Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-18T15:23:59.362Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 July 2013

John N. Bray
Affiliation:
Queen Mary University of London
Derek F. Holt
Affiliation:
University of Warwick
Colva M. Roney-Dougal
Affiliation:
University of St Andrews, Scotland
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] M., Aschbacher. On the maximal subgroups of the finite classical groups. Invent. Math. 76 (<>1984), 469–514.Google Scholar
[2] M., Aschbacher. Chevalley groups of type G2 as the group of a trilinear form. J. Algebra 109 (1987), 193–259.Google Scholar
[3] D.M., Bloom. The subgroups of PSL(3, q)for odd q. Trans. Amer. Math. Soc. 127 (1967), 150–178.Google Scholar
[4] R., Brauer and C., Nesbitt. On the modular characters of groups. Ann. of Math. (2) 42 (1941), 556–590.Google Scholar
[5] W., Bosma, J., Cannon and C., Playoust. The Magma algebra system. I. The user language. J. Symbolic Comput. 24 (1997), 235–265.Google Scholar
[6] J. N., Bray, D. F., Holt and C.M., Roney-Dougal. Certain classical groups are not well-defined. J. Group Theory 12 (2009), 171–180.Google Scholar
[7] J., Brundan and A., Kleschev. Lower bounds for the degrees of representations of irreducible Brauer characters of finite general linear groups. J. Algebra 223 (2000), 615–629.Google Scholar
[8] Peter J., Cameron. Permutation Groups. London Math. Soc. Student Texts, 45. Cambridge University Press, Cambridge, 1999.
[9] J. J., Cannon and D.F., Holt. Computing maximal subgroups of inite groups. J. Symbolic Comput. 37 (<>2004), 589–609.Google Scholar
[10] Roger W., Carter. Simple Groups of Lie Type. John Wiley and Sons, London-New York-Sydney, 1972.
[11] P.M., Cohn. Basic Algebra: Groups, Rings and Fields. Springer-Verlag, London, 2003.
[12] J. H., Conway, R. T., Curtis, S. P., Norton, R.A., Parker and R.A., Wilson. An ATLAS of Finite Groups. Clarendon Press, Oxford, 1985; reprinted with corrections 2003.
[13] B. N., Cooperstein. The geometry of root subgroups in exceptional groups. I. Geom. Dedicata 8 (1979), 317–338.Google Scholar
[14] B.N., Cooperstein. Maximal subgroups of G2(2n). J. Algebra 70 (1981), 23–36.Google Scholar
[15] A., Cossidente and O.H., King. Maximal subgroups of inite orthogonal groups stabilizing spreads of lines. Comm. Algebra 34 (2006), 4291–4309.Google Scholar
[16] A., Cossidente and O.H., King. On twisted tensor product group embeddings and the spin representation of symplectic groups. Adv. Geom. 7 (<>2007), 55–64.Google Scholar
[17] A., Cossidente and A., Siciliano. On some maximal subgroups in Aschbacher's class c5. Linear Algebra Appl. 403 (2005), 285–290.Google Scholar
[18] H.J., Coutts, M. R., Quick and C.M., Roney-Dougal. The primitive groups of degree less than 4096. Comm. Algebra 39 (2011), 3526–3546.Google Scholar
[19] Charles, W.Curtis and Irving Reiner. Representation Theory of Finite Groups and Associative Algebras. Reprint of the 1962 original. Wiley Classics Library. John Wiley & Sons, Inc., New York, 1988.
[20] Charles, W.Curtis and Irving Reiner. Methods of Representation Theory. Vol. II. With applications to inite groups and orders. John Wiley & Sons, Inc., New York, 1987.
[21] M. R., Darafsheh. Maximal subgroups of the group GL6(2). Bull. Malaysian Math.Soc. (2) 7 (1984), 49–55.Google Scholar
[22] Leonard Eugene, Dickson. Linear groups, with an exposition of the Galois field theory. Teubner, Leipzig, 1901 (Dover reprint 1958).
[23] L., Di Martino and A., Wagner. The irreducible subgroups of PSL(V5, q), where q is odd. Resultate Math. 2 (1979), 54–61.Google Scholar
[24] L., Finkelstein and A., Rudvalis. Maximal subgroups of the Hall-Janko-Wales group. J. Algebra 24 (1973), 486–493.Google Scholar
[25] L., Finkelstein and A., Rudvalis. The maximal subgroups of Janko's simple group of order 50, 232, 960. J. Algebra 30 (1974), 122–143.Google Scholar
[26] D. E., Flesner. Finite symplectic geometry in dimension four and characteristic two. Illinois J. Math. 19 (1975), 41–47.Google Scholar
[27] D. E., Flesner. Maximal subgroups of PSp4(2n) containing central elations or noncentered skew elations. Illinois J. Math. 19 (1975), 247–268.Google Scholar
[28] William, Fulton and Joe, Harris. Representation Theory. Graduate Texts in Mathematics 129, Springer-Verlag, New York, 1991.
[29] The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.5.7; 2012. <http://www.gap-system.org>
[30] Nick, Gill. Polar spaces and embeddings of classical groups. New Zealand J. Math. 36 (2007), 175–184.Google Scholar
[31] Daniel, Gorenstein. Finite Groups. Harper and Row, New York–London, 1968.
[32] Daniel, Gorenstein. The classiication of inite simple groups, Number 3, Part I, Chapter A, Almost simple K-groups. Mathematical Surveys and Monographs, 40.3. American Mathematical Society, Providence, RI, 1998.
[33] Ronald L., Graham, Donald E., Knuth and Oren, Patashnik. Concrete mathematics. A foundation for computer science. Second edition. Addison-Wesley Publishing Company, Reading, MA, 1994.
[34] R. M., Guralnick, K., Magaard, J., Saxl and P.H., Tiep. Cross characteristic representations of symplectic and unitary groups. J. Algebra 257 (2002), 291–347. Addendum: J. Algebra 299 (2006), 443–446.Google Scholar
[35] Robert, Guralnick and Gunter, Malle. Products of conjugacy classes and fixed point spaces. J. Amer. Math. Soc. 25 (2012), 77–121.Google Scholar
[36] R., Guralnick, T., Penttila, C. E., Praeger and J., Saxl. Linear groups with orders having certain large prime divisors. Proc. London Math. Soc. 78 (1999), 167–214.Google Scholar
[37] R. M., Guralnick and P.H., Tiep. Low-dimensional representations of special linear groups in cross characteristics. Proc. London Math. Soc. 78 (1999), 116–138.Google Scholar
[38] R. M., Guralnick and P.H., Tiep. Cross characteristic representations of even characteristic symplectic groupsTrans. Amer. Math. Soc. 356 (2004), 4969–5023.Google Scholar
[39] K., Harada and H., Yamaki. The irreducible subgroups of GLn(2) with n ≤ 6. C. R. Math. Rep. Acad. Sci. Canada, 1 (1978/1979), 75–78.Google Scholar
[40] R. W., Hartley. Determination of the ternary collineation groups whose coefficients lie in the GF(2n). Ann. of Math. 27 (1925/1926), 140–158.Google Scholar
[41] G., Hiß, W. J., Husen and K., Magaard. Imprimitive irreducible modules for finite quasisimple groups. <http://arxiv.org/abs/1211.6350>.
[42] G., Hiß and G., Malle. Low-dimensional representations of quasi-simple groups. LMS J. Comput. Math. 4 (2001), 22–63. Corrigenda: LMS J. Comput. Math. 5 (2002), 95–126.Google Scholar
[43] G., Hiß and G., Malle. Low-dimensional representations of special unitary groups. J. Algebra 236 (2001), 747–767.Google Scholar
[44] D. F., Holt and S., Rees. Testing modules for irreducibility. J. Austral. Math. Soc. Ser. A 57 (1994), 1–16.Google Scholar
[45] D. F., Holt and C.M., Roney-Dougal. Constructing maximal subgroups of classical groups. LMS J. Comput. Math. 8 (2005), 46–79.Google Scholar
[46] D. F., Holt and C.M., Roney-Dougal. Constructing maximal subgroups of orthogonal groups. LMS J. Comput. Math. 13 (2010), 164–191.Google Scholar
[47] C., Hoffman. Cross characteristic projective representations for some classical groups. J. Algebra 229 (2000), 666–677.Google Scholar
[48] C.H., Houghton. Wreath products of groupoids. J. London Math. Soc. (2) 10 (1975), 179–188.Google Scholar
[49] R. B., Howlett, L. J., Rylands and D.E., Taylor. Matrix generators for exceptional groups of Lie type. J. Symbolic Comput. 31 (2001), 429–445.Google Scholar
[50] James E., Humphreys. Linear Algebraic Groups. Graduate Texts in Mathematics, 21. Springer-Verlag, Berlin, 1975.
[51] J. E., Humphreys. Modular representations of finite groups of Lie type. In Finite Simple Groups II, Durham, 1978. Ed. M. J., Collins, Academic Press, London (1980), 259–290.
[52] B., Huppert. Singer-Zyklen in klassischen Gruppen. Math. Z. 117 (1970), 141–150.Google Scholar
[53] B., Huppert. Endliche Gruppen I. Springer-Verlag, Berlin, 1967.
[54] W. J., Husen. Maximal embeddings of alternating groups in the classical groups. Ph.D. Thesis, Wayne State University, 1997.
[55] W. J., Husen. Irreducible modules for classical and alternating groups. J. Algebra 226 (2000), 977–989.Google Scholar
[56] I., Martin Isaacs. Character theory of finite groups. Pure Appl. Math., 69. Academic Press, New York-London, 1976.
[57] Christoph, Jansen, Klaus, Lux, Richard, Parker and Robert, Wilson. An Atlas of Brauer characters. The Clarendon Press, Oxford University Press, New York, 1995.
[58] Jens Carsten, Jantzen. Representations of Algebraic Groups. Pure Appl. Math., 131. Academic Press, Boston MA, 1987.
[59] W. M., Kantor and R.A., Liebler. The rank 3 permutation representations of the finite classical groups. Trans. Amer. Math. Soc. 271 (1982), 1–71.Google Scholar
[60] O. H., King. The subgroup structure of inite classical groups in terms of geometric configurations. In Surveys in combinatorics, 2005. Ed. B. S., Webb, London Math. Soc. Lecture Note Ser., 327. Cambridge University Press, Cambridge, 2005, 29–56
[61] P. B., Kleidman. The maximal subgroups of the low-dimensional classical groups. PhD Thesis, University of Cambridge, 1987.
[62] P. B., Kleidman. The maximal subgroups of the inite 8-dimensional orthogonal groups PΩ+8 (q) and of their automorphism groups. J. Algebra 110 (1987), 173–242.Google Scholar
[63] P. B., Kleidman. The maximal subgroups of the Steinberg triality groups 3D4(q) and of their automorphism groups. J. Algebra 115 (1988), 182–199.Google Scholar
[64] P. B., Kleidman. The maximal subgroups of the Chevalley groups G2(q) with q odd, the Ree groups 2G2(q), and their automorphism groups. J. Algebra 117 (1988), 30–71.Google Scholar
[65] P. B., Kleidman and M.W., Liebeck. A survey of the maximal subgroups of the inite simple groups. Geom. Dedicata 25 (1988), 375–389.Google Scholar
[66] Peter, Kleidman and Martin, Liebeck. The subgroup structure of the inite classical groups. London Math. Soc. Lecture Note Ser., 129. Cambridge University Press, Cambridge, 1990.
[67] A. S., Kondrat'ev. Irreducible subgroups of the group GL(7, 2). Mat. Zametki 37 (1985), 317–321, 460.Google Scholar
[68] A. S., Kondrat'ev. Linear groups of small degree over a field of order 2 (Russian). Algebra i Logika 25 (1986), 544–565.Google Scholar
[69] A. S., Kondrat'ev. Irreducible subgroups of the group GL(9, 2). Mat. Zametki 39 (1986), 320–329, 460.Google Scholar
[70] A. S., Kondrat'ev. The irreducible subgroups of the group GL8(2). Comm. Algebra 15 (1987), 1039–1093.Google Scholar
[71] A. S., Kondrat'ev. Finite linear groups of degree 6. Algebra i Logika 28 (1989), 181–206, 245.Google Scholar
[72] A. S., Kondratiev. Finite linear groups of small degree. In The Atlas of Finite Groups: Ten Years On (Birmingham, 1995). London Math. Soc. Lecture Note Ser., 249. Cambridge University Press, Cambridge, 1990, 139–148.
[73] A. S., Kondrat'ev. Finite linear groups of small degree. II. Comm. Algebra 29 (2001), 4103–4123.Google Scholar
[74] Serge, Lang. Algebraic Number Theory. Addison-Wesley, Reading, Mass.–London–Don Mills, Ont., 1970.
[75] V., Landazuri and G.M., Seitz. On the minimal degrees of projective representations of the inite Chevalley groups. J. Algebra 32 (1974), 418–443.Google Scholar
[76] V. M., Levchuk and Ya. N., Nuzhin. Structure of Ree groups. Algebra i Logika 24 (1985), 26–41.Google Scholar
[77] M. W., Liebeck. On the orders of maximal subgroups of the inite classical groups. Proc. London Math. Soc. (3) 50 (1985), 426–446.Google Scholar
[78] M. W., Liebeck, C. E., Praeger and J., Saxl. A classiication of the maximal subgroups ofthe inite alternating and symmetric groups. J. Algebra 111 (1987), 365–383.Google Scholar
[79] M. W., Liebeck, C. E., Praeger and J., Saxl. On the O'Nan–Scott theorem for inite primitive permutation groups. J. Austral. Math. Soc. Ser. A 44 (1988), 389–396.Google Scholar
[80] M. W., Liebeck and J., Saxl. Primitive permutation groups containing an element of large prime order. J. London Math. Soc. 31 (1985), 237–249.Google Scholar
[81] M. W., Liebeck, J., Saxl and G.M., Seitz. On the overgroups of irreducible subgroups of the finite classical groups. Proc. London Math. Soc. 55 (1987), 507–537.Google Scholar
[82] M. W., Liebeck and G.M., Seitz. On the subgroup structure of classical groups. Invent. Math. 134 (1998), 427–453.Google Scholar
[83] M. W., Liebeck and G.M., Seitz. A survey of maximal subgroups of exceptional groups of Lie type. In Groups, combinatorics & geometry (Durham, 2001). World Sci. Publ., River Edge, NJ, (2003), 139–146.
[84] F., Lübeck. Small degree representations of finite Chevalley groups in defining characteristic. LMS J. Comput. Math. 4 (2001), 135–169.Google Scholar
[85] F., Lübeck. Tables of Weight Multiplicities, <http://www.math.rwth-aachen.de/~Frank.Luebeck/chev/WMSmall/>
[86] F., Lübeck. Conway polynomials for finite fields. <http://www.math.rwth-aachen.de/~Frank.Luebeck/data/ConwayPol/>
[87] Klaus, Lux and Herbert, Pahlings. Representations of groups: a computational approach. Cambridge studies in advanced mathematics, 124. Cambridge University Press, Cambridge, 2010.
[88] K., Magaard, G., Roehrle and D., Testerman. On the irreducibility of sym-metrizations of cross-characteristic representations of finite classical groups. <http://arxiv.org/abs/1201.2057>.
[89] K., Magaard, G., Malle and P.H., Tiep. Irreducibility of tensor squares, symmetric squares and alternating squares. Pacific J. Math. 202 (2002), 379–427.Google Scholar
[90] G., Malle. The maximal subgroups of 2F4(q2). J. Algebra 139 (1991), 52–69.Google Scholar
[91] Gunter, Malle and Donna, Testerman. Linear algebraic groups and finite groups of Lie type. Cambridge studies in advanced mathematics, 133. Cambridge University Press, Cambridge, 2011.
[92] H. H., Mitchell. Determination of the ordinary and modular ternary linear groups. Trans. Amer. Math. Soc. 12 (1911), 207–242.Google Scholar
[93] H. H., Mitchell. The subgroups of the quaternary abelian linear group. Trans. Amer. Math. Soc. 15 (1914), 379–396.Google Scholar
[94] E. H., Moore. The subgroups of the generalized finite modular group. Dicennial publications of the University of Chicago 9 (1904), 141–190.Google Scholar
[95] B., Mwene. On the subgroups of the group PSL4(2m). J. Algebra 41 (1976), 79–107.Google Scholar
[96] B., Mwene. On some subgroups of the group PSL4(q), q odd. Geom. Dedicata 12 (1982), 189–199.Google Scholar
[97] W., Nickel. Endliche Körper in dem gruppentheoretischen Programmsystem GAP. Diplomarbeit, RWTH, Aachen, 1988.
[98] C. M., Roney-Dougal. The primitive groups of degree less than 2500. J. Algebra 292 (2005), 154–183.Google Scholar
[99] M., Schaffer. Twisted tensor product subgroups of finite classical groups. Comm. Algebra 27 (1999), 5097–5166.Google Scholar
[100] Gary M., Seitz. The maximal subgroups of classical algebraic groups. Mem. Amer. Math. Soc. 67 (1987).Google Scholar
[101] G. M., Seitz and A.E., Zalesskii. On the minimal degrees of projective representations of the finite Chevalley groups. II. J. Algebra 158 (1993), 233–243.Google Scholar
[102] C.C., Sims. Computational methods in the study of permutation groups. In Computational Problems in Abstract Algebra (Proc. Conf., Oxford, 1967). Pergamon, Oxford (1970), 169–183.
[103] A. K., Steel. Construction of ordinary irreducible representations of finite groups. PhD Thesis, University of Sydney, 2012.
[104] R., Steinberg. Representations of algebraic groups. Nagoya Math. J. 22 (1963), 33–56.Google Scholar
[105] Robert, Steinberg. Lectures on Chevalley Groups. Yale University Mathematics Department, 1968.
[106] M., Suzuki. On a class of doubly transitive groups. Ann. of Math. (2) 75 (1962), 105–145.Google Scholar
[107] J., Tits. Ovoïdes et groupes de Suzuki. Arch. Math. 13 (1962), 187–198.Google Scholar
[108] Donald E., Taylor. The geometry of the classical groups. Heldermann Verlag, Berlin, 1992.
[109] P. H., Tiep and A.E., Zalesskii. Some aspects of finite linear groups: a survey. J. Math. Sci. (New York) 100 (2000), 1893–1914.Google Scholar
[110] A., Wagner. The subgroups of PSL(5, 2a). Resultate Math. 1 (1978), 207–226.Google Scholar
[111] R. A., Wilson, P. G., Walsh, J., Tripp, I. A. I., Suleiman, R. A., Parker, S. P., Norton, S. J., Nickerson, S. A., Linton, J. N., Bray and R.A., Abbott. Atlas of Finite Group Representations. <http://brauer.maths.qmul.ac.uk/Atlas/v3/>
[112] R. A., Wilson. The complex Leech lattice and maximal subgroups of the Suzuki groups. J. Algebra 84 (1983), 151–188.Google Scholar
[113] R. A., Wilson. Maximal subgroups of automorphism groups of simple groups. J. London Math. Soc. (2) 32 (1985), 460–466.Google Scholar
[114] Robert A., Wilson. The Finite Simple Groups. Graduate Texts in Mathematics, 251. Springer-Verlag London, Ltd., London, 2009.
[115] A., Wiman. Bestimmung aller Untergruppen einer doppelt unendlichen Reihe von einfachen Gruppen. Stockh. Akad. Bihang 25 (1899), 1–47.Google Scholar
[116] A. E., Zalesskii. Classification of the finite linear groups of degrees 4 and 5 over a field of characteristic 2. Dokl. Akad. Nauk BSSR 21 (1977), 389–392, 475.Google Scholar
[117] A. E., Zalesskii and I.D., Suprunenko. Classification of finite irreducible linear groups of rank 4 over a field of characteristic p > 5. Vestsi Akad. Navuk BSSR Ser. Fz.-Mat. Navuk 138 (1978), 9–15.Google Scholar
[118] K., Zsigmondy. Zur Theorie der Potenzreste. Monatsh. für Math. u. Phys. 3 (1892), 265–284.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • John N. Bray, Queen Mary University of London, Derek F. Holt, University of Warwick, Colva M. Roney-Dougal, University of St Andrews, Scotland
  • Book: The Maximal Subgroups of the Low-Dimensional Finite Classical Groups
  • Online publication: 05 July 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139192576.011
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • John N. Bray, Queen Mary University of London, Derek F. Holt, University of Warwick, Colva M. Roney-Dougal, University of St Andrews, Scotland
  • Book: The Maximal Subgroups of the Low-Dimensional Finite Classical Groups
  • Online publication: 05 July 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139192576.011
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • John N. Bray, Queen Mary University of London, Derek F. Holt, University of Warwick, Colva M. Roney-Dougal, University of St Andrews, Scotland
  • Book: The Maximal Subgroups of the Low-Dimensional Finite Classical Groups
  • Online publication: 05 July 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139192576.011
Available formats
×