Book contents
- Frontmatter
- Contents
- Preface
- 1 Stress and Strain
- 2 Elasticity
- 3 Mechanical Testing
- 4 Strain Hardening of Metals
- 5 Plasticity Theory
- 6 Strain Rate and Temperature Dependence of Flow Stress
- 7 Slip and Crystallographic Textures
- 8 Dislocation Geometry and Energy
- 9 Dislocation Mechanics
- 10 Mechanical Twinning and Martenitic Shear
- 11 Hardening Mechanisms in Metals
- 12 Discontinuous and Inhomogeneous Deformation
- 13 Ductility and Fracture
- 14 Fracture Mechanics
- 15 Viscoelasticity
- 16 Creep and Stress Rupture
- 17 Fatigue
- 18 Residual Stresses
- 19 Ceramics and Glasses
- 20 Polymers
- 21 Composites
- 22 Mechanical Working
- APPENDIX I Miller Indices
- APPENDIX II Stereographic Representation of Orientations
- Index
3 - Mechanical Testing
Published online by Cambridge University Press: 05 June 2012
- Frontmatter
- Contents
- Preface
- 1 Stress and Strain
- 2 Elasticity
- 3 Mechanical Testing
- 4 Strain Hardening of Metals
- 5 Plasticity Theory
- 6 Strain Rate and Temperature Dependence of Flow Stress
- 7 Slip and Crystallographic Textures
- 8 Dislocation Geometry and Energy
- 9 Dislocation Mechanics
- 10 Mechanical Twinning and Martenitic Shear
- 11 Hardening Mechanisms in Metals
- 12 Discontinuous and Inhomogeneous Deformation
- 13 Ductility and Fracture
- 14 Fracture Mechanics
- 15 Viscoelasticity
- 16 Creep and Stress Rupture
- 17 Fatigue
- 18 Residual Stresses
- 19 Ceramics and Glasses
- 20 Polymers
- 21 Composites
- 22 Mechanical Working
- APPENDIX I Miller Indices
- APPENDIX II Stereographic Representation of Orientations
- Index
Summary
Introduction
Tensile properties are used in selecting materials for different applications. Material specifications often include minimum tensile properties to ensure quality so tests must be made to guarantee that materials meet these specifications. Tensile properties are also used in research and development to compare new materials or processes. With plasticity theory (Chapter 5), tensile data can be used to predict a material's behavior under forms of loading other than uniaxial tension.
Often the primary concern is strength. The level of stress that causes appreciable plastic deformation is called its yield stress. The maximum tensile stress that a material carries is called its tensile strength (or ultimate strength or ultimate tensile strength). Both measures are used, with appropriate caution, in engineering design. A material's ductility may also be of interest. Ductility describes how much the material can deform before it fractures. Rarely, if ever, is the ductility incorporated directly into design. Rather, it is included in specifications to ensure quality and toughness. Elastic properties may be of interest, but these are measured ultrasonically.
Tensile Specimens
Figure 3.1 shows a typical tensile specimen. It has enlarged ends or shoulders for gripping. The important part of the specimen is the gauge section. The cross-sectional area of the gauge section is less than that of the shoulders and grip region, so the deformation will occur here. The gauge section should be long compared to the diameter (typically, four times).
- Type
- Chapter
- Information
- Mechanical Behavior of Materials , pp. 36 - 64Publisher: Cambridge University PressPrint publication year: 2009
- 1
- Cited by