Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-09T23:49:34.011Z Has data issue: false hasContentIssue false

4 - Errors in experimental measurements

Published online by Cambridge University Press:  15 December 2009

David J. Lilja
Affiliation:
University of Minnesota
Get access

Summary

‘To free a man of error is to give, not to take away. Knowledge that a thing is false is a truth.’

Schopenhauer

Accuracy, precision, and resolution

In trying to measure and understand the performance of computer systems, we are constantly confronted by the nitty-gritty details of the real world. Unfortunately, these annoying details effectively introduce uncertainty into our measurements. We refer to these uncertainties in measurements as errors or noise. To determine how much uncertainty exists in our measurements, and, therefore, to determine what conclusions we can actually draw from them, we must use the tools and techniques of probability and statistics to quantify the errors.

We learned in previous chapters that time is a fundamental quantity that needs to be measured to determine almost any aspect of a computer system's performance. Any measurement tool, such as the interval timer, has three important characteristics that determine the overall quality of its measurements. The first is its accuracy. In the case of the timer, accuracy is an indication of the closeness of the timer's measurement to that of a standard measurement of time defined by a recognized standards organization, such as the United States National Institute of Standards and Technology. More generally, accuracy is the absolute difference between a measured value and the corresponding reference value. Note that the reference value is an agreed-upon standard, such as the duration of a second, the length of a meter, and so on, that is typically derived from some physical phenomenon.

The second important characteristic of a measurement tool is its precision. Precision relates to the repeatability of the measurements made with the tool.

Type
Chapter
Information
Measuring Computer Performance
A Practitioner's Guide
, pp. 43 - 60
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×