Book contents
- Frontmatter
- Contents
- Preface
- Note on MATLAB
- 1 Dynamic Modeling with Difference Equations
- 2 Linear Models of Structured Populations
- 3 Nonlinear Models of Interactions
- 4 Modeling Molecular Evolution
- 5 Constructing Phylogenetic Trees
- 6 Genetics
- 7 Infectious Disease Modeling
- 8 Curve Fitting and Biological Modeling
- A Basic Analysis of Numerical Data
- B For Further Reading
- References
- Index
Preface
Published online by Cambridge University Press: 05 September 2012
- Frontmatter
- Contents
- Preface
- Note on MATLAB
- 1 Dynamic Modeling with Difference Equations
- 2 Linear Models of Structured Populations
- 3 Nonlinear Models of Interactions
- 4 Modeling Molecular Evolution
- 5 Constructing Phylogenetic Trees
- 6 Genetics
- 7 Infectious Disease Modeling
- 8 Curve Fitting and Biological Modeling
- A Basic Analysis of Numerical Data
- B For Further Reading
- References
- Index
Summary
Interactions between the mathematical and biological sciences have been increasing rapidly in recent years. Both traditional topics, such as population and disease modeling, and new ones, such as those in genomics arising from the accumulation of DNA sequence data, have made biomathematics an exciting field. The best predictions of numerous individuals and committees have suggested that the area will continue to be one of great growth.
We believe these interactions should be felt at the undergraduate level. Mathematics students gain from seeing some of the interesting areas open to them, and biology students benefit from learning how mathematical tools might help them pursue their own interests. The image of biology as a non-mathematical science, which persists among many college students, does a great disservice to those who hold it. This text is an attempt to present some substantive topics in mathematical biology at the early undergraduate level. We hope it may motivate some to continue their mathematical studies beyond the level traditional for biology students.
The students we had in mind while writing it have a strong interest in biological science and a mathematical background sufficient to study calculus. We do not assume any training in calculus or beyond; our focus on modeling through difference equations enables us to keep prerequisites minimal. Mathematical topics ordinarily spread through a variety of mathematics courses are introduced as needed for modeling or the analysis of models.
- Type
- Chapter
- Information
- Mathematical Models in BiologyAn Introduction, pp. vii - xPublisher: Cambridge University PressPrint publication year: 2003