Book contents
- Frontmatter
- Contents
- Preface
- How to use this book
- 1 Paying for parking
- 2 Lengths and angles
- 3 Magic squares
- 4 Intersecting chords
- 5 Crossing squares
- 6 Repeated vector products
- 7 A rolling disc
- 8 Sums of powers of digits
- 9 The metric dimension
- 10 Primes and irreducible elements
- 11 The symmetries of a quadrilateral
- 12 Removing a vertex
- 13 Squares within squares
- 14 Catalan numbers
- References
- Index
How to use this book
Published online by Cambridge University Press: 12 January 2017
- Frontmatter
- Contents
- Preface
- How to use this book
- 1 Paying for parking
- 2 Lengths and angles
- 3 Magic squares
- 4 Intersecting chords
- 5 Crossing squares
- 6 Repeated vector products
- 7 A rolling disc
- 8 Sums of powers of digits
- 9 The metric dimension
- 10 Primes and irreducible elements
- 11 The symmetries of a quadrilateral
- 12 Removing a vertex
- 13 Squares within squares
- 14 Catalan numbers
- References
- Index
Summary
This book is written to help the reader learn how to do research in mathematics. Each chapter contains a project that has been chosen not because of its mathematical importance but because (in the view of the author) it provides a good illustration of how arguments develop, and how new questions arise once some progress is made. These projects have also been chosen because they do not require a deep mathematical background in order to understand the problem and start investigation. Nevertheless, the reader will probably have to learn some more mathematics in order to solve the problems. Some of the problems do not have easy answers, and some are not yet completely solved.
Each chapter focuses on one topic, and although some results and proofs are given in the discussion, many steps are omitted, and it is the responsibility of the reader to locate and fill these gaps. The general rule is that the reader should check every step and provide as much extra material as is necessary to ensure their complete understanding of each step. As we progress through a project, specific questions are asked, and the reader will need to interpret, or clarify, some of these before a solution is attempted. It hardly needs saying that the whole purpose of the book is that the reader should fully engage with these problems and fill in the (many) missing steps in the text itself. Although some theorems, and their proofs, are given, these do not have quite the same role as in most textbooks. The theorems given here serve the purpose of making further progress in order that we can ask yet more questions, for this is the real nature of research.
- Type
- Chapter
- Information
- Mathematical Explorations , pp. xPublisher: Cambridge University PressPrint publication year: 2016