
Orthopaedic Research Laboratory, Medical University of South Carolina, Charleston, South Carolina, USA
Michael Wilson
Affiliation:
University College London
Deirdre Devine
Affiliation:
Leeds Dental Institute, University of Leeds
Get access

Summary

INTRODUCTION

More than 200,000 primary hip and 200,000 primary knee arthroplasties are performed each year in the United States alone. Between 0.5 and 3.9 per cent of them will become infected within 10 years (Table 4.1) (An and Friedman, 1996; Stocks and Janssen, 2000). For revision total joint replacements, the infection rates can be much higher, with numbers as high as 3.2 per cent reported by Sperling et al. (2001), 12.5 per cent reported by Itasaka et al. (2001), and 17 per cent reported by Spangehl et al. (1999). Infection often causes complete failure of a total joint arthroplasty. Sepsis following total joint replacement can have catastrophic results, both physically and psychologically, for the patient, leading to failure of the arthroplasty, prolonged hospitalisation, possible amputation, and even death (Cheatle, 1991). In addition, the management of infected cases, especially those of joint replacements, is very costly (Hebert et al., 1996). Although the use of prophylactic antibiotics and greatly improved surgical techniques have decreased the infection rate of joint replacement from an average of 5.9 per cent in 1975 to 1.2 per cent in 1993 (An and Friedman, 1996), challenges still remain for better preventive and therapeutic measures. In addition to joint replacement, implant infections also occur in other orthopaedic subspecialties, such as trauma (Eijer et al., 2001) and spine (Wimmer and Gluch, 1996), with a significant impact on the patient and society.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

An, Y. H., Bradley, J., Powers, D. L. and Friedman, R. J. (1997). The prevention of prosthetic infection using a cross-linked albumin coating in a rabbit model. Journal of Bone and Joint Surgery – British volume, 79, 816–19CrossRefGoogle Scholar
An, Y. H., Dickinson, R. B. and Doyle, R. J. (2000). Mechanisms of bacterial adhesion pathogenesis of implant and tissue infections. In Handbook of Bacterial Adhesion – Principles, Methods, and Applications (Eds. An, Y. H. and Friedman, R. J.). Humana Press, Totowa, NJ, pp. 1–28CrossRef
An, Y. H. and Friedman, R. J., (1996). Prevention of sepsis in total joint arthroplasty. Journal of Hospital Infection, 33, 93–108CrossRefGoogle ScholarPubMed
An, Y. H. and Friedman, R. J. (1997). Laboratory methods for studies of bacterial adhesion. Journal of Microbiological Methods, 30, 141–52CrossRefGoogle Scholar
An, Y. H. and Friedman, R. J. (1998a). Animal models in orthopaedic prosthetic infection. In Animal Models in Orthopaedic Research (Eds. An, Y. H. and Friedman, R. J.). CRC Press, Boca Raton, FL, pp. 443–60
An, Y. H. and Friedman, R. J. (1998b). Animal models of orthopedic implant infection. Journal of Investigative Surgery, 11, 139–46CrossRefGoogle Scholar
An, Y. H. and Friedman, R. J. (1998c). Concise review of mechanisms of bacterial adhesion to biomaterial surfaces. Journal of Biomedical Materials Research, 43, 338–483.0.CO;2-B>CrossRefGoogle Scholar
An, Y. H., McGlohorn, J. B., Bednarski, B. K., Martin, K. L. and Friedman, R. J. (2001). An open channel flow chamber for characterizing biofilm formation on biomaterial surfaces. Methods in Enzymology, 337, 79–88CrossRefGoogle ScholarPubMed
An, Y. H., Stuart, G. W., McDowell, S. J., McDaniel, S. E., Kang, Q. and Friedman, R. J. (1996). Prevention of bacterial adherence to implant surfaces with a crosslinked albumin coating in vitro. Journal of Orthopaedic Research, 14, 846–9CrossRefGoogle ScholarPubMed
Andrews, H. J., Arden, G. P., Hart, G. M. and Owen, J. W. (1981). Deep infection after total hip replacement. Journal of Bone and Joint Surgery – British volume, 63-B, 53–7CrossRefGoogle ScholarPubMed
Arens, S., Schlegel, U., Printzen, G., Ziegler, W. J., Perren, S. M. and Hansis, M. (1996). Influence of materials for fixation implants on local infection. An experimental study of steel versus titanium DCP in rabbits. Journal of Bone and Joint Surgery – British volume, 78, 647–51CrossRefGoogle ScholarPubMed
Arizono, T., Oga, M. and Sugioka, Y. (1992). Increased resistance of bacteria after adherence to polymethyl methacrylate. An in vitro study. Acta Orthopaedica Scandinavica, 63, 661–4Google ScholarPubMed
Bartzokas, C. A., Johnson, R., Jane, M., Martin, M. V., Pearce, P. K. and Saw, Y. (1994). Relation between mouth and haematogenous infection in total joint replacements. British Medical Journal, 309, 506–8CrossRefGoogle ScholarPubMed
Belmatoug, N., Cremieux, A. C., Bleton, R., Volk, A., Saleh-Mghir, A., Grossin, M., Garry, L., and Carbon, C. (1996). A new model of experimental prosthetic joint infection due to methicillin-resistant Staphylococcus aureus: a microbiologic, histopathologic, and magnetic resonance imaging characterization. Journal of Infectious Diseases, 174, 414–17CrossRefGoogle ScholarPubMed
Benson, M. K. and Hughes, S. P. (1975). Infection following total hip replacement in a general hospital without special orthopaedic facilities. Acta Orthopaedica Scandinavica, 46, 968–78CrossRefGoogle Scholar
Blenkinsopp, S. A. and Costerton, W. (1991). Understanding bacterial biofilm. Tebtech, 9, 138–42CrossRefGoogle Scholar
Blomgren, G. (1981). Hematogenous infection of total joint replacement. An experimental study in the rabbit. Acta Orthopaedica Scandinavica Supplement, 187, 1–64Google ScholarPubMed
Buret, A., Ward, K. H., Olson, M. E. and Costerton, J. W. (1991). An in vivo model to study the pathobiology of infectious biofilms on biomaterial surfaces. Journal of Biomedical Materials Research, 25, 865–74CrossRefGoogle Scholar
Canner, G. C., Steinberg, M. E., Heppenstall, R. B. and Balderston, R. (1984). The infected hip after total hip arthroplasty. Journal of Bone and Joint Surgery – American volume, 66, 1393–9CrossRefGoogle ScholarPubMed
Chadha, H. S., Fitzgerald, R. H. Jr., Wiater, P., Sud, S., Nasser, S. and Wooley, P. H. (1999). Experimental acute hematogenous osteomyelitis in mice. I. Histopathological and immunological findings. Journal of Orthopaedic Research, 17, 376–81CrossRefGoogle ScholarPubMed
Chang, C. C. and Merritt, K. (1994). Infection at the site of implanted materials with and without preadhered bacteria. Journal of Orthopaedic Research, 12, 526–31CrossRefGoogle ScholarPubMed
Charnley, J. (1972). Postoperative infection after total hip replacement with special reference to air contamination in the operating room. Clinical Orthopaedics, 87, 167–87CrossRefGoogle Scholar
Cheatle, M. D. (1991). The effect of chronic orthopedic infection on quality of life. Orthopaedic Clinics of North America, 22, 539–47Google ScholarPubMed
Christensen, G. D., Simpson, W. A., Bisno, A. L. and Beachey, E. H. (1983). Experimental foreign body infections in mice challenged with slime-producing Staphylococcus epidermidis. Infection and Immunity, 40, 407–10Google ScholarPubMed
Chu, C. C. and Williams, D. F. (1984). Effects of physical configuration and chemical structure of suture materials on bacterial adhesion. A possible link to wound infection. American Journal of Surgery, 147, 197–204CrossRefGoogle ScholarPubMed
Clasper, J. C., Parker, S. J., Simpson, A. H. and Watkins, P. E. (1999). Contamination of the medullary canal following pin-tract infection. Journal of Orthopaedic Research, 17, 947–52CrossRefGoogle ScholarPubMed
Clasper, J. C., Stapley, S. A., Bowley, D. M., Kenward, C. E., Taylor, V. and Watkins, P. E. (2001). Spread of infection, in an animal model, after intramedullary nailing of an infected external fixator pin tract. Journal of Orthopaedic Research, 19, 155–9CrossRefGoogle Scholar
Collinge, C. A., Goll, G., Seligson, D. and Easley, K. J. (1994). Pin tract infections: silver vs uncoated pins. Orthopaedics, 17, 445–8Google ScholarPubMed
Costerton, J. W., Marrie, T. J. and Cheng, K. J. (1985). Phenomena of bacterial adhesion. In Bacterial Adhesion. Mechanisms and Physiological Significance (Eds. Savage, D. C. and Fletcher, M.). Plenum, New York, pp. 1–43CrossRef
Cremieux, A. C. and Carbon, C. (1997). Experimental models of bone and prosthetic joint infections. Clinical Infectious Diseases, 25, 1295–302CrossRefGoogle ScholarPubMed
Cremieux, A. C., Mghir, A. S., Bleton, R., Manteau, M., Belmatoug, N., Massias, L., Garry, L., Sales, N., Maziere, B. and Carbon, C. (1996). Efficacy of sparfloxacin and autoradiographic diffusion pattern of [14C]Sparfloxacin in experimental Staphylococcus aureus joint prosthesis infection. Antimicrobial Agents and Chemotherapy, 40, 2111–16Google Scholar
Curtis, M. J., Brown, P. R., Dick, J. D. and Jinnah, R. H. (1995). Contaminated fractures of the tibia: a comparison of treatment modalities in an animal model. Journal of Orthopaedic Research, 13, 286–95CrossRefGoogle Scholar
Darouiche, R. O., Farmer, J., Chaput, C., Mansouri, M., Saleh, G. and Landon, G. C. (1998). Anti-infective efficacy of antiseptic-coated intramedullary nails. Journal of Bone and Joint Surgery – American volume, 80, 1336–40CrossRefGoogle ScholarPubMed
DeJong, M. E., DeBerardino, M. T., Brooks, D. E., Nelson, M. B., Campbell, A. A., Bottoni, M. C., Pusateri, A. E., Walton, M. R., Guymon, C. H. and McManus, A. T. (2001). Antimicrobial efficacy of external fixator pins coated with a lipid stabilized hydroxyapatite/chlorhexidine complex to prevent pin tract infection in a goat model. Journal of Trauma, 50, 1008–14CrossRefGoogle Scholar
DiCarlo, E. F. and Bullough, P. G. (1992). The biologic responses to orthopaedic implants and their wear debris. Clinical Materials, 9, 235–60CrossRefGoogle ScholarPubMed
Dobbins, J. J., Seligson, D. and Raff, M. J. (1988). Bacterial colonization of orthopedic fixation devices in the absence of clinical infection. Journal of Infectious Diseases, 158, 203–5CrossRefGoogle ScholarPubMed
Donlan, R. M. (2000). Role of biofilms in antimicrobial resistance. ASAIO Journal, 46, S47–S52CrossRefGoogle ScholarPubMed
Dougherty, S. H. (1988). Pathobiology of infection in prosthetic devices [see comments]. Reviews of Infectious Diseases, 10, 1102–17CrossRefGoogle Scholar
Dougherty, S. H. and Simmons, R. L. (1989). Endogenous factors contributing to prosthetic device infections. Orthopaedic Clinics of North America, 3, 199–209Google ScholarPubMed
Eftekhar, N. S., Kiernan, H. A. Jr. and Stinchfield, F. E. (1976). Systemic and local complications following low-friction arthroplasty of the hip joint. A study of 800 consecutive operations. Archives of Surgery, 111, 150–5CrossRefGoogle ScholarPubMed
Eijer, H., Hauke, C., Arens, S., Printzen, G., Schlegel, U., and Perren, S. M. (2001). PC-Fix and local infection resistance – influence of implant design on postoperative infection development, clinical and experimental results. Injury, 32(Suppl. 2), S-B38–43CrossRefGoogle ScholarPubMed
Espersen, F., Frimodt-Moller, N., Corneliussen, L., Rosdahl, Thamdrup V. and Skinhoj, P. (1993). Experimental foreign body infection in mice. Journal of Antimicrobial Chemotherapy, 31(Suppl. D), 103–11CrossRefGoogle ScholarPubMed
Fitzgerald, R. H. Jr., Nolan, D. R., Ilstrup, D. M., Scoy, R. E., Washington, J. A. D. and Coventry, M. B. (1977). Deep wound sepsis following total hip arthroplasty. Journal of Bone and Joint Surgery – American volume, 59, 847–55CrossRefGoogle ScholarPubMed
Gallimore, B., Gagnon, R. F., Subang, R. and Richards, G. K. (1991). Natural history of chronic Staphylococcus epidermidis foreign body infection in a mouse model. Journal of Infectious Diseases, 164, 1220–3CrossRefGoogle ScholarPubMed
Garvin, K. L., Miyano, J. A., Robinson, D., Giger, D., Novak, J. and Radio, S. (1994). Polylactide/polyglycolide antibiotic implants in the treatment of osteomyelitis. A canine model. Journal of Bone and Joint Surgery – American volume, 76, 1500–6CrossRefGoogle ScholarPubMed
Gillespie, W. J. (1990). Infection in total joint replacement. Orthopaedic Clinics of North America, 4, 465–84Google ScholarPubMed
Gracia, E., Lacleriga, A., Monzon, M., Leiva, J., Oteiza, C. and Amorena, B. (1998). Application of a rat osteomyelitis model to compare in vivo and in vitro the antibiotic efficacy against bacteria with high capacity to form biofilms. Journal of Surgical Research, 79, 146–53CrossRefGoogle ScholarPubMed
Gratz, S., Rennen, H. J., Boerman, O. C., Oyen, W. J., Burma, P. and Corstens, F. H. (2001). (99m)Tc-interleukin-8 for imaging acute osteomyelitis. Journal of Nuclear Medicine, 42, 1257–64Google ScholarPubMed
Gray, E. D., Peters, G., Verstegen, M. and Regelmann, W. E. (1984). Effect of extracellular slime substance from Staphylococcus epidermidis on the human cellular immune response. Lancet, 1, 365–7CrossRefGoogle ScholarPubMed
Gristina, A. G. and Costerton, J. W. (1985). Bacterial adherence to biomaterials and tissue. The significance of its role in clinical sepsis. Journal of Bone and Joint Surgery – American volume, 67, 264–73CrossRefGoogle ScholarPubMed
Gristina, A. G., Hobgood, C. D., Webb, L. X. and Myrvik, Q. N. (1987). Adhesive colonization of biomaterials and antibiotic resistance. Biomaterials, 8, 423–6CrossRefGoogle ScholarPubMed
Gristina, A. G., Jennings, R. A., Naylor, P. T., Myrvik, Q. N. and Webb, L. X. (1989). Comparative in vitro antibiotic resistance of surface-colonizing coagulase-negative staphylococci. Antimicrobial Agents and Chemotherapy, 33, 813–16CrossRefGoogle ScholarPubMed
Gristina, A. G., Naylor, P. T. and Myrvik, Q. N. (1990). Musculoskeletal infection, microbial adhesion, and antibiotic resistance. Orthopaedic Clinics of North America, 4, 391–408Google ScholarPubMed
Gristina, A. G., Naylor, P. T. and Myrvik, Q. N. (1991). Mechanisms of musculoskeletal sepsis. Orthopaedic Clinics of North America, 22, 363–71Google ScholarPubMed
Grogan, T. J., Dorey, F., Rollins, J. and Amstutz, H. C. (1986). Deep sepsis following total knee arthroplasty. Ten-year experience at the University of California at Los Angeles Medical Center. Journal of Bone and Joint Surgery – American volume, 68, 226–34CrossRefGoogle ScholarPubMed
Hebert, C. K., Williams, R. E., Levy, R. S., and Barrack, R. L. (1996). Cost of treating an infected total knee replacement. Clinical Orthopaedics, 331, 140–5CrossRefGoogle Scholar
Hughes, S. P. (1988). The role of antibiotics in preventing infections following total hip replacement. Journal of Hospital Infection, 11(Suppl. C), 41–7CrossRefGoogle ScholarPubMed
Isiklar, Z. U., Darouiche, R. O., Landon, G. C. and Beck, T. (1996). Efficacy of antibiotics alone for orthopaedic device related infections. Clinical Orthopaedics, 332, 184–9CrossRefGoogle Scholar
Itasaka, T., Kawai, A., Sato, T., Mitani, S. and Inoue, H. (2001). Diagnosis of infection after total hip arthroplasty. Journal of Orthopaedic Science, 6, 320–6CrossRefGoogle ScholarPubMed
James, R. C. and MacLeod, C. J. (1961). Induction of staphylococcal infections in mice with small inocula introduced on sutures. British Journal of Experimental Pathology, 42, 266–77Google ScholarPubMed
Jerry, G. J. Jr., Rand, J. A. and Ilstrup, D. (1988). Old sepsis prior to total knee arthroplasty. Clinical Orthopaedics, 236, 135–40Google Scholar
Johansson, A., Lindgren, J. U., Nord, C. E. and Svensson, O. (1999). Local plate infections in a rabbit model. Injury, 30, 587–90CrossRefGoogle Scholar
Johansson, A., Lindgren, J. U., Nord, C. E. and Svensson, O. (1999). Material and design in haematogenous implant-associated infections in a rabbit model. Injury, 30, 651–7CrossRefGoogle Scholar
Josefsson, G. and Kolmert, L. (1993). Prophylaxis with systematic antibiotics versus gentamicin bone cement in total hip arthroplasty. A ten-year survey of 1,688 hips. Clinical Orthopaedics, 292, 210–14Google Scholar
Kamme, C. and Lindberg, L. (1981). Aerobic and anaerobic bacteria in deep infections after total hip arthroplasty: differential diagnosis between infectious and non-infectious loosening. Clinical Orthopaedics, 154, 201–7Google Scholar
Kieswetter, K., Merritt, K. and Myers, R. (1993). Effects of infection on hydroxyapatite coating. Transactions of the Society for Biomaterials, 16, 220Google Scholar
Kim, Y. Y., Ko, C. U., Ahn, J. Y., Yoon, Y. S. and Kwak, B. M., (1988). Charnley low friction arthroplasty in tuberculosis of the hip. An eight to 13-year follow-up. Journal of Bone and Joint Surgery – British volume, 70, 756–60CrossRefGoogle ScholarPubMed
Klock, J. C. and Bainton, D. F. (1976). Degranulation and abnormal bactericidal function of granulocytes procured by reversible adhesion to nylon wool. Blood, 48, 149–61Google ScholarPubMed
Lidwell, O. M. (1988). Air, antibiotics and sepsis in replacement joints. Journal of Hospital Infection, 11(Suppl. C), 18–40CrossRefGoogle ScholarPubMed
Lidwell, O. M., Lowbury, E. J., Whyte, W., Blowers, R., Stanley, S. J. and Lowe, D. (1982). Effect of ultraclean air in operating rooms on deep sepsis in the joint after total hip or knee replacement: a randomised study. British Medical Journal, 285, 10–14CrossRefGoogle ScholarPubMed
Lowy, F. D. and Hammer, S. M. (1983). Staphylococcus epidermidis infections. Annals of Internal Medicine, 99, 834–9CrossRefGoogle ScholarPubMed
Maderazo, E. G., Judson, S. and Pasternak, H. (1988). Late infections of total joint prostheses. A review and recommendations for prevention. Clinical Orthopaedics, 229, 131–42Google Scholar
Mayberry-Carson, K. J., Tober-Meyer, B., Gill, L. R., Lambe, D. W. Jr. and Hossler, F. E. (1990). Effect of ciprofloxacin on experimental osteomyelitis in the rabbit tibia, induced with a mixed infection of Staphylococcus epidermidis and Bacteroides thetaiotaomicron. Microbios, 64, 49–66Google ScholarPubMed
Mayberry-Carson, K. J., Tober-Meyer, B., Lambe, D. W. Jr. and Costerton, J. W. (1992). Osteomyelitis experimentally induced with Bacteroides thetaiotaomicron and Staphylococcus epidermidis. Influence of a foreign-body implant. Clinical, 280, 289–99Google Scholar
Mayberry-Carson, K. J., Tober-Meyer, B., Smith, J. K., Lambe, D. W. Jr. and Costerton, J. W. (1984). Bacterial adherence and glycocalyx formation in osteomyelitis experimentally induced with Staphylococcus aureus. Infection and Immunity, 43, 825–33Google ScholarPubMed
Melcher, G. A., Metzdorf, A., Schlegel, U., Ziegler, W. J., Perren, S. M. and Printzen, G. (1995). Influence of reaming versus nonreaming in intramedullary nailing on local infection rate: experimental investigation in rabbits. Journal of Trauma, 39, 1123–8CrossRefGoogle ScholarPubMed
Merritt, K., Brown, S. A., Payer, J. H. and Ryerson, D. H. (1991). Influence of bacteria on corrosion of metallic biomaterials. Transactions of the Society for Biomaterials, 14, 106Google Scholar
Merritt, K., Shafer, J. W. and Brown, S. A. (1979). Implant site infection rates with porous and dense materials. Journal of Biomedical Materials Research, 13, 101–8CrossRefGoogle ScholarPubMed
Monzon, M., Garcia-Alvarez, F., Lacleriga, A., Gracia, E., Leiva, J., Oteiza, C. and Amorena, B. (2001). A simple infection model using pre-colonized implants to reproduce rat chronic Staphylococcus aureus osteomyelitis and study antibiotic treatment. Journal of Orthopaedic Research, 19, 820–6CrossRefGoogle ScholarPubMed
Nakamoto, D. A., Haaga, J. R., Bove, P., Merritt, K. and Rowland, D. Y. (1995). Use of fibrinolytic agents to coat wire implants to decrease infection. An animal model. Investigative Radiology, 30, 341–4CrossRefGoogle ScholarPubMed
Nelson, J. P., Glassburn, A. R. Jr., Talbott, R. D. and McElhinney, J. P. (1980). The effect of previous surgery, operating room environment, and preventive antibiotics on postoperative infection following total hip arthroplasty. Clinical Orthopaedics, 147, 167–9Google Scholar
Nijhof, M. W., Dhert, W. J., Fleer, A., Vogely, H. C. and Verbout, A. J. (2000). Prophylaxis of implant-related staphylococcal infections using tobramycin-containing bone cement. Journal of Biomedical Materials Research, 52, 754–613.0.CO;2-#>CrossRefGoogle ScholarPubMed
Nijhof, M. W., Fleer, A., Hardus, K., Vogely, H. C., Schouls, L. M., Verbout, A. J. and Dhert, W. J. (2001). Tobramycin-containing bone cement and systemic cefazolin in a one-stage revision. Treatment of infection in a rabbit model. Journal of Biomedical Materials Research, 58, 747–53CrossRefGoogle Scholar
Norden, C. W. (1988). Lessons learned from animal models of osteomyelitis. Reviews of Infectious Diseases, 10, 103–10CrossRefGoogle ScholarPubMed
Norden, C. W., Myerowitz, R. L. and Keleti, E. (1980). Experimental osteomyelitis due to Staphylococcus aureus or Pseudomonas aeruginosa: a radiographic-pathological correlative analysis. British Journal of Experimental Pathology, 61, 451–60Google ScholarPubMed
Norden, C. W., Niederreiter, K. and Shinners, E. M. (1986). Treatment of experimental chronic osteomyelitis due to Staphylococcus aureus with teicoplanin. Infection, 14, 136–8CrossRefGoogle ScholarPubMed
Pascual, A., Arellano, Ramirez E., Martinez, Martinez L. and Perea, E. J. (1993). Effect of polyurethane catheters and bacterial biofilms on the in-vitro activity of antimicrobials against Staphylococcus epidermidis. Journal of Hospital Infection, 24, 211–18CrossRefGoogle ScholarPubMed
Petty, W., Spanier, S. and Shuster, J. J. (1988). Prevention of infection after total joint replacement. Experiments with a canine model. Journal of Bone and Joint Surgery – American volume, 70, 536–9CrossRefGoogle ScholarPubMed
Petty, W., Spanier, S., Shuster, J. J. and Silverthorne, C. (1985). The influence of skeletal implants on incidence of infection. Experiments in a canine model. Journal of Bone and Joint Surgery – American volume, 67, 1236–44CrossRefGoogle Scholar
Poelstra, K. A., Barekzi, N. A., Grainger, D. W., Gristina, A. G. and Schuler, T. C. (2000). A novel spinal implant infection model in rabbits. Spine, 25, 406–10CrossRefGoogle ScholarPubMed
Rae, T. (1983). The action of cobalt, nickel and chromium on phagocytosis and bacterial killing by human polymorphonuclear leucocytes; its relevance to infection after total joint arthroplasty. Biomaterials, 4, 175–80CrossRefGoogle ScholarPubMed
Rediske, A. M., Roeder, B. L., Brown, M. K., Nelson, J. L., Robison, R. L., Draper, D. O., Schaalje, G. B., Robison, R. A. and Pitt, W. G. (1999). Ultrasonic enhancement of antibiotic action on Escherichia coli biofilms: an in vivo model. Antimicrobial Agents and Chemotherapy, 43, 1211–14Google Scholar
Rissing, J. P. (1990). Animal models of osteomyelitis. Knowledge, hypothesis, and speculation. Orthopaedic Clinics of North America, 4, 377–90Google ScholarPubMed
Mghir, Saleh A., Cremieux, A. C., Bleton, R., Ismael, F., Manteau, M., Dautrey, S., Massias, L., Garry, L., Sales, N., Maziere, B.. (1998). Efficacy of teicoplanin and autoradiographic diffusion pattern of [14C]teicoplanin in experimental Staphylococcus aureus infection of joint prostheses. Antimicrobial Agents and Chemotherapy, 42, 2830–5Google Scholar
Sanderson, P. J. (1988). The choice between prophylactic agents for orthopaedic surgery. Journal of Hospital Infection, 11(Suppl. C), 57–67CrossRefGoogle ScholarPubMed
Sanderson, P. J. (1991). Infection in orthopaedic implants. Journal of Hospital Infection, 18(Suppl. A), 367–75CrossRefGoogle ScholarPubMed
Schulz, S., Steinhart, H. and Mutters, R. (2001). Chronic osteomyelitis in a new rabbit model. Journal of Investigative Surgery, 14, 121–31CrossRefGoogle Scholar
Shirtliff, M. E., Mader, J. T. and Calhoun, J. (1999). Oral rifampin plus azithromycin or clarithromycin to treat osteomyelitis in rabbits. Clinical Orthopaedics, 359, 229–36CrossRefGoogle Scholar
Simpson, W. A., Courtney, H. S. and Ofek, I. (1987). Interactions of fibronectin with streptococci: the role of fibronectin as a receptor for Streptococcus pyogenes. Reviews of Infectious Diseases, 9(Suppl. 4), S351–9CrossRefGoogle ScholarPubMed
Smeltzer, M. S., Thomas, J. R., Hickmon, S. G., Skinner, R. A., Nelson, C. L., Griffith, D., Parr, T. R. Jr. and Evans, R. P. (1997). Characterization of a rabbit model of staphylococcal osteomyelitis. Journal of Orthopaedic Research, 15, 414–21CrossRefGoogle ScholarPubMed
Smith, M. M., Vasseur, P. B. and Saunders, H. M. (1989). Bacterial growth associated with metallic implants in dogs. Journal of the American Veterinary Association, 195, 765–7Google ScholarPubMed
Southwood, R. T., Rice, J. L., McDonald, P. J., Hakendorf, P. H. and Rozenbilds, M. A. (1985). Infection in experimental hip arthroplasties. Journal of Bone and Joint Surgery – British volume, 67, 229–31CrossRefGoogle ScholarPubMed
Spangehl, M. J., Masri, B. A., O'Connell, J. X. and Duncan, C. P. (1999). Prospective analysis of preoperative and intraoperative investigations for the diagnosis of infection at the sites of two hundred and two revision total hip arthroplasties. Journal of Bone and Joint Surgery – American volume, 81, 672–83CrossRefGoogle Scholar
Sperling, J. W., Kozak, T. K., Hanssen, A. D. and Cofield, R. H. (2001). Infection after shoulder arthroplasty. Clinical Orthopaedics, 385, 206–16CrossRefGoogle Scholar
Stocks, G. and Janssen, H. F. (2000). Infection in patients after implantation of an orthopedic device. ASAIO Journal, 46, S41–6CrossRefGoogle ScholarPubMed
Sugarman, B. and Young, E. J. (1989). Infections associated with prosthetic devices: magnitude of the problem. Orthopaedic Clinics of North America, 3, 187–98Google Scholar
Tollefson, D. F., Bandyk, D. F., Kaebnick, H. W., Seabrook, G. R. and Towne, J. B. (1987). Surface biofilm disruption. Enhanced recovery of microorganisms from vascular prostheses. Archives of Surgery, 122, 38–43CrossRefGoogle ScholarPubMed
Ueng, W. N., Shih, C. H. and Hseuh, S. (1995). Pulmonary tuberculosis as a source of infection after total hip arthroplasty. A report of two cases. International Orthopaedics, 19, 55–9CrossRefGoogle ScholarPubMed
Varma, S., Ferguson, H. L., Breen, H. and Lumb, W. V. (1974). Comparison of seven suture materials in infected wounds – an experimental study. Journal of Surgical Research, 17, 165–70CrossRefGoogle ScholarPubMed
Vaudaux, P. E., Zulian, G., Huggler, E. and Waldvogel, F. A. (1985). Attachment of Staphylococcus aureus to polymethylmethacrylate increases its resistance to phagocytosis in foreign body infection. Infection and Immunity, 50, 472–7Google ScholarPubMed
Vergères, P. and Blaser, J. (1992). Amikacin, ceftazidime and flucloxacillin against suspended and adherent Pseudomonas aeruginosa and Staphylococcus epidermidis in an in vitro model of infection. Journal of Infectious Diseases, 165, 281–9CrossRefGoogle Scholar
Verheyen, C. C., Dhert, W. J., Petit, P. L., Rozing, P. M. and Groot, K. (1993). In vitro study on the integrity of a hydroxylapatite coating when challenged with staphylococci. Journal of Biomedical Materials Research, 27, 775–81CrossRefGoogle ScholarPubMed
Vogely, H. C., Oosterbos, C. J., Puts, E. W., Nijhof, M. W., Nikkels, P. G., Fleer, A., Tonino, A. J., Dhert, W. J. and Verbout, A. J. (2000). Effects of hydrosyapatite coating on Ti-6A1-4V implant-site infection in a rabbit tibial model. Journal of Orthopaedic Research, 18, 485–93CrossRefGoogle Scholar
Voos, K., Rosenberg, B., Fagrhi, M. and Seligson, D. (1999). Use of a tobramycin-impregnated polymethylmethacrylate pin sleeve for the prevention of pin-tract infection in goats. Journal of Orthopaedic Trauma, 13, 98–101CrossRefGoogle ScholarPubMed
Wimmer, C. and Gluch, H. (1996). Management of postoperative wound infection in posterior spinal fusion with instrumentation. Journal of Spinal Disorders, 9, 505–8CrossRefGoogle ScholarPubMed
Zimmerli, W. (1993). Experimental models in the investigation of device-related infections. Journal of Antimicrobial Chemotherapy, 31(Suppl. D), 97–102CrossRefGoogle ScholarPubMed
Zimmerli, W., Waldvogel, F. A., Vaudaux, P. and Nydegger, U. E. (1982). Pathogenesis of foreign body infection: description and characteristics of an animal model. Journal of Infectious Diseases, 146, 487–97CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Animal Models of Orthopaedic Implant Infection
    • By Yuehuei H. An, Orthopaedic Research Laboratory, Medical University of South Carolina, Charleston, South Carolina, USA, Christopher M. Hill, Orthopaedic Research Laboratory, Medical University of South Carolina, Charleston, South Carolina, USA, Richard J. Friedman, Orthopaedic Research Laboratory, Medical University of South Carolina, Charleston, South Carolina, USA
  • Edited by Michael Wilson, University College London, Deirdre Devine, Leeds Dental Institute, University of Leeds
  • Book: Medical Implications of Biofilms
  • Online publication: 23 November 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511546297.005
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Animal Models of Orthopaedic Implant Infection
    • By Yuehuei H. An, Orthopaedic Research Laboratory, Medical University of South Carolina, Charleston, South Carolina, USA, Christopher M. Hill, Orthopaedic Research Laboratory, Medical University of South Carolina, Charleston, South Carolina, USA, Richard J. Friedman, Orthopaedic Research Laboratory, Medical University of South Carolina, Charleston, South Carolina, USA
  • Edited by Michael Wilson, University College London, Deirdre Devine, Leeds Dental Institute, University of Leeds
  • Book: Medical Implications of Biofilms
  • Online publication: 23 November 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511546297.005
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Animal Models of Orthopaedic Implant Infection
    • By Yuehuei H. An, Orthopaedic Research Laboratory, Medical University of South Carolina, Charleston, South Carolina, USA, Christopher M. Hill, Orthopaedic Research Laboratory, Medical University of South Carolina, Charleston, South Carolina, USA, Richard J. Friedman, Orthopaedic Research Laboratory, Medical University of South Carolina, Charleston, South Carolina, USA
  • Edited by Michael Wilson, University College London, Deirdre Devine, Leeds Dental Institute, University of Leeds
  • Book: Medical Implications of Biofilms
  • Online publication: 23 November 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511546297.005
Available formats
×