Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-09T14:26:03.342Z Has data issue: false hasContentIssue false

17 - Lattice basis reduction

from PART IV - LATTICES

Published online by Cambridge University Press:  05 June 2012

Steven D. Galbraith
Affiliation:
University of Auckland
Get access

Summary

The goal of lattice basis reduction is to transform a given lattice basis into a “nice” lattice basis consisting of vectors that are short and close to orthogonal. To achieve this, one needs both a suitable mathematical definition of “nice basis” and an efficient algorithm to compute a basis satisfying this definition.

Reduction of lattice bases of rank 2 in ℝ2 was given by Lagrange and Gauss. The algorithm is closely related to Euclid's algorithm and we briefly present it in Section 17.1. The main goal of this section is to present the lattice basis reduction algorithm of Lenstra, Lenstra and Lovász, known as the LLL or L3 algorithm. This is a very important algorithm for practical applications. Some basic references for the LLL algorithm are Section 14.3 of Smart [513], Section 2.6 of Cohen [127] and Chapter 17 of Trappe and Washington [547]. More detailed treatments are given in von zur Gathen and Gerhard [220], Grötschel, Lovász and Schrijver [245], Section 1.2 of Lovász [356], and Nguyen and Vallée [416]. I also highly recommend the original paper [335].

The LLL algorithm generalises the Lagrange–Gauss algorithm and exploits the Gram–Schmidt orthogonalisation. Note that the Gram–Schmidt process is not useful, in general, for lattices since the coefficients μi,j do not usually lie in ℤ and so the resulting vectors are not usually elements of the lattice. The LLL algorithm uses the Gram–Schmidt vectors to determine the quality of the lattice basis, but ensures that the linear combinations used to update the lattice vectors are all over ℤ.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×