Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-16T15:12:19.955Z Has data issue: false hasContentIssue false

33 - Constitutive Relations for Membranes

Published online by Cambridge University Press:  06 July 2010

Robert Asaro
Affiliation:
University of California, San Diego
Vlado Lubarda
Affiliation:
University of California, San Diego
Get access

Summary

In this chapter we consider the behavior of essentially 2D membranes. The membranes may be linear or nonlinear and are generally considered to undergo arbitrarily large deformations. More specifically, the membranes considered here are modeled after biological membranes such as those that comprise cell walls or the layers that exist within biomineralized structures, e.g., shells or teeth. The discussion is preliminary and meant to provide a brief introduction to the basic concepts involved in the constitutive modeling of such structures.

Biological Membranes

Figure 33.1a illustrates an idealized view of the red blood cell that shows its hybrid structure consisting of an outer bilipid membrane and an attached cytoskeleton; Fig. 33.1b shows a micrograph of a section of the cytoskeleton that is illustrated schematically in Fig. 33.1a. The cell membrane is a hybrid, i.e., composite structure consisting of an outer bilipid layer that is supported (i.e., reinforced) by a network attached to it on the cytoplasmic side, which is on the inside of the cell. The cytoskeleton is built up from mostly tetramers, and higher order polypeptides, of the protein spectrin attached at actin nodes. We note that the spectrin network has close to a sixfold nodal coordination. It has been known that the nonlinear elastic properties of the membrane depend sensitively on the details of the topology that includes, inter alia, nodal coordination, spectrin segment length, and the statistical distribution of such topological parameters.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×