Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-22T19:13:10.596Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  11 May 2023

Karenleigh A. Overmann
Affiliation:
University of Colorado, Colorado Springs
Tom Wynn
Affiliation:
University of Colorado, Colorado Springs
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
The Materiality of Numbers
Emergence and Elaboration from Prehistory to Present
, pp. 354 - 405
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adelaar, W. F. H. (2004). The languages of the Andes. Cambridge University Press.Google Scholar
Adelaar, W. F. H. (2010). Trayectoria histórica de la familia lingüística quechua y sus relaciones con la familia lingüística aimara. Boletín de Arqueología PUCP, 14, 239254.Google Scholar
Adeyinka, A. A. (2010). Proposal for a Yoruba decimal counting system. Ghana Journal of Education and Teaching, 11, 221235.Google Scholar
ADIA-RBINS. (2015). Discover Ishango. Association for the Dissemination of Archaeological Information (ADIA) and Royal Belgian Institute of Natural Sciences (RBINS). www.naturalsciences.be/sites/default/files/Discover Ishango.pdfGoogle Scholar
ADIA-RBINS. (2018). The second Ishango bone. Association for the Dissemination of Archaeological Information (ADIA) and Royal Belgian Institute of Natural Sciences (RBINS). Retrieved January 22, 2019, from http://ishango.naturalsciences.be/EN/EN-Ishango-21.htmlGoogle Scholar
Adkins, J. E. (1956). An historical and analytical study of the tally, the knotted cord, the fingers, and the abacus [Doctoral thesis, Ohio State University].Google Scholar
Aitchison, J. (2012). Words in the mind: An introduction to the mental lexicon (4th ed.). John Wiley & Sons.Google Scholar
Aitken-Soux, P., & Ccama, F. (1990). Abaco Andino, Instrumento ancestral de cómputo. In Mackey, C. J., Plasencia, H. P., di Primeglio, C. R., & Pastor, H. R. (Eds.), Quipu y yupana: Colección de escritos (pp. 267272). Consejo Nacional de Ciencia y Tecnología.Google Scholar
Akinadé, O. O., & Ọdẹ́jọbí, Ọ. A. (2014). Computational modelling of Yorùbá numerals in a number-to-text conversion system. Journal of Language Modelling, 2(1), 167211.Google Scholar
Alemán, T., López, R., & Miller, M. (2000). Wirã ya, peamasa ya wereri-turi: Desano–Español, diccionario bilingüe de 896 palabras. Editorial Alberto Lleras Camargo.Google Scholar
Allot, R. (2012). The motor theory of language origin: 1989. Xlibris Corporation.Google Scholar
Alonso, J. R. (2019). Missing fingers. European Journal of Anatomy, 23(2), 147149.Google Scholar
Amalric, M., & Dehaene, S. (2016). Origins of the brain networks for advanced mathematics in expert mathematicians. Proceedings of the National Academy of Sciences of the United States of America, 113(18), 49094917.Google Scholar
Amalric, M., & Dehaene, S. (2018). Cortical circuits for mathematical knowledge: Evidence for a major subdivision within the brain’s semantic networks. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 373(1740), 19.Google Scholar
Ambrose, S. H. (2010). Coevolution of composite-tool technology, constructive memory, and language: Implications for the evolution of modern human behavior. Current Anthropology, 51(S1), S135S147.Google Scholar
Amiet, P. (1966). Il y a 5000 ans les Élamites inventaient l’écriture. Archéologia, 12, 1623.Google Scholar
Amiet, P. (1972). Mémoires de la délégation archéologique en Iran, Tome XLIII, Mission de Susiane (Vol. I). Librairie Orientaliste Paul Geuthner.Google Scholar
Amiet, P. (1987). Approche physique de la comptabilité à l’Époque d’Uruk: Les bulles-enveloppes de Suse. In Huot, J.-L. (Ed.), Préhistoire de la Mésopotamie: La Mésopotamie préhistorique et l’exploration récente du djebel Hamrin (pp. 331334). Éditions du Centre National de la Recherche Scientifique.Google Scholar
Andrien, K. J. (2001). Andean worlds: Indigenous history, culture, and consciousness under Spanish rule, 1532–1825. University of New Mexico Press.Google Scholar
Ansari, D. (2008). Effects of development and enculturation on number representation in the brain. Nature Reviews: Neuroscience, 9(4), 278291.Google Scholar
Ansari, D., Garcia, N., Lucas, E., Hamon, K., & Dhital, B. (2005). Neural correlates of symbolic number processing in children and adults. Neuroreport, 16(16), 17691773.Google Scholar
Anthony, D. W. (2007). The horse, the wheel, and language: How Bronze-Age riders from the Eurasian steppes shaped the modern world. Princeton University Press.Google Scholar
Antropova, V. V., & Kuznetsova, V. G. (1956). The Chukchi. In Levin, M. G. & Potapov, L. P. (Eds.), The peoples of Siberia (1964 ed., S. Technica, Trans., pp. 799835). University of Chicago Press.Google Scholar
AP. (2003, May 9). Monkeys don’t write Shakespeare. Associated Press. web.archive.org/web/20040201230858/www.wired.com/news/culture/0%2C1284%2C58790%2C00.htmlGoogle Scholar
Ardila, A. (2011). There are two different language systems in the brain. Journal of Behavioral and Brain Science, 1(2), 2336.Google Scholar
Aristotle. (1961). On the parts of animals (A. L. Peck, Trans.). Harvard University Press. (Original work written 350 BCE)Google Scholar
Armstrong, R. G. (1962). Yoruba numerals. Oxford University Press.Google Scholar
Ascher, M., & Ascher, R. (1981). Code of the quipu: A study in media, mathematics, and culture. University of Michigan Press.Google Scholar
Ascher, R. (1961). Analogy in archaeological interpretation. Southwestern Journal of Anthropology, 17(4), 317325.Google Scholar
Atema, J. (2004). Old bone flutes. Pan, 23(4), 1823.Google Scholar
Azevedo, F. A. C., Carvalho, L. R. B., Grinberg, L. T., et al. (2009). Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. Journal of Comparative Neurology, 513(5), 532541.Google Scholar
Babarinde, O. (2014). Linguistic analysis of the structure of Yoruba numerals. Language Matters, 45(1), 127147.Google Scholar
Baddeley, A. D. (2007). Working memory, thought, and action. Oxford University Press.Google Scholar
Baddeley, A. D., & Hitch, G. J. (1974). Working memory. In Bower, G. H. (Ed.), The psychology of learning and motivation: Advances in research and theory (Vol. 8, pp. 4789). Academic Press.Google Scholar
Baddeley, A. D., & Logie, R. H. (1999). Working memory: The multi-component model. In Miyake, A. & Shah, P. (Eds.), Models of working memory: Mechanisms of active maintenance and executive control (pp. 2861). Cambridge University Press.CrossRefGoogle Scholar
Bagge, L. M. (1906). The early numerals. The Classical Review, 20(5), 259267.Google Scholar
Balbi, A. (1826). Observations sur la classification des langues océaniennes. Atlas ethnographique du globe, ou classification des peuples anciens et modernes d’après leur langue: Vol. 1. Discours préliminaire et introduction (pp. 230278). Paul Renouard.Google Scholar
Balsters, J. H., Whelan, C. D., Robertson, I. H., & Ramnani, N. (2013). Cerebellum and cognition: Evidence for the encoding of higher order rules. Cerebral Cortex, 23(6), 14331443.Google Scholar
Bandy, M. (2008). Global patterns of early village development. In Bocquet-Appel, J.-P. & Bar-Yosef, O. (Eds.), The Neolithic demographic transition and its consequences (pp. 333357). Springer Science+Business Media, B.V.Google Scholar
Barceló-Coblijn, L., & Gomila, A. (2012). Evidence of recursion in tool use. Behavioral and Brain Sciences, 35(4), 1718.Google Scholar
Barham, L., & Everett, D. (2021). Semiotics and the origin of language in the Lower Palaeolithic. Journal of Archaeological Method and Theory, 28(2), 535579.Google Scholar
Barker, J. (1953). Memoria sobre la cultura de los Guaika. Boletín Indigenista Venezolano, 1, 433499.Google Scholar
Barnard, A. (2016). Nothing wrong with reasoned speculation. Antiquity, 90(352), 10841085.Google Scholar
Barner, D. (2012). Bootstrapping numeral meanings and the origin of exactness. Language Learning and Development, 8(2), 177185.Google Scholar
Barras, C. (2021). How did Neanderthals and other ancient humans learn to count? Nature, 594(7861), 2225.Google Scholar
Barraza Lescano, S., Areche Espinola, R., & Marcone Flores, G. (2022). By stones and by knots: The counting and recording of chili peppers stored during the Inca occupation of the Guarco administrative center of Huacones-Vilcahuasi, Lower Canete Valley, Peru. Andean Past, 13(1), 221264.Google Scholar
Basgall, M. E. (1982). Archaeology and linguistics: Pomoan prehistory as viewed from Northern Sonoma County, California. Journal of California and Great Basin Anthropology, 4(1), 322.Google Scholar
Bastir, M., Rosas, A., Gunz, P., et al. (2011). Evolution of the base of the brain in highly encephalized human species. Nature Communications, 2, 18.Google Scholar
Bastir, M., Rosas, A., Lieberman, D. E., & O’Higgins, P. (2008). Middle cranial fossa anatomy and the origin of modern humans. The Anatomical Record, 291(2), 130140.Google Scholar
BBC. (2003, May 9). No words to describe monkeys’ play. British Broadcasting Corporation. http://news.bbc.co.uk/2/hi/3013959.stmGoogle Scholar
Beaumont, P. B. (1973). Border Cave: A progress report. South Africa Journal of Science, 69, 4146.Google Scholar
Bede. (1999). De temporum ratione (F. Wallis, Trans.). Liverpool University Press. (Original work written 725 CE)Google Scholar
Beekes, R. S. P. (2011). The numerals. Comparative Indo-European linguistics: An introduction (2nd ed., pp. 237243). John Benjamins.Google Scholar
Bellamy, K. (2018). Re-evaluating the “numeral classifier” system in Mochica. LIAMES: Línguas Indígenas Americanas, 18(1), 8198.Google Scholar
Bender, A., & Beller, S. (2006). “Fanciful” or genuine? Bases and high numerals in Polynesian number systems. Journal of the Polynesian Society, 115(1), 746.Google Scholar
Bender, A., & Beller, S. (2007). Counting in Tongan: The traditional number systems and their cognitive implications. Journal of Cognition and Culture, 7(3), 213239.Google Scholar
Bender, A., & Beller, S. (2014). Mangarevan invention of binary steps for easier calculation. Proceedings of the National Academy of Sciences of the United States of America, 111(4), 13221327.Google Scholar
Bender, A., & Beller, S. (2017). The power of 2: How an apparently irregular numeration system facilitates mental arithmetic. Cognitive Science, 41(1), 158187.Google Scholar
Bennett, W. C. (1949). Mnemonic and recording devices. In Steward, J. H. (Ed.), Handbook of South American Indians: Vol. 5. The comparative ethnology of South American Indians (pp. 611619). United States Government.Google Scholar
Bennison-Chapman, L. E. (2018). Clay objects as “tokens”? Evidence for early counting and administration at Late Neolithic Tell Sabi Abyad, Mesopotamia. Levant, 50(3), 305337.Google Scholar
Beran, M. J. (2012). Quantity judgments of auditory and visual stimuli by chimpanzees (Pan troglodytes). Journal of Experimental Psychology: Animal Behavior Processes, 38(1), 2329.Google Scholar
Berlin, B., & Kay, P. (1969). Basic color terms: Their universality and evolution. University of California Press.Google Scholar
Bickerton, D. (2002). From protolanguage to language. Proceedings of the British Academy, 106, 103120.Google Scholar
Birch, H. G., & Rabinowitz, H. S. (1951). The negative effect of previous experience on productive thinking. Journal of Experimental Psychology, 41(2), 121125.Google Scholar
Bird, S. (1998). Strategies for representing tone in African writing systems: A critical review. 1–33. http://cogprints.org/2174/5/wll2.pdfGoogle Scholar
Bird, S. (1999). When marking tone reduces fluency: An orthography experiment in Cameroon. Language and Speech, 42(1), 83115.Google Scholar
Birket-Smith, K. (1966). The circumpacific distribution of knot records. Folk: Dansk Etnografisk Tidsskrift, 8–9, 1524.Google Scholar
Biro, D., & Matsuzawa, T. (2001). Use of numerical symbols by the chimpanzee (Pan troglodytes): Cardinals, ordinals, and the introduction of zero. Animal Cognition, 4(3–4), 193199.Google Scholar
Blake, B. J., Clark, I. D., & Krishna-Pillay, S. H. (1998). Wathawurrung and the Colac language of Southern Victoria. In Blake, B. J. (Ed.), Wathawurrung: The language of the Geelong–Ballarat area (pp. 59154). Pacific Linguistics.Google Scholar
Blažek, V. (n.d.). Afroasiatic migrations: Linguistic evidence. Filozofická fakulta, Masarykova univerzita. www.phil.muni.cz/jazyk/files/AAmigrationsCORR.pdfGoogle Scholar
Blažek, V. (1999). Numerals: Comparative etymological analyses and their implications: Saharan, Nubian, Egyptian, Berber, Kartvelian, Uralic, Altaic and Indo-European languages. Masarykova Univerzita.Google Scholar
Bolhuis, J. J., Tattersall, I., Chomsky, N., & Berwick, R. C. (2014). How could language have evolved? PLoS Biology, 12(8), 16.Google Scholar
Bomhard, A. R. (2008). Some thoughts on the Proto-Indo-European cardinal numbers. In Bengtson, J. D. (Ed.), In hot pursuit of language in prehistory. Essays in the four fields of anthropology in honor of Harold Crane Fleming (pp. 213222). John Benjamins.Google Scholar
Botha, R. (2006). On the windows approach to language evolution. Language & Communication, 26(2), 129143.Google Scholar
Botha, R. (2012). Protolanguage and the “God particle.Lingua, 122, 13081324.Google Scholar
Botha, R. (2016). Language evolution: The Windows Approach. Cambridge University Press.Google Scholar
Botha, R. (2020). Neanderthal language: Demystifying the linguistic powers of our extinct cousins. Cambridge University Press.CrossRefGoogle Scholar
Bowern, C., & Zentz, J. (2012). Diversity in the numeral systems of Australian languages. Anthropological Linguistics, 54(2), 133160.Google Scholar
Bowers, N. (1977). Kapauku numeration: Reckoning, racism, scholarship, and Melanesian counting systems. Journal of the Polynesian Society, 86(1), 105116.Google Scholar
Bowers, N., & Lepi, P. (1975). Kaugel Valley systems of reckoning. Journal of the Polynesian Society, 84(3), 309324.Google Scholar
Braidwood, R. J., Braidwood, L. S., & Haines, R. C. (1960). Excavations in the Plain of Antioch (Vol. 1). University of Chicago Press.Google Scholar
Bramanti, A. (2015). Rethinking the writing space: Anatomy of some early dynastic signs. In Devecchi, E., Müller, G. G. W., & Mynářová, J. (Eds.), Proceedings of the 60e Rencontre Assyriologique Internationale, Warsaw 2014: Current research in cuneiform palaeography (pp. 3147). PeWe-Verlag.Google Scholar
Brannon, E. M. (2005). The independence of language and mathematical reasoning. Proceedings of the National Academy of Sciences of the United States of America, 102(9), 31773178.Google Scholar
Brannon, E. M. (2006). The representation of numerical magnitude. Current Opinion in Neurobiology, 16(2), 222229.Google Scholar
Brannon, E. M., & Roitman, J. D. (2003). Nonverbal representations of time and number in animals and human infants. In Meck, W. H. (Ed.), Functional and neural mechanisms of interval timing (pp. 143182). CRC Press.Google Scholar
Bravo, M. J., & Nakayama, K. (1992). The role of attention in different visual-search tasks. Attention, Perception & Psychophysics, 51(5), 465472.Google Scholar
Breyl, M. (2021). Triangulating Neanderthal cognition: A tale of not seeing the forest for the trees. Wiley Interdisciplinary Reviews: Cognitive Science, 12(2), 120.Google Scholar
Broaders, S. C., Cook, S. W., Mitchell, Z. A., & Goldin-Meadow, S. (2007). Making children gesture brings out implicit knowledge and leads to learning. Journal of Experimental Psychology: General, 136(4), 539550.Google Scholar
Brokaw, G. (2010). A history of the khipu. Cambridge University Press.Google Scholar
Broman, V. L. (1958). Jarmo figurines. Radcliffe College.Google Scholar
Brooks, A. S., Helgren, D. M., Cramer, J. S., et al. (1995). Dating and context of three Middle Stone Age sites with bone points in the Upper Semliki Valley, Zaire. Science, New Series, 268(5210), 548553.Google Scholar
Brooks, A. S., & Smith, C. C. (1987). Ishango revisited: New age determinations and cultural interpretations. African Archaeological Review, 5, 6578.Google Scholar
Brooks, N. B., Barner, D., Frank, M. C., & Goldin-Meadow, S. (2014). Abacus: Gesture in the mind, not the hands. In Bello, P., Guarini, M., McShane, M., & Scassellati, B. (Eds.), Proceedings of the Cognitive Science Society (Vol. 36, pp. 7273). Cognitive Science Society.Google Scholar
Brouwer, L. E. J. (1981). Brouwer’s Cambridge lectures on intuitionism (van Dalen, D., Ed.). Cambridge University Press.Google Scholar
Bruner, E. (2004). Geometric morphometrics and paleoneurology: Brain shape evolution in the genus Homo. Journal of Human Evolution, 47(5), 279303.Google Scholar
Bruner, E. (2010). Morphological differences in the parietal lobes with the human genus: A neurofunctional perspective. Current Anthropology, 51(S1), S77S88.Google Scholar
Bruner, E., de la Cuétara, J. M., & Holloway, R. L. (2011). A bivariate approach to the variation of the parietal curvature in the genus Homo. Anatomical Record, 294(9), 15481556.Google Scholar
Bruner, E., & Holloway, R. L. (2010). A bivariate approach to the widening of the frontal lobes in the genus Homo. Journal of Human Evolution, 58(2), 138146.Google Scholar
Bruner, E., Manzi, G., & Arsuaga, J. L. (2003). Encephalization and allometric trajectories in the genus Homo: Evidence from the Neandertal and modern lineages. Proceedings of the National Academy of Sciences of the United States of America, 100(26), 1533515340.Google Scholar
Bruner, E., Rangel de Lázaro, G., de la Cuétara, J. M., et al. (2014). Midsagittal brain variation and MRI shape analysis of the precuneus in adult individuals. Journal of Anatomy, 224(4), 367376.Google Scholar
Burr, D. C., Turi, M., & Anobile, G. (2010). Subitizing but not estimation of numerosity requires attentional resources. Journal of Vision, 10(6), 110.Google Scholar
Burrows, N. D., Burbidge, A. A., Fuller, P. J., & Behn, G. (2006). Evidence of altered fire regimes in the Western Desert region of Australia. Conservation Science Western Australia, 5(3), 272284.Google Scholar
Burton, R. F. (1863). Notes on certain matters connected with the Dahoman. In Memoirs read before the Anthropological Society of London (Vol. 1, pp. 308321). Trübner and Co.Google Scholar
Butterworth, B., Reeve, R., & Reynolds, F. (2011). Using mental representations of space when words are unavailable: Studies of enumeration and arithmetic in indigenous Australia. Journal of Cross-Cultural Psychology, 42(4), 630638.CrossRefGoogle Scholar
Butterworth, B., Reeve, R., Reynolds, F., & Lloyd, D. (2008). Numerical thought with and without words: Evidence from indigenous Australian children. Proceedings of the National Academy of Sciences of the United States of America, 105(35), 1317913184.CrossRefGoogle ScholarPubMed
Cajori, F. (1899). The number concept. Colorado College Studies: Papers Read before the Colorado College Scientific Society, 8, 3240.Google Scholar
Calude, A. S. (2021). The history of number words in the world’s languages – What have we learnt so far? Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 376(1824),15.Google Scholar
Cantlon, J. F., & Brannon, E. M. (2007). Adding up the effects of cultural experience on the brain. Trends in Cognitive Sciences, 11(1), 14.Google Scholar
Cantlon, J. F., Brannon, E. M., Carter, E. J., & Pelphrey, K. A. (2006). Functional imaging of numerical processing in adults and 4-y-old children. PLoS Biology, 4(5), 844854.Google Scholar
Carey, S. (2009). The origin of concepts. Oxford University Press.Google Scholar
Carreiras, M., Monahan, P. J., Lizarazu, M., Duñabeitia, J. A., & Molinaro, N. (2015). Numbers are not like words: Different pathways for literacy and numeracy. NeuroImage, 118, 7989.Google Scholar
Carroll, A. (Ed.). (1896). The message sticks. The Australasian Anthropological Journal, 1(1), 1011.Google Scholar
Carvalho, S., Biro, D., McGrew, W. C., & Matsuzawa, T. (2009). Tool-composite reuse in wild chimpanzees (Pan troglodytes): Archaeologically invisible steps in the technological evolution of early hominins? Animal Cognition, 12(1), 103114.Google Scholar
Cavigneaux, A., & Clevenstine, E. (2018). MAH 15887: Animal husbandry and animal paleography. Altorientalische Forschungen, 45(1), 5059.Google Scholar
Chambers, E. (1728). Cyclopædia, or, An universal dictionary of arts and sciences (Vol. 2). J. and J. Knapton. http://digital.library.wisc.edu/1711.dl/HistSciTech.Cyclopaedia02Google Scholar
Chan, E. (Ed.). (2021). Numeral systems of the world’s languages. Max Planck Institute. https://lingweb.eva.mpg.de/channumerals/Google Scholar
Charlton, S. G., & Starkey, N. J. (2011). Driving without awareness: The effects of practice and automaticity on attention and driving. Transportation Research Part F: Traffic Psychology and Behaviour, 14(6), 456471.Google Scholar
Chaumeil, J.-P. (2005). Mémoire nouée: Les cordelettes à nœuds en Amazonie. In Grupioni, L. D. B. (Ed.), Brésil indien: Les arts des Amérindiens du Brésil (pp. 295303). Réunion des Musées Nationaux.Google Scholar
Chemero, A. (2009). Radical embodied cognitive science. MIT Press.Google Scholar
Choi, H.-J., Zilles, K., Mohlberg, H., et al. (2006). Cytoarchitectonic identification and probabilistic mapping of two distinct areas within the anterior ventral bank of the human intraparietal sulcus. Journal of Comparative Neurology, 495(1), 5369.Google Scholar
Chomsky, N. (1980). Rules and representations. Basil Blackwell.Google Scholar
Chomsky, N. (1982). The generative enterprise revisited: Discussions with Riny Huybregts, Henk van Riemsdijk, Naoki Fukui and Mihoko Zushi (1st ed.). Foris Publications.Google Scholar
Chomsky, N. (1988). Language and problems of knowledge: The Managua lectures. MIT Press.Google Scholar
Chomsky, N. (2004a). Biolinguistics and the human capacity. Magyar Tudományos Akadémia.Google Scholar
Chomsky, N. (2004b). The generative enterprise revisited: Discussions with Riny Huybregts, Henk van Riemsdijk, Naoki Fukui and Mihoko Zushi (2nd ed.). Mouton de Gruyter.Google Scholar
Chrisomalis, S. (2004). A cognitive typology for numerical notation. Cambridge Archaeological Journal, 14(1), 3752.Google Scholar
Chrisomalis, S. (2010). Numerical notation: A comparative history. Cambridge University Press.Google Scholar
Chrisomalis, S. (2020). Reckonings: Numerals, cognition, and history. MIT Press.Google Scholar
Christie, S., & Gentner, D. (2007). Relational similarity in identity relation: The role of language. In Vosniadou, S., Kayser, D., & Protopapas, A. (Eds.), Proceedings of the 2nd European cognitive science conference (pp. 402406). Lawrence Erlbaum Associates.Google Scholar
Churchward, C. M. (1941). A new Fijian grammar. Australasian Medical Publishing Company.Google Scholar
Clark, A. (2008). Supersizing the mind: Embodiment, action, and cognitive extension. Oxford University Press.Google Scholar
Clark, A., & Chalmers, D. J. (1998). The extended mind. Analysis, 58(1), 719.Google Scholar
Clarke, S., & Beck, J. (2021). The number sense represents (rational) numbers. Behavioral and Brain Sciences, 44, 1–57.Google Scholar
Clarkson, C., Jacobs, Z., Marwick, B., et al. (2017). Human occupation of northern Australia by 65,000 years ago. Nature, 547(7663), 306310.Google Scholar
Closs, M. P. (1993). Native American number systems. In Closs, M. P. (Ed.), Native American mathematics (pp. 343). University of Texas Press.Google Scholar
Clottes, J., & Courtin, J. (1994). La grotte Cosquer: Peintures et gravures de la caverne engloutie. Seuil.Google Scholar
Clottes, J., Courtin, J., & Vanrell, L. (2005). Cosquer redécouvert. Seuil.Google Scholar
Clottes, J., Valladas, H., Cachier, H., & Arnold, M. (1992). Des dates pour Niaux et Gargas. Bulletin de la Société préhistorique française, 89(9), 270274.Google Scholar
Cohen, L., & Dehaene, S. (2004). Specialization within the ventral stream: The case for the visual word form area. NeuroImage, 22, 466476.Google Scholar
Coinman, N. R. (1996). Worked bone in the Levantine Upper Paleolithic: Rare examples from the Wadi al-Hasa, West-Central Jordan. Paléorient, 22(2), 113121.Google Scholar
Collocott, E. E. V. (1925). Supplementary Tongan vocabulary; also notes on measuring and counting, proverbial expressions and phases of the moon. Journal of the Polynesian Society, 34(3), 193213.Google Scholar
Collocott, E. E. V. (1927). Kava ceremonial in Tonga. Journal of the Polynesian Society, 36(1), 2147.Google Scholar
Coltheart, M. (2014). The neuronal recycling hypothesis for reading and the question of reading universals. Mind & Language, 29(3), 255269.Google Scholar
Comrie, B. (2011). Typology of numeral systems. Max Planck Institute. https://lingweb.eva.mpg.de/channumerals/TypNum_Latest_21ho.pdfGoogle Scholar
Comrie, B. (2013). Numeral bases. In Dryer, M. S. & Haspelmath, M. (Eds.), World atlas of language structures online. Max Planck Institute for Evolutionary Anthropology. http://wals.info/chapter/131Google Scholar
Conant, L. L. (1896). The number concept: Its origin and development. Macmillan and Co.Google Scholar
Cook, J. (1777). A voyage towards the South Pole and round the world, performed in His Majesty’s ships, the Resolution and Adventure, in the years 1772, 1773, 1774 and 1775: Vol. 2, Book III. From Ulietea to New Zealand. W. Strahan and T. Cadell.Google Scholar
Cook, S. W., Mitchell, Z. A., & Goldin-Meadow, S. (2008). Gesturing makes learning last. Cognition, 106(2), 10471058.Google Scholar
Cook, S. W., Yip, T. K., & Goldin-Meadow, S. (2010). Gesturing makes memories that last. Journal of Memory and Language, 63(4), 465475.Google Scholar
Coolidge, F. L. (2021). The role of the cerebellum in creativity and expert stone knapping. Adaptive Behavior, 29(2), 217229.Google Scholar
Coolidge, F. L., & Overmann, K. A. (2012). Numerosity, abstraction, and the emergence of symbolic thinking. Current Anthropology, 53(2), 204225.Google Scholar
Coolidge, F. L., Overmann, K. A., & Wynn, T. (2023). On the problem of the interpretation of symbols and symbolism in archaeology. In Wynn, T., Overmann, K. A., & Coolidge, F. L. (Eds.), The Oxford handbook of cognitive archaeology. Oxford University Press.Google Scholar
Coolidge, F. L., & Wynn, T. (2011). Commentary on Henshilwood and Dubreuil, The Still Bay and Howiesons Poort, 77–59 ka: Symbolic material culture and the evolution of the mind during the African Middle Stone Age. Current Anthropology, 52(3), 380382.Google Scholar
Coolidge, F. L., & Wynn, T. (2018). The rise of Homo sapiens: The evolution of modern thinking (2nd ed.). Oxford University Press.Google Scholar
Coolidge, F. L., Wynn, T., & Overmann, K. A. (2023). The expert Neandertal mind and brain, revisited. In Wynn, T., Overmann, K. A., & Coolidge, F. L. (Eds.), The Oxford handbook of cognitive archaeology. Oxford University Press.Google Scholar
Copeland, L., & Hours, F. F. (1977). Engraved and plain bone tools from Jita (Lebanon) and their early Kebaran context. Proceedings of the Prehistoric Society, 43, 295301.Google Scholar
Corazza, M., Ferrara, S., Montecchi, B., Tamburini, F., & Valério, M. (2021). The mathematical values of fraction signs in the Linear A script: A computational, statistical and typological approach. Journal of Archaeological Science, 125, 114.Google Scholar
Corballis, M. C. (1999). The gestural origins of language: Human language may have evolved from manual gestures, which survive today as a “behavioral fossil” coupled to speech. American Scientist, 87(2), 138145.Google Scholar
Corbett, G. G. (2000). Number. Cambridge University Press.Google Scholar
Coubart, A., Izard, V., Spelke, E. S., Marie, J., & Streri, A. (2014). Dissociation between small and large numerosities in newborn infants. Developmental Science, 17(1), 1122.Google Scholar
Cowan, N. (2010). The magical mystery four: How is working memory capacity limited, and why? Current Directions in Psychological Science, 19(1), 5157.Google Scholar
Crollen, V., Mahe, R., Collignon, O., & Seron, X. (2011). The role of vision in the development of finger-number interactions: Finger-counting and finger-montring in blind children. Journal of Experimental Child Psychology, 109(4), 525539.Google Scholar
Crosby, W. H. (1860). Quintus Curtius Rufus: Life and exploits of Alexander the Great (2nd ed.). D. Appleton and Company.Google Scholar
Crowther, S. (1852). A grammar of the Yoruba language. Seeleys.Google Scholar
Curr, E. M. (1886a). The Australian race: Its origin, languages, customs, place of landing in Australia, and the routes by which it spread itself over that continent (Vol. 1). John Ferres, Government Printer.Google Scholar
Curr, E. M. (1886b). The Australian race: Its origin, languages, customs, place of landing in Australia, and the routes by which it spread itself over that continent (Vol. 2). John Ferres, Government Printer.Google Scholar
Curr, E. M. (1886c). The Australian race: Its origin, languages, customs, place of landing in Australia, and the routes by which it spread itself over that continent (Vol. 3). John Ferres, Government Printer.Google Scholar
Currie, A. (2016). Ethnographic analogy, the comparative method, and archaeological special pleading. Studies in History and Philosophy of Science, Part A, 55, 8494.Google Scholar
Dadda, M., Piffer, L., Agrillo, C., & Bisazza, A. (2009). Spontaneous number representation in mosquitofish. Cognition, 112(2), 343348.Google Scholar
Damerow, P. (1988). Individual development and cultural evolution of arithmetical thinking. In Strauss, S. (Ed.), Ontogeny, phylogeny, and historical development: The Tel Aviv annual workshop in human development (Vol. 2, pp. 125152). Ablex Publishing Corporation.Google Scholar
Damerow, P. (1996a). Number as a second-order concept. Science in Context, 9(2), 139149.Google Scholar
Damerow, P. (1996b). Prehistory and cognitive development. In Killen, M. (Ed.), Invited lecture at the twenty-fifth annual symposium of the Jean Piaget Society Berkeley, June 1 – June 3, 1995 (pp. 137). Max Planck Institute for the History of Science.Google Scholar
Damerow, P. (2010). Abstraction and representation: Essays on the cultural evolution of thinking. Kluwer Academic.Google Scholar
Da Silva, A. B. A. (1962). The indigenous civilization of the Uaupés (I. Lillios, Trans.). Centro de Pesquisas de Iauareté.Google Scholar
Davidson, I., & Noble, W. (1989). The archaeology of perception: Traces of depiction and language. Current Anthropology, 30(2), 125155.Google Scholar
Davies, M., & Gardner, D. (2013). A frequency dictionary of contemporary American English: Word sketches, collocates and thematic lists. Routledge.Google Scholar
Davis, H., MacKenzie, K. A., & Morrison, S. (1989). Numerical discrimination by rats (Rattus norvegicus) using body and vibrissal touch. Journal of Comparative Psychology, 103(1), 4553.Google Scholar
Davis, S. J. M. (1974). Incised bones from the Mousterian of Kebara cave (Mount Carmel) and the Aurignacian of Ha-Yonim cave (Western Galilee), Israel. Paléorient, 2(1), 181182.Google Scholar
Dayan, Y. (1969). Tell Turmus in the Ḥuleh Valley. Israel Exploration Journal, 19(2), 6578.Google Scholar
Deacon, T. W. (2012). The symbol concept. In Tallerman, M. & Gibson, K. R. (Eds.), The Oxford handbook of language evolution (pp. 393405). Oxford University Press.Google Scholar
De Acosta, J. (1590). Historia natural moral de las Indias, en que se tratan las cosas notables del cielo, y elementos, mentales, plantas, y animales dellas: y los ritos, y ceremonias, leyes, y gouierno, y guerras de los Indios. Juan de Leon.Google Scholar
De Acosta, J. (1608). Historia natural y moral de las indias, en que se tratan las cosa notables del cielo, y elementos, metales, plantas, y animales dellas: y los ritos, y ceremonias, leyes, y gouierno, y guerras de los Indios. Alonso Martin.Google Scholar
De Cruz, H. (2012). Are numbers special? Cognitive technologies, material culture and deliberate practice. Current Anthropology, 53(2), 204225.Google Scholar
Dehaene, S. (2011). The number sense: How the mind creates mathematics (Revised edition). Oxford University Press.Google Scholar
Dehaene, S., & Cohen, L. (2007). Cultural recycling of cortical maps. Neuron, 56(2), 384398.Google Scholar
Dehaene, S., & Cohen, L. (2011). The unique role of the visual word form area in reading. Trends in Cognitive Sciences, 15(6), 254262.Google Scholar
Dehaene, S., Izard, V., Spelke, E. S., & Pica, P. (2008). Log or linear? Distinct intuitions of the number scale in Western and Amazonian indigene cultures. Science, 320(5880), 12171220.Google Scholar
Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychology, 20(3), 487506.Google Scholar
Dehaene, S., Spelke, E. S., Pinel, P., Stanescu, R., & Tsivkin, S. (1999). Sources of mathematical thinking: Behavioral and brain-imaging evidence. Science, 284(5416), 970974.Google Scholar
De Heinzelin, J. (1962). Ishango. Scientific American, 206(6), 105116.Google Scholar
De Heinzelin, J., Clark, J. D., White, T. D., et al. (1999). Environment and behavior of 2.5-million-year-old Bouri hominids. Science, 284(5414), 625629.Google Scholar
De la Vega, G. (1609). Commentarios reales, que tratan del origen de los Yncas, reyes que fueron del Peru, De su idolatria, leyes, y gouierno en paz y en guerra: de sus vidas y conquistas, y detodo lo que sue aquel Imperio y su Republica, antes que los Españoles passaran a el. Pedro Crasbeeck.Google Scholar
De Morgan, J.-J. (1905). Découverte d’une sépulture achéménide à Suse. In Mémoires de la Délégation en Perse 8. Recherches archéologiques, troisième série (pp. 2958). Ernest Leroux.Google Scholar
Denbow, J. (2016). Analogy and the danger of over-simplifying the past. Antiquity, 90(352), 10861086.Google Scholar
De Pasquale, N. (n.d.). The recovered empire. http://quipus.it/english/THE SAVED KINGDOM.pdfGoogle Scholar
De Pasquale, N. (2001). Il volo del condor. In Rivista dell’Ordine degli Ingegneri della Provincia di Pescara.Google Scholar
D’Errico, F. (1989). Reply to Marshack, “On wishful thinking and lunar ‘calendars’.” Current Anthropology, 30(4), 494500.Google Scholar
D’Errico, F. (1991). Microscopic and statistical criteria for the identification of prehistoric systems of notation. Rock Art Research, 8, 8393.Google Scholar
D’Errico, F. (1995). A new model and its implications for the origin of writing: The La Marche antler revisited. Cambridge Archaeological Journal, 5(2), 163206.Google Scholar
D’Errico, F. (1998). Palaeolithic origins of artificial memory systems: An evolutionary perspective. In Renfrew, C. & Scarre, C. (Eds.), Cognition and material culture: The archaeology of symbolic storage (pp. 1950). McDonald Institute for Archaeological Research.Google Scholar
D’Errico, F. (2001). Memories out of mind: The archaeology of the oldest memory systems. In Nowell, A. (Ed.), In the mind’s eye: Multidisciplinary approaches to the evolution of human cognition (pp. 3349). International Monographs in Prehistory.Google Scholar
D’Errico, F., Backwell, L., Villa, P., et al. (2012). Early evidence of San material culture represented by organic artifacts from Border Cave, South Africa. Proceedings of the National Academy of Sciences of the United States of America, 109(33), 1321413219.Google Scholar
D’Errico, F., & Cacho, C. (1994). Notation versus decoration in the Upper Palaeolithic: A case-study from Tossal de la Roca, Alicante, Spain. Journal of Archaeological Science, 21(2), 185200.Google Scholar
D’Errico, F., Doyon, L., Colagé, I., et al. (2018). From number sense to number symbols. An archaeological perspective. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 373(1740), 110.Google Scholar
D’Errico, F., Henshilwood, C. S., Vanhaeren, M., & Van Niekerk, K. L. (2005). Nassarius kraussianus shell beads from Blombos Cave: Evidence for symbolic behaviour in the Middle Stone Age. Journal of Human Evolution, 48(1), 324.Google Scholar
D’Errico, F., & Vanhaeren, M. (2012). Linguistic implications of the earliest personal ornaments. In Tallerman, M. & Gibson, K. R. (Eds.), The Oxford handbook of language evolution (pp. 299302). Oxford University Press.Google Scholar
D’Errico, F., Villa, P., Degano, I., et al. (2016). The “to be or not to be” of archaeological enquiry. Antiquity, 90(352), 10791082.Google Scholar
De Sampaio, F. X. R. (1825). Diario da viagem que em visita, e correição das povoações da capitania de S. Joze do Rio Negro fez o ouvidor, e intendente geral da mesma no anno de 1774 e 1775. S. Magestade.Google Scholar
De Santo Thomas, D. (1560). Lexicon, o vocabulario de la lengua general del Peru. Francisco Fernandez de Cordoua.Google Scholar
Descartes, R. (1637). Discours de la méthode pour bien conduire sa raison, & chercher la vérité dans les sciences. Ian Maire.Google Scholar
Descartes, R. (1644). Principia philosophiæ. Ludovicum Elzevirium.Google Scholar
Descartes, R. (1664). L’homme de René Descartes et un traitté de la formation du foetus du mesme autheur. Charles Angot.Google Scholar
Descartes, R. (1993). Meditations on first philosophy (3rd ed., D. A. Cress, Trans.). Hackett Publishing Company. (Original work published 1641)Google Scholar
Devlin, K. (2003). Mathematics: The science of patterns: The search for order in life, mind and the universe. Henry Holt and Company.Google Scholar
Diamond, J. M. (1997). Guns, germs, and steel: The fates of human societies. W. W. Norton & Co.Google Scholar
Díaz-Andreu, M., & Benito, C. G. (2015). Acoustic rock art landscapes: A comparison between the acoustics of three Levantine rock art areas in Mediterranean Spain. Rock Art Research, 32(1), 4662.Google Scholar
Diester, I., & Nieder, A. (2008). Complementary contributions of prefrontal neuron classes in abstract numerical categorization. The Journal of Neuroscience, 28(31), 77377747.Google Scholar
Dillehay, T. D., Goodbred, S., Pino, M., et al. (2017). Simple technologies and diverse food strategies of the Late Pleistocene and Early Holocene at Huaca Prieta, Coastal Peru. Science Advances, 3(5), e1602778.Google Scholar
Di Paolo, E. A., Rohde, M., & de Jaegher, H. (2010). Horizons for the enactive mind: Values, social interaction, and play. In Stewart, J., Gapenne, O., & di Paolo, E. A. (Eds.), Enaction: Toward a new paradigm for cognitive science (pp. 3387). MIT Press.Google Scholar
Divale, W. (1999). Climatic instability, food storage, and the development of numerical counting: A cross-cultural study. Cross-Cultural Research, 33(4), 341368.Google Scholar
Dixon, R. B., & Kroeber, A. L. (1907). Numeral systems of the languages of California. American Anthropologist, 9(4), 663690.Google Scholar
Dobrizhoffer, M. (1822). An account of the Abipones, an equestrian people of Paraguay (Vol. 2). John Murray.Google Scholar
Döhler, C. (2018). A grammar of Komnzo. Language Science Press.Google Scholar
Domahs, F., Moeller, K., Huber, S., Willmes, K., & Nuerk, H.-C. (2010). Embodied numerosity: Implicit hand-based representations influence symbolic number processing across cultures. Cognition, 116(2), 251266.Google Scholar
Domínguez-Rodrigo, M., Pickering, T. R., Semaw, S., & Rogers, M. J. (2005). Cutmarked bones from Pliocene archaeological sites at Gona, Afar, Ethiopia: Implications for the function of the world’s oldest stone tools. Journal of Human Evolution, 48(2), 109121.Google Scholar
Dorais, L.-J. (2010). The language of the Inuit: Syntax, semantics, and society in the Arctic. McGill-Queen’s University Press.Google Scholar
Dreyfus, T. (1991). Advanced mathematical thinking processes. In Tall, D. (Ed.), Advanced mathematical thinking (pp. 2541). Kluwer.Google Scholar
Dryer, M. S. (2013). Coding of nominal plurality. In Dryer, M. S. & Haspelmath, M. (Eds.), World atlas of language structures online. Max Planck Institute for Evolutionary Anthropology. https://wals.info/chapter/33Google Scholar
Dryer, M. S., & Haspelmath, M. (2013). World atlas of language structures online. Max Planck Institute for Evolutionary Anthropology. https://wals.info/Google Scholar
Dunbar, R. I. M. (1991). Functional significance of social grooming in primates. Folia Primatologica, 57(3), 121131.Google Scholar
Dunbar, R. I. M. (1996). Grooming, gossip and the evolution of language. Faber and Faber.Google Scholar
Dunbar, R. I. M. (2017). Group size, vocal grooming and the origins of language. Psychonomic Bulletin & Review, 24(1), 209212.Google Scholar
Duncker, K. (1945). On problem-solving. In Dashiell, J. F. (Ed.), Psychological monographs (Vol. 270, L. S. Lees, Trans.). American Psychological Association.Google Scholar
Du Plat Taylor, J., Seton Williams, M. V., & Waechter, J. (1950). The excavations at Sakçe Gözü. Iraq, 12(2), 53138.Google Scholar
Edzard, D. O. (1980). Sumerisch 1 bis 10 in Ebla. Studi Eblaiti, III(5–8), 121127.Google Scholar
Edzard, D. O. (2003). Sumerian grammar. Brill.Google Scholar
Edzard, D. O. (2005). Sumerian one to one hundred twenty revisited. In Sefati, Y., Artzi, P., Cohen, C., Eichler, B. L., & Hurowitz, V. A. (Eds.), An experienced scribe who neglects nothing: Ancient Near Eastern studies in honor of Jacob Klein (pp. 98107). CDL Press.Google Scholar
Eells, W. C. (1913a). Number systems of the North American Indians. II. Systems of numeration. American Mathematical Monthly, 20(10), 293299.Google Scholar
Eells, W. C. (1913b). Number systems of the North American Indians. American Mathematical Monthly, 20(9), 263272.Google Scholar
Egeth, H. E., Leonard, C. J., & Palomares, M. (2008). The role of attention in subitizing: Is the magical number 1? Visual Cognition, 16(4), 463473.Google Scholar
Ehret, C. (1995). Reconstructing Proto-Afroasiatic (Proto-Afrasian): Vowels, tone, consonants, and vocabulary. University of California Press.Google Scholar
Ẹkundayọ, S. A. (1977). Vigesimal numeral derivational morphology: Yoruba grammatical competence epitomized. Anthropological Linguistics, 19(9), 436453.Google Scholar
Elmo, , Gum, , Heather, , Holly, , Mistletoe, , & Rowan, . (2002). Notes towards the complete works of Shakespeare (Cox, G., Ed.). Kahve-Society.Google Scholar
Ember, M., & Ember, C. R. (2000). Testing theory and why the “units of analysis” problem is not a problem. Ethnology, 39, 349363.Google Scholar
Emmerling, E., Geer, H., & Klíma, B. (1993). Ein Mondkalenderstab aus Dolní Věstonice. Quartär, 43, 151163.Google Scholar
Englert, S. (1977). Idioma Rapanui: Gramatica y diccionario de antiguo idioma de la Isla de Pascua (2nd ed.). Ediciones de la Universidad de Chile.Google Scholar
Englund, R. K. (1998a). Proto-Elamite. In Encyclopædia Iranica (Vol. VIII, pp. 325330). Mazda Publishers.Google Scholar
Englund, R. K. (1998b). Review: Denise Schmandt-Besserat, How writing came about. Written Language & Literacy, 1, 257261.Google Scholar
Englund, R. K. (2004). The state of decipherment of proto-Elamite. In Houston, S. D. (Ed.), The first writing: Script invention as history and process (pp. 100149). Cambridge University Press.Google Scholar
Englund, R. K. (2006). An examination of the “textual” witnesses to the Late Uruk world systems. In Gong, Y. & Chen, Y. (Eds.), Special issue of oriental studies: A collection of papers on ancient civilizations of Western Asia, Asia Minor and North Africa (pp. 138). Oriental Studies.Google Scholar
Epps, P. (2006). Growing a numeral system: The historical development of numerals in an Amazonian language family. Diachronica, 23(2), 259288.Google Scholar
Epps, P., Bowern, C., Hansen, C. A., Hill, J. H., & Zentz, J. (2012). On numeral complexity in hunter-gatherer languages. Linguistic Typology, 16(1), 41109.Google Scholar
Epps, P., & Stenzel, K. (2013). Introduction. In Epps, P. & Stenzel, K. (Eds.), Upper Rio Negro: Cultural and linguistic interaction in Northwestern Amazonia (pp. 1350). Museu do Índio-FUNAI.Google Scholar
Ester, E. F., Drew, T., Klee, D., Vogel, E. K., & Awh, E. (2012). Neural measures reveal a fixed item limit in subitizing. The Journal of Neuroscience, 32(21), 71697177.Google Scholar
ETCSL. (2005). Translation of “The debate between grain and sheep.” Electronic Text Corpus of Sumerian Literature. Oriental Institute, University of Oxford.Google Scholar
Etxepare, R., & Irurtzun, A. (2021). Gravettian hand stencils as sign language formatives. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 376(1824), 1–9.Google Scholar
Evans, B. R. (2014). The development of mathematics throughout the centuries: A brief history in a cultural context. John Wiley & Sons.Google Scholar
Evans, G. R. (1977). From abacus to algorism: Theory and practice in medieval arithmetic. British Journal for the History of Science, 10(2), 114131.Google Scholar
Evans, N. (2009). Two pus one makes thirteen: Senary numerals in the Morehead-Maro region. Linguistic Typology, 13(2), 321335.Google Scholar
Evans-Pritchard, E. E. (1940). The Nuer: A description of the modes of livelihood and political institutions of a Nilotic people. Clarendon Press.Google Scholar
Everett, D. L. (2005). Cultural constraints on grammar and cognition in Pirahã: Another look at the design features of human language. Current Anthropology, 46(4), 621646.Google Scholar
Everett, D. L. (2007). Cultural constraints on grammar in Pirahã: A reply to Nevins, Pesetsky, and Rodrigues. https://ling.auf.net/lingbuzz/000427Google Scholar
Everett, D. L. (2013). Recursion and human thought: Why the Pirahã don’t have numbers. In Brockman, J. (Ed.), Thinking: The new science of decision-making, problem-solving, and prediction (pp. 269291). HarperCollins.Google Scholar
Fader, L. (2018). Development of the flute from pre-history to modern days. In Petkova, T. V. & Chukov, V. S. (Eds.), Second international e-conference on studies in humanities and social sciences: Conference proceedings (pp. 126). Center for Open Access in Science.Google Scholar
Falk, D. (1987). Hominid paleoneurology. Annual Review of Anthropology, 16(1), 1328.Google Scholar
Fauconnier, G. (1997). Mappings in thought and language. Cambridge University Press.Google Scholar
Fauconnier, G., & Turner, M. (1998). Conceptual integration networks. Cognitive Science, 22(2), 133187.Google Scholar
Fauconnier, G., & Turner, M. (2002). The way we think: Conceptual blending and the mind’s hidden complexities. Basic Books.Google Scholar
Fechner, G. T. (1860). Elemente der psychophysik. Druck und Verlag von Breitkopf und Härtel.Google Scholar
Fedorova, I. K. (1993). The Rapanui language as a source of ethnohistorical information. Rongorongo Studies, 3(2), 5260.Google Scholar
Fernandes, A. C., & Fernandes, D. M. (2006). Bueri kãdiri marĩriye: Os ensinamentos que não se esquecem. UNIRT/FOIRN.Google Scholar
Ferrari, P. L. (2003). Abstraction in mathematics. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 358(1435), 12251230.Google Scholar
Ferreirós, J. (2008). The crisis in the foundations of mathematics. In Gowers, T. (Ed.), The Princeton companion to mathematics (pp. 142156). Princeton University Press.Google Scholar
Fewlass, H., Talamo, S., Wacker, L., et al. (2020). A 14C chronology for the Middle to Upper Palaeolithic transition at Bacho Kiro Cave, Bulgaria. Nature Ecology & Evolution, 4, 794801.Google Scholar
Fias, W., Lammertyn, J., Caessens, B., & Orban, G. A. (2007). Processing of abstract ordinal knowledge in the horizontal segment of the intraparietal sulcus. The Journal of Neuroscience, 27(33), 89528956.Google Scholar
Fitch, W. T. (2000). The evolution of speech: A comparative review. Topics in Cognitive Science, 4(7), 258267.Google Scholar
Fitch, W. T. (2009). Fossil cues to the evolution of speech. In Botha, R. & Knight, C. (Eds.), The cradle of language (pp. 112134). Oxford University Press.Google Scholar
Fitch, W. T., Hauser, M. D., & Chomsky, N. (2005). The evolution of the language faculty: Clarifications and implications. Cognition, 97(2), 179210.Google Scholar
Flannery, T. (2017). Introduction. In Flannery, T. (Ed.), The life and adventures of William Buckley: Text classics (pp. 112). Text Publishing.Google Scholar
Florio, C. (2009). Encuentros y desencuentros nella individuazione di una relazione matematica nella yupana in Guaman Poma de Ayala. In Guagliano, E. (Ed.), Incontri e disincontri tra Europa e America, Atti del XXX Convegno Internazionale di Americanistica Salerno, 14–15 maggio e 10–12 dicembre 2008 (pp. 151186). Oèdipus Editore.Google Scholar
Flower, M. A. (2007). The size of Xerxes’ expeditionary force. In Strassler, R. B. (Ed.), The landmark Herodotus: The histories (pp. 819823). Pantheon Books.Google Scholar
Frank, M. C., & Barner, D. (2012). Representing exact number visually using mental abacus. Journal of Experimental Psychology: General, 141(1), 134149.Google Scholar
Frank, M. C., Everett, D. L., Fedorenko, E., & Gibson, E. (2008). Number as a cognitive technology: Evidence from Pirahã language and cognition. Cognition, 108(3), 819824.Google Scholar
Franzon, F., Zanini, C., & Rugani, R. (2019). Do non-verbal number systems shape grammar? Numerical cognition and number morphology compared. Mind & Language, 34(1), 3758.Google Scholar
Frege, G. (1956). The thought: A logical inquiry. Mind, 65(259), 289311.Google Scholar
Friberg, J. (1986). The early roots of Babylonian mathematics III. Three remarkable texts from ancient Ebla. Vicino Oriente, 6, 325.Google Scholar
Friberg, J. (1994). Preliterate counting and accounting in the Middle East: A constructively critical review of Schmandt-Besserat’s Before writing. Orientalistische Literaturzeitung, 89(5–6), 477489.Google Scholar
Friberg, J. (2009). A geometric algorithm with solutions to quadratic equations in a Sumerian juridical document from Ur III Umma. Cuneiform Digital Library Journal, 3, 127.Google Scholar
Friberg, J., & Al-Rawi, F. N. H. (2016). New mathematical cuneiform texts. Springer.Google Scholar
Gabriel, F. (1921). Étude du Tshiluba. Ministère des Colonies.Google Scholar
Gall, F. J. (1835). On the functions of the brain and of each of its parts: With observations of the possibility of determining the instincts, propensities, and talents, or the moral and intellectual dispositions of men and animals, by the configuration of the brain and head (Vol. 1, W. Lewis Jr., Trans.). Marsh, Capen and Lyon.Google Scholar
Gallagher, S. (2013). The enactive hand. In Radman, Z. (Ed.), The hand, an organ of the mind: What the manual tells the mental (pp. 209225). MIT Press.Google Scholar
Gallatin, A. (1845). Notes on the semi-civilized nations of Mexico, Yucatan, and Central America. Transactions of the American Ethnological Society, I, 1352.Google Scholar
Gelman, R., & Gallistel, C. R. (1978). The child’s understanding of number. The President and Fellows of Harvard College.Google Scholar
Gentner, D., & Colhoun, J. (2010). Analogical processes in human thinking and learning. In Glatzeder, B. M., Goel, V., & von Müller, A. (Eds.), Towards a theory of thinking: Building blocks for a conceptual framework (pp. 3548). Springer.Google Scholar
Gerdes, P. (2008). Number theory in Africa. In Selin, H. (Ed.), Encyclopaedia of the history of science, technology, and medicine in non-Western cultures (2nd ed., pp. 17611763). Springer.Google Scholar
Geva, S., Jones, P. S., Crinion, J. T., et al. (2011). The neural correlates of inner speech defined by voxel-based lesion symptom mapping. Brain: A Journal of Neurology, 134(10), 30713082.Google Scholar
Gibson, J. J. (1977). The theory of affordances. In Shaw, R. & Bransford, J. (Eds.), Perceiving, acting, and knowing: Toward an ecological psychology (pp. 127143). Lawrence Erlbaum Associates.Google Scholar
Gibson, J. J. (1979). The ecological approach to visual perception (1st ed.). Houghton Mifflin.Google Scholar
Gibson, J. J. (1986). The ecological approach to visual perception (2nd ed.). Lawrence Erlbaum Associates.Google Scholar
Godley, A. D. (1922). Herodotus, The histories. Harvard University Press.Google Scholar
Goetze, A. (1946). The Akkadian masculine plural in -ānū/ī and its Semitic background. Language, 22(2), 121130.Google Scholar
Goldin-Meadow, S. (2017). What the hands can tell us about language emergence. Psychonomic Bulletin & Review, 24(1), 213218.Google Scholar
Goldin-Meadow, S., Cook, S. W., & Mitchell, Z. A. (2009). Gesturing gives children new ideas about math. Psychological Science, 20(3), 267272.Google Scholar
Goldin-Meadow, S., Nusbaum, H., Kelly, S. D., & Wagner, S. (2001). Explaining math: Gesturing lightens the load. Psychological Science, 12(6), 516522.Google Scholar
González de Haedo, D. F. (1770). The voyage of Captain Don Felipe Gonzalez in the ship of the line San Lorenzo, with the frigate Santa Rosalia in company, to Easter Island in 1770–1771, transcribed, translated, and edited by Bolton Glanvill Corney. Hakluyt Society.Google Scholar
Gonzalez Suarez, F. (1892). Lamina tercera. In Tiempos antiguos ó El Ecuador antes de la Conquista, Segunda Parte, Texto; Atlas arqueologico, Historia general de la Republica del Ecuador (pp. 6775). Imprenta del Clero.Google Scholar
Gordon, P. (2004). Numerical cognition without words: Evidence from Amazonia. Science, 306(5695), 496499.Google Scholar
Gore, E. C. (1926). A Zande grammar. Sheldon Press.Google Scholar
Gosden, C. (1999). Anthropology & archaeology: A changing relationship. Routledge.Google Scholar
Gow, J. (1884). A short history of Greek mathematics. Cambridge University Press.Google Scholar
Gowers, T. (Ed.). (2008). The Princeton companion to mathematics. Princeton University Press.Google Scholar
Gowlett, J. A. J. (2006). The elements of design form in Acheulian bifaces: Modes, modalities, rules and language. In Goren-Inbar, N. & Sharon, G. (Eds.), Axe Age: Acheulian tool-making from quarry to discard (pp. 203222). Equinox.Google Scholar
Grabner, R. H., Ansari, D., Koschutnig, K., et al. (2009). To retrieve or to calculate? Left angular gyrus mediates the retrieval of arithmetic facts during problem solving. Neuropsychologia, 47(2), 604608.Google Scholar
Grabner, R. H., Ansari, D., Koschutnig, K., Reishofer, G., & Ebner, F. (2013). The function of the left angular gyrus in mental arithmetic: Evidence from the associative confusion effect. Human Brain Mapping, 34(5), 10131024.Google Scholar
Grabner, R. H., Ansari, D., Reishofer, G., et al. (2007). Individual differences in mathematical competence predict parietal brain activation during mental calculation. NeuroImage, 38(2), 346356.Google Scholar
Grabner, R. H., Ischebeck, A., Reishofer, G., et al. (2009). Fact learning in complex arithmetic and figural-spatial tasks: The role of the angular gyrus and its relation to mathematical competence. Human Brain Mapping, 30(9), 29362952.Google Scholar
Gracia-Bafalluy, M., & Noël, M.-P. (2008). Does finger training increase young children’s numerical performance? Cortex, 44(4), 368375.Google Scholar
Gray, E. M., & Tall, D. O. (1994). Duality, ambiguity, and flexibility: A “proceptual” view of simple arithmetic. Journal for Research in Mathematics Education, 25, 116140.Google Scholar
Greenberg, J. H. (1978). Generalizations about numeral systems. In Greenberg, J. H. (Ed.), Universals of human language (Vol. 3, pp. 249295). Stanford University Press.Google Scholar
Grégoire, J.-P. (1996). Archives administratives et inscriptions cunéiformes: Ashmolean Museum, Bodleian Collection, Oxford (Vol. 1, Part 1). Librairie Orientaliste Paul Geuthner.Google Scholar
Grillot-Susini, F. (1987). Éléments de grammaire Élamite. Editions Recherche sur les Civilisations.Google Scholar
Grimm, J. (1868). Geschichte der Deutschen Sprache (Vol. I, 3rd ed.). S. Hirzel.Google Scholar
Gross, C. G. (1995). Aristotle on the brain. The Neuroscientist, 1(4), 245250.Google Scholar
Grote, G. (1851). History of Greece (Vol. V). John P. Jewett and Company.Google Scholar
Guamán Poma, F. de A. (1615). El primer nueva corónica y buen gobierno. Museum Tusculanum Press.Google Scholar
Guamán Poma, F. de A. (2009). In The first new chronicle and good government: On the history of the world and the Incas up to 1615 (R. Hamilton, Trans. and Ed.). University of Texas Press. (Original work written 1615)Google Scholar
Günbatti, C. (1997). Kültepe’den Akadlı Sargon’a âit bir tablet. Archivum Anatolicum, 3, 131155.Google Scholar
Gunz, P., Neubauer, S., Golovanova, L. V., et al. (2012). A uniquely modern human pattern of endocranial development: Insights from a new cranial reconstruction of the Neandertal newborn from Mezmaiskaya. Journal of Human Evolution, 62(2), 300313.Google Scholar
Gunz, P., Neubauer, S., Maureille, B., & Hublin, J.-J. (2010). Brain development after birth differs between Neanderthals and modern humans. Current Biology, 20(21), R921R922.Google Scholar
Gusinde, M. (1931). Die Feuerland Indianer. In Die Selk’nam (Vol. 1, pp. 11061110). Mödling bei Wien: Verlag der Internationalen Zeitschrift “Anthropos.”Google Scholar
Hager, M. C., & Helfman, G. S. (1991). Safety in numbers: Shoal size choice by minnows under predatory threat. Behavioral Ecology and Sociobiology, 29(4), 271276.Google Scholar
Hale, H. (1846). United States exploring expedition. During the years 1838, 1839, 1840, 1841, 1842. Under the command of Charles Wilkes, U.S.N.: Vol. IV. Ethnography and philology. C. Sherman.Google Scholar
Hamilton, A. F. de C., & Grafton, S. T. (2006). Goal representation in human anterior intraparietal sulcus. The Journal of Neuroscience, 26, 11331137.Google Scholar
Hamlyn-Harris, R. (1918). On messages and “message sticks” employed among the Queensland Aborigines. Memoirs of the Queensland Museum, 6, 1336.Google Scholar
Hammarström, H. (2015). Restricted numeral systems and the hunter-gatherer connection. Max Planck Institute for Psycholinguistics. www.eva.mpg.de/fileadmin/content_files/linguistics/conferences/2015-speaking-of-Khoisan/P8b_Linguistics_Hammarstroem_Numeral_systems.pdfGoogle Scholar
Harmand, S., Lewis, J. E., Feibel, C. S., et al. (2015). 3.3-million-year-old stone tools from Lomekwi 3, West Turkana, Kenya. Nature, 521(7552), 310315.Google Scholar
Harrison, J. E. (2001). Synaesthesia: The strangest thing. Oxford University Press.Google Scholar
Harvey, B. M., Fracasso, A., Petridou, N., & Dumoulin, S. O. (2015). Topographic representations of object size and relationships with numerosity reveal generalized quantity processing in human parietal cortex. Proceedings of the National Academy of Sciences of the United States of America, 112(44), 1352513530.Google Scholar
Harvey, B. M., Klein, B. P., Petridou, N., & Dumoulin, S. O. (2013). Topographic representation of numerosity in the human parietal cortex. Science, 341(6150), 11231126.Google Scholar
Haselager, P., van Dijk, J., & van Rooij, I. (2008). A lazy brain? Embodied embedded cognition and cognitive neuroscience. In Calvo, P. & Gomila, T. (Eds.), Handbook of cognitive science: An embodied approach (pp. 273290). Elsevier.Google Scholar
Hauser, M. D., Chomsky, N., & Fitch, W. T. (2002). The faculty of language: What is it, who has it, and how did it evolve? Science, 298(5598), 15691579.Google Scholar
Hayden, B. (2021). Keeping count: On interpreting record keeping in prehistory. Journal of Anthropological Archaeology, 63, 101304.Google Scholar
Hayter, A. L., Langdon, D. W., & Ramnani, N. (2007). Cerebellar contributions to working memory. Neuroimage, 36(3), 943954.Google Scholar
Hazlewood, D. (1850). A Feejeean and English dictionary: With examples of common and peculiar modes of expression, and uses of words. Wesleyan Mission Press.Google Scholar
Heine, B. (1997). Cognitive foundations of grammar. Oxford University Press.Google Scholar
Henkelman, W. F. M., & Folmer, M. L. (2016). Your tally is full! On wooden credit records in and after the Achaemenid Empire. In Kleber, K. & Pirngruber, R. (Eds.), Silver, money, and credit: A tribute to Robartus J. van der Spek on the occasion of his 65th birthday (pp. 133239). Nederlands Instituut voor het Nabije Oosten.Google Scholar
Henrich, J., Heine, S. J., & Norenzayan, A. (2010). The weirdest people in the world? Behavioral and Brain Sciences, 33(2–3), 61135.Google Scholar
Henshilwood, C. S., d’Errico, F., Vanhaeren, M., Van Niekerk, K. L., & Jacobs, Z. (2004). Middle Stone Age shell beads from South Africa. Science, 304(5669), 404.Google Scholar
Herculano-Houzel, S. (2016). The human advantage: A new understanding of how our brain became remarkable. MIT Press.Google Scholar
Herskovits, M. J. (1932). Population statistics in the Kingdom of Dahomey. Human Biology, 4(2), 252261.Google Scholar
Herskovits, M. J. (1938). Dahomey: An ancient West African kingdom (Vol. 1). J. J. Augustin.Google Scholar
Hewes, G. W. (1973). Primate communication and the gestural origin of language [and comment and reply]. Current Anthropology, 14(1–2), 524.Google Scholar
Higham, T. F. G. (2021). The world before us: How science is revealing a new story of our human origins. Yale University Press.Google Scholar
Hiroa, T. R. (1938). Ethnology of Mangareva. Bernice P. Bishop Museum.Google Scholar
Hochel, M., & Milán, E. G. (2008). Synaesthesia: The existing state of affairs. Cognitive Neuropsychology, 25(1), 93117.Google Scholar
Hodder, I. (2012). The present past: An introduction to anthropology for archaeologists. Pen & Sword Books.Google Scholar
Hodgson, D. (2007). The reorganisation of primary visual cortex and extrastriate areas of the human brain in relation to evolution and behavioural indicators. Paper presented at Centre for Archaeology of Human Origins, Southampton University, April 26, 2007.Google Scholar
Hodgson, D. (2012). Hominin tool production, neural integration and the social brain. Human Origins, 1, 4164.Google Scholar
Hodgson, D. (2019). Stone tools and spatial cognition. In Overmann, K. A. & Coolidge, F. L. (Eds.), Squeezing minds from stones: Cognitive archaeology and the evolution of the human mind (pp. 200224). Oxford University Press.Google Scholar
Hodgson, D. (2022). Comment on “Early evidence for symbolic behavior in the Levantine Middle Paleolithic: A 120 ka old engraved aurochs bone shaft from the open-air site of Nesher Ramla, Israel.Quaternary International, 610, 144146.Google Scholar
Hogendorn, J., & Johnson, M. (1986). The shell money of the slave trade. Cambridge University Press.Google Scholar
Holloway, R. L. (1983). Human paleontological evidence relevant to language behavior. Human Neurobiology, 2(3), 105114.Google Scholar
Holloway, R. L., Sherwood, C. C., Hof, P. R., & Rilling, J. K. (2009). Evolution of the brain, in humans – Paleoneurology. In Squire, L. R. (Ed.), Encyclopedia of neuroscience (Vol. 4, pp. 13261334). Springer.Google Scholar
Holmes, G. (1939). The cerebellum of man. Brain, 62(1), 130.Google Scholar
Hood, M. S. F., & Vermeule, E. D. T. (2019). Aegean civilizations. In Encyclopedia Britannica. www.britannica.com/topic/Aegean-civilizationGoogle Scholar
Howard, S. R., Avarguès-Weber, A., Garcia, J. E., Greentree, A. D., & Dyer, A. G. (2018). Numerical ordering of zero in honey bees. Science, 360(6393), 11241126.Google Scholar
Howitt, A. W. (1889). Notes on Australian message sticks and messengers. The Journal of the Anthropological Institute of Great Britain and Ireland, 18, 314332.Google Scholar
Høyrup, J. (1990). Sub-scientific mathematics: Observations on a pre-modern phenomenon. History of Science, 28(1), 6387.Google Scholar
Hubbard, E. M., Piazza, M., Pinel, P., & Dehaene, S. (2009). Numerical and spatial intuitions: A role for posterior parietal cortex? In Tommasi, L., Peterson, M. A., & Nadel, L. (Eds.), Cognitive biology: Evolutionary and developmental perspectives on mind, brain and behavior (pp. 221246). MIT Press.Google Scholar
Hublin, J.-J., Neubauer, S., & Gunz, P. (2015). Brain ontogeny and life history in Pleistocene hominins. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 370(1663), 111.Google Scholar
Huddleston, R., & Pullum, G. K. (2016). The Cambridge grammar of the English language. Cambridge University Press.Google Scholar
Huehnergard, J. (2019). Proto-Semitic. In Huehnergard, J. & Pat-El, N. (Eds.), The Semitic languages (2nd ed., pp. 4979). Routledge.Google Scholar
Huehnergard, J., & Woods, C. (2008). Akkadian and Eblaite. In Woodard, R. D. (Ed.), The ancient languages of Mesopotamia, Egypt, and Aksum (pp. 218287). Cambridge University Press.Google Scholar
Hugh-Jones, S. (2016). Writing on stone; writing on paper: Myth, history and memory in NW Amazonia. History and Anthropology, 27(2), 154182.Google Scholar
Hunn, E. S., & French, D. H. (1984). Alternatives to taxonomic hierarchy: The Sahaptin case. Journal of Ethnobiology, 4(1), 7392.Google Scholar
Hurford, J. R. (1987). Language and number: The emergence of a cognitive system. Blackwell.Google Scholar
Hurford, J. R. (2007). The origins of meaning: Language in the light of evolution. Oxford University Press.Google Scholar
Hutchins, E. (1995). Cognition in the wild. MIT Press.Google Scholar
Hutchins, E. (2005). Material anchors for conceptual blends. Journal of Pragmatics, 37(10), 15551577.Google Scholar
Hutter, F. K. (1902). Wanderungen und Forschungen im Nord-Hinterland von Kamerun. Druck und Verlag von Friedrich Vieweg und Sohn.Google Scholar
Hutto, D. D. (2013). Radically enactive cognition in our grasp. In Radman, Z. (Ed.), The hand, an organ of the mind: What the manual tells the mental (pp. 227252). MIT Press.Google Scholar
Hutto, D. D., & Myin, E. (2013). Radicalizing enactivism: Basic minds without content. MIT Press.Google Scholar
Huylebrouck, D. (1996). The bone that began the space odyssey. The Mathematical Intelligencer, 18(4), 5660.Google Scholar
Huylebrouck, D. (1997). Tellen op de handen in Afrika en de oorsprong van het duodecimale systeem. Wiskunde En Onderwijs, 89, 5357.Google Scholar
Huylebrouck, D. (2006). Mathematics in (central) Africa before colonization. Anthropologica et Præhistorica, 117, 135162.Google Scholar
Huylebrouck, D. (2019). Africa and mathematics: From colonial findings back to the Ishango rods. Springer Nature.Google Scholar
Hyland, S. (2017). Writing with twisted cords: The inscriptive capacity of Andean khipus. Current Anthropology, 58(3), 412419.Google Scholar
Ifrah, G. (1981). The universal history of computing: From the abacus to the quantum computer (R. Laffont, Trans.). John Wiley & Sons.Google Scholar
Ifrah, G. (1985). From one to zero: A universal history of numbers (L. Bair, Trans.). Viking.Google Scholar
Inhelder, B., & Piaget, J. (1958). The growth of logical thinking: From childhood to adolescence (New Impression, A. Parsons & S. Milgram, Trans.). Routledge & Kegan Paul PLC.Google Scholar
Irvine, A. D., & Deutsch, H. (2020). Russell’s paradox. In Zalta, E. N. (Ed.), Stanford Encyclopedia of Philosophy (Spring 2021). Stanford University. https://plato.stanford.edu/archives/spr2021/entries/russell-paradox/Google Scholar
Ito, M. (1993). Movement and thought: Identical control mechanisms by the cerebellum. Trends in Neurosciences, 16(11), 448450.Google Scholar
Ito, M. (2008). Control of mental activities by internal models in the cerebellum. Nature Reviews: Neuroscience, 9(4), 304313.Google Scholar
Izard, V., Sann, C., Spelke, E. S., & Streri, A. (2009). Newborn infants perceive abstract numbers. Proceedings of the National Academy of Sciences of the United States of America, 106(25), 1038210385.Google Scholar
Jagersma, A. H. (2010). A descriptive grammar of Sumerian. Leiden University.Google Scholar
James, K. H., & Engelhardt, L. (2012). The effects of handwriting experience on functional brain development in pre-literate children. Trends in Neuroscience and Education, 1(1), 3242.Google Scholar
Jeffreys, M. D. W. (1938). The cowry shell: A study of its history and use in Nigeria. Nigeria, A Quarterly Magazine of General Interest, 15, 221226, 256.Google Scholar
Jeffreys, M. D. W. (1948). The diffusion of cowries and Egyptian culture in Africa. American Anthropologist, New Series, 50(1), 4553.Google Scholar
Jègues-Wolkiewiez, C. (2005). Aux racines de l’astronomie, ou l’ordre caché d’une œuvre paléolithique. Antiquités Nationales, 37, 4362.Google Scholar
Jevons, W. S. (1871). The power of numerical discrimination. Nature, 3, 281282.Google Scholar
Johnson, M. (1970). The cowrie currencies of West Africa. Part II. The Journal of African History, XI(3), 331353.Google Scholar
Johnson, M., & Everett, C. (2021). Embodied and extended numerical cognition. In Killin, A. & Allen-Hermanson, S. (Eds.), Explorations in archaeology and philosophy (pp. 125148). Springer Nature.Google Scholar
Johnson, S. (1921). The history of the Yorubas, from the earliest times to the beginning of the British protectorate. Routledge & Kegan Paul PLC.Google Scholar
Jordan, K. E., Brannon, E. M., Logothetis, N. K., & Ghazanfar, A. A. (2005). Monkeys match the number of voices they hear to the number of faces they see. Current Biology, 15(11), 10341038.Google Scholar
Jordan, K. E., MacLean, E. L., & Brannon, E. M. (2008). Monkeys match and tally quantities across senses. Cognition, 108(3), 617625.Google Scholar
Justus, C. F. (1999). Indo-European numerals since Szemerényi. In Embleton, S., Joseph, J. E., & Niederehe, H.-J. (Eds.), The emergence of the modern language sciences: Studies on the transition from historical-comparative to structural linguistics in honour of E. F. K. Koerner: Vol. 2. Methodological perspectives and applications (pp. 131152). John Benjamins.Google Scholar
Kaas, J. H. (2000). Why is brain size so important: Design problems and solutions as neocortex gets bigger or smaller. Brain and Mind, 1(1), 723.Google Scholar
Kahneman, D., Treisman, A., & Gibbs, B. J. (1992). The reviewing of object files: Object-specific integration of information. Cognitive Psychology, 24(2), 175219.Google Scholar
Kaplan, D., & Manners, R. A. (1972). Culture theory. Prentice-Hall.Google Scholar
Kaplan, R. (2000). The nothing that is: A natural history of zero. Oxford University Press.Google Scholar
Karlsson, F. (2010). Syntactic recursion and iteration. Recursion and human language. In van der Hulst, H. (Ed.), Recursion and human language (pp. 4367). Walter de Gruyter.Google Scholar
Karsten, R. (1935). The head-hunters of Western Amazonas: The life and culture of the Jibaro Indians of eastern Ecuador and Peru. Societas Scientiarum Fennica.Google Scholar
Kaufman, E. L., Lord, M. W., Reese, T. W., & Volkmann, J. (1949). The discrimination of visual number. American Journal of Psychology, 62(4), 498525.Google Scholar
Kay, P., Berlin, B., & Merrifield, W. (1991). Biocultural implications of systems of color naming. Journal of Linguistic Anthropology, 1(1), 1225.Google Scholar
Kay, P., & Regier, T. (2006). Language, thought and color: Recent developments. Trends in Cognitive Sciences, 10(2), 5154.Google Scholar
Keller, O. (2010). Les fables d’Ishango, ou l’irrésistible tentation de la mathématique-fiction. Bibnum. http://journals.openedition.org/bibnum/889Google Scholar
Kelly, P. (2020a). A very short reading guide to research on Australian message sticks. www.academia.edu/43834536/A_very_short_reading_guide_to_research_on_Australian_message_sticksGoogle Scholar
Kelly, P. (2020b). Australian message sticks: Old questions, new directions. Journal of Material Culture, 25(2), 133152.Google Scholar
Kendall, T. (1815). A korao no New Zealand; or, the New Zealander’s first book; being an attempt to compose some lessons for the instruction of the natives. G. Howe.Google Scholar
Kenyon, K. M., & Holland, T. A. (1983). Excavations at Jericho V. Oxford University Press.Google Scholar
Khačikjan, M. (1998). The Elamite language. Istituto per gli studi micenei ed egeo-anatolici.Google Scholar
Kilgarriff, A., Charalabopoulou, F., Gavrilidou, M., et al. (2014). Corpus-based vocabulary lists for language learners for nine languages. Language Resources and Evaluation, 48(1), 121163.Google Scholar
Kirsh, D. (2014). The importance of change and interactivity in creativity. Pragmatics & Cognition, 22(1), 526.Google Scholar
Kitchen, A., Ehret, C., Assefa, S., & Mulligan, C. J. (2009). Bayesian phylogenetic analysis of Semitic languages identifies an Early Bronze Age origin of Semitic in the Near East. Proceedings of the Royal Society of London. Series B, Biological Sciences, 276(1668), 27032710.Google Scholar
Klein, J. (1992). Greek mathematical thought and the origin of algebra. Dover Publications.Google Scholar
Koch-Grünberg, T. (1909). Zwei Jahre unter den Indianern: Reisen in Nordwest-Brasilien 1903/1905. Strecker & Schröder.Google Scholar
Koch-Grünberg, T. (1921). Zwei Jahre bei den Indianern Nordwest-Brasiliens. Strecker und Schröder.Google Scholar
Kochiyama, T., Ogihara, N., Tanabe, H. C., et al. (2018). Reconstructing the Neanderthal brain using computational anatomy. Scientific Reports, 8(1), 19.Google Scholar
Koenigs, M., Barbey, A. K., Postle, B. R., & Grafman, J. (2009). Superior parietal cortex is critical for the manipulation of information in working memory. The Journal of Neuroscience, 29(47), 1498014986.Google Scholar
Koziol, L. F., Budding, D. E., & Chidekel, D. (2010). Adaptation, expertise, and giftedness: Towards an understanding of cortical, subcortical, and cerebellar network contributions. Cerebellum, 9(4), 499529.Google Scholar
Krämer, A. (1906). Hawaii, Ostmikronesien und Samoa: Meine zweite Südseereise (1897–1899) zum Studium der Atolle und ihrer Bewohner. Strecker & Schröder.Google Scholar
Krause, F., Bekkering, H., & Lindemann, O. (2013). A feeling for numbers: Shared metric for symbolic and tactile numerosities. Frontiers in Psychology, 4, 18.Google Scholar
Kroeber, A. L. (1925). Handbook of the Indians of California. Bulletin 78. Smithsonian Institution, Bureau of American Ethnology. U.S. Government Printing Office.Google Scholar
Krusche, P., Uller, C., & Dicke, U. (2010). Quantity discrimination in salamanders. Journal of Experimental Biology, 213(11), 18221828.Google Scholar
Kubitschek, W. (1900). Die Salaminische Rechentafel. In Numismatische Zeitschrift 1899 (Vol. 31, pp. 394398). Numismatiſchen Geſellſchaft.Google Scholar
Lakoff, G., & Johnson, M. (1999). Philosophy in the flesh: The embodied mind and its challenge to Western thought. Basic Books.Google Scholar
Lakoff, G., & Núñez, R. E. (2000). Where mathematics comes from: How the embodied mind brings mathematics into being. Basic Books.Google Scholar
Lancy, D. F. (Ed.). (1978). Introduction. Papua New Guinea Journal of Education, 14(Special Issue: Indigenous Mathematics Project), 618.Google Scholar
Landy, D., Allen, C., & Zednik, C. (2014). A perceptual account of symbolic reasoning. Frontiers in Psychology, 5, 110.Google Scholar
Langer, J. (1986). The origins of logic: One to two years. Academic Press.Google Scholar
Larson, G. (2014). Western Dani (Lani), Indonesia. In Chan, E. (Ed.), Numeral systems of the world’s languages. Max Planck Institute. https://lingweb.eva.mpg.de/channumerals/Dani-Western.htmGoogle Scholar
Laval, H. (1938). Mangareva: L’histoire ancienne d’un peuple polynésien. Maison des Pères des Sacrés-Cœurs.Google Scholar
Lawrence, M. (2018). Oksapmin, Papua New Guinea. In Chan, E. (Ed.), Numeral systems of the world’s languages. Max Planck Institute. https://lingweb.eva.mpg.de/channumerals/Oksapmin.htmGoogle Scholar
Lazaridis, I., Nadel, D., Rollefson, G., et al. (2016). Genomic insights into the origin of farming in the ancient Near East. Nature, 536(7617), 419424.Google Scholar
Le Gros Clark, W. E., Cooper, D. M., & Zuckerman, S. (1936). The endocranial cast of the chimpanzee. Journal of the Royal Anthropological Institute of Great Britain and Ireland, 66, 249268.Google Scholar
Leach, E. R. (1973). Concluding address. In Renfrew, C. (Ed.), The explanation of culture change: Models in prehistory. Proceedings of a meeting of the Research Seminar in Archaeology and Related Subjects held at the University of Sheffield, December 14–16, 1971 (pp. 761771). Gerald Duckworth.Google Scholar
Lean, G. A. (1992). Counting systems of Papua New Guinea and Oceania [Doctoral thesis, Papua New Guinea University of Technology].Google Scholar
Lemaître, Y. (1985). Les systèmes de numération en Polynésie orientale. Journal de la Société des Océanistes, 41(80), 313.Google Scholar
Lemaître, Y. (2004). Austral (Rurutu), French Polynesia. In Chan, E. (Ed.), Numeral systems of the world’s languages. Max Planck Institute. https://lingweb.eva.mpg.de/channumerals/Austral-Rurutu.htmGoogle Scholar
Leonard, M., & Shakiban, C. (2011). The Incan abacus: A curious counting device. Journal of Mathematics and Culture, 5(2), 81106.Google Scholar
Leroi-Gourhan, A. (1967). Les mains de Gargas: Essai pour une étude d’ensemble. Bulletin de la Société préhistorique française, 64(1), 107122.Google Scholar
Lévy-Bruhl, L. (1910). Les fonctions mentales dans les sociétés inférieures. Librairie Félix Alcan.Google Scholar
Lévy-Bruhl, L. (1927). L’âme primitive. Librairie Félix Alcan.Google Scholar
Lewis, J. W., & van Essen, D. C. (2000). Corticocortical connections of visual, sensorimotor, and multimodal processing areas in the parietal lobe of the macaque monkey. Journal of Comparative Neurology, 428(1), 112137.Google Scholar
Lewy, H. (1949). Origin and development of the sexagesimal system of numeration. Journal of the American Oriental Society, 69(1), 111.Google Scholar
Lichtenstein, H. (1812). Travels in Southern Africa, in the years 1803, 1804, 1805, and 1806 (Vol. 1, A. Plumptre, Trans.). Henry Colburn.Google Scholar
Lin, J., Wu, Y., & Huang, T. S. (2000). Modeling the constraints of human hand motion. Proceedings from HUMO ‘00: Workshop on human motion (pp. 121–126). Institute of Electrical and Electronics Engineers (IEEE) Computer Society.Google Scholar
Lindsay, G. W. (2020). Attention in psychology, neuroscience, and machine learning. Frontiers in Computational Neuroscience, 14, 121.Google Scholar
Linnebo, Ø. (2018). Platonism in the philosophy of mathematics. In Zalta, E. N. (Ed.), Stanford Encyclopedia of Philosophy (Spring 2018). Stanford University. https://plato.stanford.edu/archives/spr2018/entries/platonism-mathematics/Google Scholar
Lipínski, E. (2001). Numerals. Semitic languages: Outline of a comparative grammar (2nd ed., pp. 288313). Peeters.Google Scholar
Locke, L. L. (1923). The ancient quipu, or Peruvian knot record. American Museum of Natural History.Google Scholar
Loeb, E. M. (1926). Pomo folkways. University of California Publications in American Archaeology and Ethnology, 19(2), 149405.Google Scholar
Luquet, G. H. (1926). L’art et la religion des hommes fossiles. Masson et Cie.Google Scholar
Luquet, G. H. (1938). Sur les mutilations digitales. Journal de Psychologie, 35, 548598.Google Scholar
Lurito, J. T., Kareken, D. A., Lowe, M. J., et al. (2000). Comparison of rhyming and word generation with fMRI. Human Brain Mapping, 10(3), 99106.Google Scholar
Macan, R. W. (1908a). Herodotus: The seventh, eighth & ninth books (Vol. I). Macmillan and Co.Google Scholar
Macan, R. W. (1908b). Herodotus: The seventh, eighth & ninth books (Vol. II). Macmillan and Co.Google Scholar
MacGinnis, J., Monroe, M. W., Wicke, D., & Matney, T. (2014). Artefacts of cognition: The use of clay tokens in a Neo-Assyrian provincial administration. Cambridge Archaeological Journal, 24(2), 289306.Google Scholar
Maddy, P. (1990). Realism in mathematics. Clarendon Press.Google Scholar
Malafouris, L. (2008). Beads for a plastic mind: The “blind man’s stick” (BMS) hypothesis and the active nature of material culture. Cambridge Archaeological Journal, 18(3), 401414.Google Scholar
Malafouris, L. (2010a). Grasping the concept of number: How did the sapient mind move beyond approximation? In Renfrew, C. & Morley, I. (Eds.), The archaeology of measurement: Comprehending heaven, earth and time in ancient societies (pp. 3542). Cambridge University Press.Google Scholar
Malafouris, L. (2010b). Knapping intentions and the marks of the mental. In Malafouris, L. & Renfrew, C. (Eds.), The cognitive life of things: Recasting the boundaries of the mind (pp. 1327). McDonald Institute for Archaeological Research.Google Scholar
Malafouris, L. (2013). How things shape the mind: A theory of material engagement. MIT Press.Google Scholar
Malafouris, L. (2017). Material engagement and the embodied mind. In Wynn, T. & Coolidge, F. L. (Eds.), Cognitive models in Palaeolithic archaeology (pp. 6987). Oxford University Press.Google Scholar
Malafouris, L. (2021). Mark making and human becoming. Journal of Archaeological Method and Theory, 28(1), 95119.Google Scholar
Malafouris, L., & Renfrew, C. (Eds.). (2010). The cognitive life of things: Recasting the boundaries of the mind. McDonald Institute for Archaeological Research.Google Scholar
Mallowan, M. E. L., & Cruickshank Rose, J. (1935). Excavations at Tall Arpachiyah, 1933. Iraq, 2(1), i178.Google Scholar
Man, E. H. (1885). On the aboriginal inhabitants of the Andaman Islands (1935 reprint). The Royal Anthropological Institute of Great Britain and Ireland.Google Scholar
Mann, A. (1886). Die Yoruba-Küste. Vortrag, gehalten von Missionar A. Mann am 18 December 1885. I. Das Zahlen-System der Yoruba-Sprache. In Separat-Abdruck aus dem III. IV. Jahresbericht des Württembergischen Vereins fur Handelsgeographie (pp. 6673). Württembergischen Vereins fur Handelsgeographie.Google Scholar
Mann, A. (1887). Notes on the numeral system of the Yoruba nation. Journal of the Anthropological Institute of Great Britain and Ireland, 16, 5964.Google Scholar
Mann, C. C. (2005). Unraveling khipu’s secrets. Science, 309(5737), 10081009.Google Scholar
Marinthe, C., Fayol, M., & Barrouillet, P. (2001). Gnosies digitales et développement des performances arithmétiques. In Van Hout, A., Meljac, C., & Fische, J.-P. (Eds.), Troubles du calcul et dyscalculies chez l’enfant (pp. 239254). Masson.Google Scholar
Marom, A., McCullagh, J. S. O., Higham, T. F. G., Sinitsyn, A. A., & Hedges, R. E. M. (2012). Single amino acid radiocarbon dating of Upper Paleolithic modern humans. Proceedings of the National Academy of Sciences of the United States of America, 109(18), 68786881.Google Scholar
Marshack, A. (1972). Upper Paleolithic notation and symbol. Science, 178(4063), 817828.Google Scholar
Marshack, A. (1973). Analyse préliminaire d’une gravure à système de notation de la grotte du Taï (Drôme). Etudes Préhistoriques, 4, 1316.Google Scholar
Marshack, A. (1985). A lunar-solar year calendar stick from North America. American Antiquity, 50(1), 2751.Google Scholar
Marshack, A. (1989). On wishful thinking and lunar “calendars.Current Anthropology, 30(4), 491494.Google Scholar
Marshack, A. (1991a). The roots of civilization: The cognitive beginnings of man’s first art, symbol and notation (Revised ed.). McGraw-Hill.Google Scholar
Marshack, A. (1991b). The Taï plaque and calendrical notation in the Upper Palaeolithic. Cambridge Archaeological Journal, 1(1), 2561.Google Scholar
Marshall, D. N. (1982). Jericho bone tools and objects. In Kenyon, K. M. & Holland, T. A. (Eds.), Excavations at Jericho IV (pp. 570622). Oxford University Press.Google Scholar
Martial, L.-F. (1888). Mission scientifique du Cap Horn, 1882–1883 (Vol. 1). Gauthier-Villars.Google Scholar
Masin, S. C. (2009). The (Weber’s) law that never was. In Elliott, M. A., Antonijević, S., Berthaud, S., Mulcahy, P., Bargary, B., Martyn, C., & Schmidt, H. (Eds.), Proceedings of the 25th annual meeting of the International Society for Psychophysics (pp. 441446). International Society for Psychophysics.Google Scholar
Mathews, R. H. (1904). Language of the Wuddyāwūrru Tribe, Victoria. Zeitschrift Für Ethnologie, 36(6), 729734.Google Scholar
Matsau, M. A. (2009). Southern Sotho, Lesotho. In Chan, E. (Ed.), Numeral systems of the world’s languages. Max Planck Institute. https://lingweb.eva.mpg.de/channumerals/Sotho-Southern.htmGoogle Scholar
Maurice, F. (1930). The size of the army of Xerxes in the invasion of Greece 480 B.C. Journal of Hellenic Studies, 50(2), 210235.Google Scholar
McCandliss, B. D., Cohen, L., & Dehaene, S. (2003). The visual word form area: Expertise for reading in the fusiform gyrus. Trends in Cognitive Sciences, 7(7), 293299.Google Scholar
McCauley, B., Maxwell, D., & Collard, M. (2018). A cross-cultural perspective on Upper Palaeolithic hand images with missing phalanges. Journal of Paleolithic Archaeology, 1(4), 314333.Google Scholar
McGregor, W. B. (1990). A functional grammar of Gooniyandi. John Benjamins.Google Scholar
McGuire, P. K., Silbersweig, D. A., Murray, R. M., et al. (1996). Functional anatomy of inner speech and auditory verbal imagery. Psychological Medicine, 26(1), 2938.Google Scholar
McLendon, S., & Lowy, M. J. (1978). Eastern Pomo and Southeastern Pomo. In Sturtevant, W. C. (Ed.), Handbook of North American Indians: Vol. 8. California (pp. 306323). U.S. Smithsonian Institute.Google Scholar
McPherron, S. P., Alemseged, Z., Marean, C. W., et al. (2010). Evidence for stone-tool-assisted consumption of animal tissues before 3.39 million years ago at Dikika, Ethiopia. Nature, 466(7308), 857860.Google Scholar
Medrano, M., & Urton, G. (2018). Toward the decipherment of a set of mid-colonial khipus from the Santa Valley, Coastal Peru. Ethnohistory, 65(1), 123.Google Scholar
Menninger, K. (1992). Number words and number symbols: A cultural history of numbers (P. Broneer, Trans.). Dover Publications.Google Scholar
Merleau-Ponty, M. (2012). Phenomenology of perception (D. Landes, Trans.). Routledge.Google Scholar
Merpert, N. I., & Munchajev, R. M. (1971). Excavations at Yarim Tepe 1970. Second preliminary report. Sumer, XXVII, 921.Google Scholar
Merpert, N. I., Munchajev, R. M., & Bader, N. O. (1976). The investigations of the Soviet Expedition in Iraq 1973. Sumer, XXXII, 2561.Google Scholar
Merriam-Webster. (2014). Number. Merriam-Webster Online. https://www.merriam-webster.com/Google Scholar
Micelli, M. L., & Crespo, C. R. C. (2012). Ábacos de América prehispánica. Revista Latinoamericana de Etnomatemática, 5(1), 159190.Google Scholar
Michalowski, P. (2008). Sumerian. In Woodard, R. D. (Ed.), The ancient languages of Mesopotamia, Egypt, and Aksum (pp. 646). Cambridge University Press.Google Scholar
Miller, D. B., & Shipp, M. R. (2014). An Akkadian handbook: Helps, paradigms, glossary, logograms, and sign list (2nd ed.). Eisenbrauns.Google Scholar
Miller, M. (1999). Desano grammar. Summer Institute of Linguistics and the University of Texas at Arlington.Google Scholar
Mimica, J. (1988 ). Intimations of infinity: The mythopoeia of the Iqwaye counting system and number. Berg.Google Scholar
Mitchell, P. J. (2012). San origins and transition to the Later Stone Age: New research from Border Cave, South Africa. South African Journal of Science, 108(11–12), 57.Google Scholar
Mithen, S. J. (1996). The prehistory of mind: The cognitive origins of art, religion and science. Thames & Hudson.Google Scholar
Monti, M. M., Parsons, L. M., & Osherson, D. N. (2012). Thought beyond language: Neural dissociation of algebra and natural language. Psychological Science, 23(8), 914922.Google Scholar
Moore, A., & Tangye, M. (2000). Stone and other artifacts. In Moore, A., Tangye, M., Hillman, G. C., & Legge, A. J. (Eds.), Village on the Euphrates: From foraging to farming at Abu Hureyra (pp. 165186). Oxford University Press.Google Scholar
Moore, M. W. (2020). Hominin stone flaking and the emergence of “top-down” design in human evolution. Cambridge Archaeological Journal, 30(4), 647664.Google Scholar
Morgan, J. (1852). The life and adventures of William Buckley: Thirty-two years a wanderer amongst the Aborigines of the then unexplored country around Port Phillip, now the Province of Victoria (19th ed.). Griffin Press.Google Scholar
Morley, I. R. M. (2014). A multi-disciplinary approach to the origins of music: Perspectives from anthropology, archaeology, cognition and behaviour. Journal of Anthropological Sciences, 92, 147177.Google Scholar
Morsella, E., Godwin, C. A., Jantz, T. K., Krieger, S. C., & Gazzaley, A. (2016). Homing in on consciousness in the nervous system: An action-based synthesis. Behavioral and Brain Sciences, 39, e168.Google Scholar
Munchajev, R. M., & Merpert, N. I. (1973). Excavations at Yarim Tepe 1972. Fourth preliminary report. Sumer, XXIX, 316.Google Scholar
Murphy, R. F., & Quain, B. H. (1955). The Trumaí Indians of central Brazil. University of Washington Press.Google Scholar
Murray, D. (1930). Chapters in the history of bookkeeping accountancy & commercial arithmetic. Jackson, Wylie & Co.Google Scholar
Nakamura, K., Kuo, W.-J., Pegado, F., et al. (2012). Universal brain systems for recognizing word shapes and handwriting gestures during reading. Proceedings of the National Academy of Sciences of the United States of America, 109(50), 2076220767.Google Scholar
Nalawade-Chavan, S., McCullagh, J., & Hedges, R. (2014). New hydroxyproline radiocarbon dates from Sungir, Russia, confirm early Mid Upper Palaeolithic burials in Eurasia. PLoS ONE, 9(1), e76896.Google Scholar
Nansen, F. (1893). Eskimo life (W. Archer, Trans.). Longmans, Green, and Co.Google Scholar
Neubauer, S., Hublin, J.-J., & Gunz, P. (2018). The evolution of modern human brain shape. Science Advances, 4(1), 19.Google Scholar
Nevins, A., Pesetsky, D., & Rodrigues, C. (2009). Evidence and argumentation: A reply to Everett (2009). Language, 85(3), 671681.Google Scholar
Nicolopoulou, A. (1997). The invention of writing and the development of numerical concepts in Sumeria: Some implications for developmental psychology. In Cole, M., Engeström, Y., & Vasquez, O. (Eds.), Mind, culture, and activity: Seminal papers from the laboratory of comparative human cognition (pp. 205240). Cambridge University Press.Google Scholar
Nicomachus. (1926). Introduction to arithmetic (M. L. d’Ooge, Trans.). Macmillan and Co. (Original work written 100 CE)Google Scholar
Nieder, A. (2017a). Evolution of cognitive and neural solutions enabling numerosity judgements: Lessons from primates and corvids. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 373(1740), 112.Google Scholar
Nieder, A. (2017b). Number faculty is rooted in our biological heritage. Trends in Cognitive Sciences, 21(6), 403404.Google Scholar
Nieder, A., & Miller, E. K. (2003). Coding of cognitive magnitude: Compressed scaling of numerical information in the primate prefrontal cortex. Neuron, 37(1), 149157.Google Scholar
Nishimoto, N. (2015). Austral (Rurutu), French Polynesia. In Chan, E (Ed.), Numeral systems of the world’s languages. Max Planck Institute. https://lingweb.eva.mpg.de/channumerals/Austral-Rurutu.htmGoogle Scholar
Nishiyama, Y. (2013). Counting with the fingers. International Journal of Pure and Applied Mathematics, 85(5), 859868.Google Scholar
Nissen, H. J., Damerow, P., & Englund, R. K. (1993). Archaic bookkeeping: Early writing and techniques of economic administration in the ancient Near East (P. Larsen, Trans.). University of Chicago Press.Google Scholar
Noë, A. (2004). Action in perception. MIT Press.Google Scholar
Núñez, R. E. (2011). No innate number line in the human brain. Journal of Cross-Cultural Psychology, 42(4), 651668.Google Scholar
Núñez, R. E. (2017a). Is there really an evolved capacity for number? Trends in Cognitive Sciences, 21(6), 409424.Google Scholar
Núñez, R. E. (2017b). Number–biological enculturation beyond natural selection. Trends in Cognitive Sciences, 21(6), 404405.Google Scholar
Oates, J. (1993). Early writing in Sumer: A review. Cambridge Archaeological Journal, 3(1), 149153.Google Scholar
Odifreddi, P. (1992). Classical recursion theory: The theory of functions and sets of natural numbers. Elsevier.Google Scholar
Oesterdiekhoff, G. W. (2016). Is a forgotten subject central to the future development of sciences? Jean Piaget on the interrelationship between ontogeny and history. Personality and Individual Differences, 98, 118126.Google Scholar
Olderogge, D. A. (1982). СИСТЕМЫ СЧЕТА В ЯЗЫКАХ НАРОДОВ ТРОПИЧЕСКОЙ И ЮЖНОЙ АФРИКИ [Counting systems in the languages of the peoples of tropical and south Africa]. Trudy Instituta Etnografii, 13, 333.Google Scholar
Oliva, M. (2014). Dolní Věstonice I (1922–1942): Hans Freising – Karel Absolon – Assien Bohmers. Moravské Zemské Muzeum.Google Scholar
Olivers, C. N. L., & Watson, D. G. (2008). Subitizing requires attention. Visual Cognition, 16(4), 439462.Google Scholar
Oppenheim, A. L. (1959). On an operational device in Mesopotamian bureaucracy. Journal of Near Eastern Studies, 18, 121128.Google Scholar
Orban, G. A., & Caruana, F. (2014). The neural basis of human tool use. Frontiers in Psychology, 5, 112.Google Scholar
Orban, G. A., Claeys, K., Nelissen, K., et al. (2006). Mapping the parietal cortex of human and non-human primates. Neuropsychologia, 44(13), 26472667.Google Scholar
Ore, Ø. (1948). Number theory and its history. Dover Publications.Google Scholar
Ott, D. (2009). The evolution of I-language: Lexicalization as the key evolutionary novelty. Biolinguistics, 3(2–3), 255269.Google Scholar
Overmann, K. A. (2013a). Numbers and time: A cross-cultural investigation of the origin and use of numbers as a cognitive technology [Master’s thesis, University of Colorado, Colorado Springs].Google Scholar
Overmann, K. A. (2013b). Material scaffolds in numbers and time. Cambridge Archaeological Journal, 23(1), 1939.Google Scholar
Overmann, K. A. (2014). Finger-counting in the Upper Palaeolithic. Rock Art Research, 31(1), 6380.Google Scholar
Overmann, K. A. (2015). Numerosity structures the expression of quantity in lexical numbers and grammatical number. Current Anthropology, 56(5), 638653.Google Scholar
Overmann, K. A. (2016a). Beyond writing: The development of literacy in the ancient Near East. Cambridge Archaeological Journal, 26(2), 285303.Google Scholar
Overmann, K. A. (2016b). Catalogue of ancient Near Eastern tokens. Open source. https://doi.org/10.13140/RG.2.2.25976.88326/2Google Scholar
Overmann, K. A. (2016c). Materiality in numerical cognition: Material Engagement Theory and the counting technologies of the ancient Near East [Doctoral thesis, University of Oxford].Google Scholar
Overmann, K. A. (2016d). The role of materiality in numerical cognition. Quaternary International, 405, 4251.Google Scholar
Overmann, K. A. (2017). Thinking materially: Cognition as extended and enacted. Journal of Cognition and Culture, 17(3–4), 381400.Google Scholar
Overmann, K. A. (2018a). Constructing a concept of number. Journal of Numerical Cognition, 4(2), 464493.Google Scholar
Overmann, K. A. (2018b). Updating the abstract–concrete distinction in ancient Near Eastern numbers. Cuneiform Digital Library Journal, 1, 122.Google Scholar
Overmann, K. A. (2019a). Concepts and how they get that way. Phenomenology and the Cognitive Sciences, 18(1), 153168.Google Scholar
Overmann, K. A. (2019b). The material origin of numbers: Insights from the archaeology of the ancient Near East. Gorgias Press.Google Scholar
Overmann, K. A. (2020a). Oceanian counting algorithms: Analytical data for EU project 785793. Open source. https://doi.org/10.13140/RG.2.2.20943.71848/1Google Scholar
Overmann, K. A. (2020b). Polynesian bibliography: Analytical data for EU project 785793. Open source. https://doi.org/10.13140/RG.2.2.31010.04809/1Google Scholar
Overmann, K. A. (2020c). The curious idea that Māori once counted by elevens, and the insights it still holds for cross-cultural numerical research. Journal of the Polynesian Society, 129(1), 5984.Google Scholar
Overmann, K. A. (2021a). A cognitive archaeology of writing: Concepts, models, goals. In Boyes, P., Steele, P., & Astoreca, N. E. (Eds.), The social and cultural contexts of historic writing practices (pp. 5572). Oxbow Books.Google Scholar
Overmann, K. A. (2021b). A new look at old numbers, and what it reveals about numeration. Journal of Near Eastern Studies, 80(2), 291321.Google Scholar
Overmann, K. A. (2021c). Counting by “elevens” and why nine and two make twenty: The material roots of Polynesian numbers. Journal of Mathematics and Culture, 15(3), 132.Google Scholar
Overmann, K. A. (2021d). Finger-counting and numerical structure. Frontiers in Psychology, 12, 15.Google Scholar
Overmann, K. A. (2021e). Numerical origins: The critical questions. Journal of Cognition and Culture, 21(5), 449468.Google Scholar
Overmann, K. A. (2021f). The material difference in human cognition. Adaptive Behavior, 29(2), 123136.Google Scholar
Overmann, K. A. (2021g). Writing system transmission and change: A neurofunctional perspective. In Gabriel, G., Overmann, K. A., & Payne, A. (Eds.), Signs – sounds – semantics. Nature and transformation of writing systems in the ancient Near East (pp. 93116). Ugarit-Verlag.Google Scholar
Overmann, K. A. (2022). Early writing: A cognitive archaeological perspective on literacy and numeracy. Visible Language, 56(1), 844.Google Scholar
Overmann, K. A. (2023a). Common creativity. In Ball, L. & Vallée-Tourangeau, F. (Eds.), Routledge international handbook of creative cognition. Routledge.Google Scholar
Overmann, K. A. (2023b). Prehistoric numeracy: Approaches, assumptions, and issues. In Wynn, T., Overmann, K. A., & Coolidge, (Eds.), The Oxford handbook of cognitive archaeology. Oxford University Press.Google Scholar
Overmann, K. A., Chacon, T., & Payne, A. (2022). Desana numerical symbols: An indigenous creation narrated by Diakuru and Kisibi. Written Language & Literacy, 25(2), 133158.Google Scholar
Overmann, K. A., & Malafouris, L. (2018). Situated cognition. In Callan, H. (Ed.), International encyclopedia of anthropology: Anthropology beyond text. Wiley-Blackwell.Google Scholar
Overmann, K. A., & Wynn, T. (2019a). Materiality and human cognition. Journal of Archaeological Method and Theory, 26(2), 457478.Google Scholar
Overmann, K. A., & Wynn, T. (2019b). On tools making minds: An archaeological perspective on human cognitive evolution. Journal of Cognition and Culture, 19(1–2), 3958.Google Scholar
Owen, W. J., Borowsky, R., & Sarty, G. E. (2004). FMRI of two measures of phonological processing in visual word recognition: Ecological validity matters. Brain and Language, 90(1–3), 4046.Google Scholar
Owens, D., & Hayden, B. (1997). Prehistoric rites of passage: A comparative study of transegalitarian hunter–gatherers. Journal of Anthropological Archaeology, 16(2), 121161.Google Scholar
Owens, K. (2018). History of number: Evidence from Papua New Guinea and Oceania. Springer International Publishing.Google Scholar
Packard, D. W. (1974). Minoan Linear A. University of California Press.Google Scholar
Pagel, M., Atkinson, Q. D., Calude, A. S., & Meade, A. (2013). Ultraconserved words point to deep language ancestry across Eurasia. Proceedings of the National Academy of Sciences of the United States of America, 110(21), 84718476.Google Scholar
Pagel, M., & Meade, A. (2017). The deep history of the number words. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 373(1740), 20160517.Google Scholar
Pargeter, J. (2014). The Later Stone Age is not San prehistory. The Digging Stick, 31(3), 14.Google Scholar
Pargeter, J., MacKay, A., Mitchell, P. J., Shea, J. J., & Stewart, B. A. (2016a). Primordialism and the “Pleistocene San” of southern Africa. Antiquity, 90(352), 10721079.Google Scholar
Pargeter, J., MacKay, A., Mitchell, P. J., Shea, J. J., & Stewart, B. A. (2016b). Primordialism and the “Pleistocene San” of southern Africa: Final reply. Antiquity, 90(352), 10871089.Google Scholar
Parker, A. R. (2006). Evolving the narrow language faculty: Was recursion the pivotal step? In Cangelosi, A., Smith, A. D. M., & Smith, K. (Eds.), The evolution of language (pp. 239246). World Scientific Publishing.Google Scholar
Parkington, J. E., Poggenpoel, C., Rigaud, J.-P., & Texier, P.-J. (2005). From tool to symbol: The behavioral context of intentionally marked ostrich eggshell from Diepkloof, Western Cape. In d’Errico, F. & Backwell, L. (Eds.), From tools to symbols: From early hominids to modern humans (pp. 475492). Witwatersrand University Press.Google Scholar
Patel, G. H., Michael, D. K., & Snyder, L. H. (2014). Topographic organization in the brain: Searching for general principles. Trends in Cognitive Sciences, 18(7), 351363.Google Scholar
Pearce, E., & Dunbar, R. I. M. (2012). Latitudinal variation in light levels drives human visual system size. Biology Letters, 8, 9093.Google Scholar
Pearce, E., Stringer, C. B., & Dunbar, R. I. M. (2013). New insights into differences in brain organization between Neanderthals and anatomically modern humans. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 280(1758), 17.Google Scholar
Pelto, P. J., & Pelto, G. H. (1978). Anthropological research: The structure of inquiry (2nd ed.). Cambridge University Press.Google Scholar
Penfield, W., & Jasper, H. H. (1954). Epilepsy and the functional anatomy of the human brain (2nd ed.). Little, Brown and Co.Google Scholar
Penfield, W., & Rasmussen, T. (1950). The cerebral cortex of man: A clinical study of localization of function. Macmillan and Co.Google Scholar
Penner-Wilger, M., Fast, L., LeFevre, J.-A., et al. (2007). The foundations of numeracy: Subitizing, finger gnosia, and fine motor ability. In McNamara, D. S. & Trafton, J. G. (Eds.), Proceedings of the Cognitive Science Society (Vol. 29, pp. 13851390). Cognitive Science Society.Google Scholar
Perfetti, C. A., & Tan, L.-H. (2013). Write to read: The brain’s universal reading and writing network. Trends in Cognitive Sciences, 17(2), 5657.Google Scholar
Pettinato, G. (1981a). La pronuncia sumerica dei numeri da 1 a 10 in un testo lessicale di Ebla. Annali Istituto Orientale di Napoli Roma, 41(1), 141143.Google Scholar
Pettinato, G. (1981b). Materiali epigrafici de Ebla – 3/A (MEE 3/A). Testi Lessicali Monolingui della Biblioteca L. 2769: Tavole. Seminario de Studi Asiatici, Series Maior III. Instituto Universitario Orientale.Google Scholar
Pettinato, G. (1981c). Materiali epigrafici de Ebla – 3 (MEE 3). Testi Lessicali Monolingui della Biblioteca L. 2769. Seminario de Studi Asiatici, Series Maior III. Instituto Universitario Orientale.Google Scholar
Piaget, J. (1928). Logique génétique et sociologie. Revue Philosophique de la France et de l’Étranger, 105, 167205.Google Scholar
Piaget, J. (1952). The child’s conception of number (C. Gattegno & F. M. Hodgson, Trans.). Routledge.Google Scholar
Piazza, M. (2011). Neurocognitive start-up tools for symbolic number representations. In Dehaene, S. & Brannon, E. (Eds.), Space, time and number in the brain: Searching for the foundations of mathematical thought (pp. 267285). Academic Press.Google Scholar
Piazza, M., & Izard, V. (2009). How humans count: Numerosity and the parietal cortex. Neuroscientist, 15(3), 261273.Google Scholar
Pica, P., & Lecomte, A. (2008). Theoretical implications of the study of numbers and numerals in Mundurucu. Philosophical Psychology, 21(4), 507522.Google Scholar
Pica, P., Lemer, C., Izard, V., & Dehaene, S. (2004). Exact and approximate arithmetic in an Amazonian indigene group. Science, 306(5695), 499503.Google Scholar
Piffer, L., Agrillo, C., & Hyde, D. C. (2012). Small and large number discrimination in guppies. Animal Cognition, 15(2), 215221.Google Scholar
Pike, A. W. G., Hoffmann, D. L., García-Diez, M., et al. (2012). U-series dating of Paleolithic art in 11 caves in Spain. Science, 336(6087), 14091413.Google Scholar
Ping, R., & Goldin-Meadow, S. (2010). Gesturing saves cognitive resources when talking about nonpresent objects. Cognitive Science, 34(4), 602619.Google Scholar
Pinson, A., Xing, L., Namba, T., et al. (2022). Human TKTL1 implies greater neurogenesis in frontal neocortex of modern humans than Neanderthals. Science, 377(6611), 113.Google Scholar
Pitt, B., Ferrigno, S., Cantlon, J. F., et al. (2021). Spatial concepts of number, size, and time in an indigenous culture. Science Advances, 7(33), 17.Google Scholar
Pitt, B., Scales, K., & Casasanto, D. (2018). Time and numbers on the fingers: Dissociating the mental timeline and mental number line. In Kalish, C., Rau, M., Zhu, J., & Rogers, T. T. (Eds.), Proceedings of the Cognitive Science Society (Vol. 40, pp. 890895). Cognitive Science Society.Google Scholar
Plato. (1892). Philebus. In The dialogues of Plato: Parmenides, Theaetetus, Sophist, Statesman, Philebus (Vol. 4, 3rd ed., B. Jowett, Trans.). Oxford University Press. (Original work written in the 4th century BCE)Google Scholar
Pletser, V., & Huylebrouck, D. (1999). The Ishango artefact: The missing base 12 link. Forma, 14, 339346.Google Scholar
Pletser, V., & Huylebrouck, D. (2015). Contradictions et étroitesse de vues dans “Fables d’Ishango, ou l’irrésistible tentation de la mathématique-fiction,” réponses et mises au point. https://arxiv.org/ftp/arxiv/papers/1607/1607.00860.pdfGoogle Scholar
Popenici, S. (2022). The fading art of handwriting: The choice between computer typing and handwriting. In Joubert, L. (Ed.), Craft shaping society. Educating in the crafts – The global experience: Book one (pp. 263271). Springer.Google Scholar
Postgate, J. N. (2013). Bronze Age bureaucracy. Cambridge University Press.Google Scholar
Powell, B. B. (2009). Writing: Theory and history of the technology of civilization. Wiley-Blackwell.Google Scholar
Powell, M. A. J. (1971). Sumerian numeration and metrology [Doctoral thesis, University of Minnesota].Google Scholar
Powell, M. A. J. (1972). The origin of the sexagesimal system: The interaction of language and writing. Visible Language, 6(1), 518.Google Scholar
Powell, M. A. J. (1979). Notes on Akkadian numbers and number syntax. Journal of Semitic Studies, 24(1), 1318.Google Scholar
Powell, M. A. J. (1987). Maße und Gewichte. In Ebeling, E., Meissner, B., Weidner, E., & Edzard, D. O. (Eds.), Reallexikon der Assyriologie und vorderasiatischen Archäologie (Vol. VII, pp. 457517). Walter de Gruyter.Google Scholar
Prescott, W. H. (1847). History of the conquest of Peru, with a preliminary view of the civilization of the Incas (Vol. I). Richard Bentley.Google Scholar
Prévost, M., Groman-Yaroslavski, I., Gershtein, K. M. C., Tejero, J.-M., & Zaidner, Y. (2021). Early evidence for symbolic behavior in the Levantine Middle Paleolithic: A 120 ka old engraved aurochs bone shaft from the open-air site of Nesher Ramla, Israel. Quaternary International, 624, 114.Google Scholar
Prévost, M., & Zaidner, Y. (2022). Reply to the comment on “Early evidence for symbolic behavior in the Levantine Middle Paleolithic: A 120 ka old engraved aurochs bone shaft from the open-air site of Nesher Ramla, Israel.Quaternary International, 610, 147149.Google Scholar
Price, D. J. de S., & Pospisil, L. (1966). A survival of Babylonian arithmetic in New Guinea? Indian Journal of the History of Science, 1(1), 3033.Google Scholar
Prinz, J. (2009). Is consciousness embodied? In Robbins, P. & Aydede, M. (Eds.), The Cambridge handbook of situated cognition (pp. 419436). Cambridge University Press.Google Scholar
Proust, C. (2000). La multiplication babylonienne: La part non écrite du calcul. Revue d’Histoire des Mathématiques, 6, 293303.Google Scholar
Proust, C., Donbaz, V., Dönmez, A., & Cavigneaux, A. (2007). Tablettes mathématiques de Nippur (Vol. 18). Institut Français d’Études anatoliennes Georges-Dumézil.Google Scholar
Pullan, J. M. (1968). The history of the abacus. Hutchinson & Co.Google Scholar
Putt, S. S. (2019). The stories stones tell of language and its evolution. In Overmann, K. A. & Coolidge, F. L. (Eds.), Squeezing minds from stones: Cognitive archaeology and the evolution of the human mind (pp. 304318). Oxford University Press.Google Scholar
Quilter, J., Zender, M., Spalding, K., et al. (2010). Traces of a lost language and number system discovered on the North Coast of Peru. American Anthropologist, 112(3), 357369.Google Scholar
Radicati di Primeglio, C. (1979). El sistema contable de los Incas: Yupana y quipu. Libreria Studium.Google Scholar
Railo, H., Koivisto, M., Revonsuo, A., & Hannula, M. M. (2008). The role of attention in subitizing. Cognition, 107(1), 82104.Google Scholar
Ramachandran, V. S. (2004). A brief tour of human consciousness: From impostor poodles to purple numbers. Pi Press.Google Scholar
Ranzini, M., Lugli, L., Anelli, F., et al. (2011). Graspable objects shape number processing. Frontiers in Human Neuroscience, 5, 147.Google Scholar
Ravid, D., & Haimowitz, S. (2006). The vowel path: Learning about vowel representation in written Hebrew. Written Language & Literacy, 9(1), 6793.Google Scholar
Redman, C. L. (1973). Early village technology: A view through the microscope. Paléorient, 1(2), 249261.Google Scholar
Reese, D. S. (2002). On the incised cattle scapulae from the East Mediterranean and Near East. Bonner Zoologische Beitrage, 50, 183198.Google Scholar
Reeve, R., & Humberstone, J. (2011). Five- to 7-year-olds’ finger gnosia and calculation abilities. Frontiers in Psychology, 2, 110.Google Scholar
Regier, T., Kay, P., & Cook, R. S. (2005). Focal colors are universal after all. Proceedings of the National Academy of Sciences of the United States of America, 102(23), 83868391.Google Scholar
Rehkämper, G., Frahm, H. D., & Mann, M. D. (1995). Brain composition and ecological niches in the wild or under man-made conditions (domestication): Constraints of the evolutionary plasticity of the brain. In Alleva, E., Fasolo, A., Lipp, H.-P, Nadel, L., & Ricceri, L. (Eds.), Proceedings of the NATO Advanced Study Institute on behavioural brain research in naturalistic and semi-naturalistic settings: Possibilities and perspectives (Acquafredda di Maratea, Italy, Sept. 10–20, 1994) (pp. 83103). Kluwer Academic.Google Scholar
Renfrew, C. (2001). Commodification and institution in group-oriented and individualizing societies. Proceedings of the British Academy, 110, 93117.Google Scholar
Renfrew, C. (2004). Towards a theory of material engagement. In DeMarrais, E., Gosden, C., & Renfrew, C. (Eds.), Rethinking materiality: The engagement of mind with the material world (pp. 2332). McDonald Institute for Archaeological Research.Google Scholar
Reuland, E. (2010). Imagination, planning, and working memory: The emergence of language. Current Anthropology, 51(S1), S99S110.Google Scholar
Reynolds, B. E. (1993). The algorists vs. the abacists: An ancient controversy on the use of calculators. College Mathematics Journal, 24, 218223.Google Scholar
Reznikoff, I. (2008). Sound resonance in prehistoric times: A study of Paleolithic painted caves and rocks. Journal of the Acoustical Society of America, 123(5), 71807183.Google Scholar
Richardson, L. J. (1916). Digital reckoning among the ancients. American Mathematical Monthly, 23, 713.Google Scholar
Rinaldi, L., & Marelli, M. (2020). The use of number words in natural language obeys Weber’s law. Journal of Experimental Psychology: General, 149(7), 12151230.Google Scholar
Robson, E. (2003). Tables and tabular formatting in Sumer, Babylonia, and Assyria, 2500 BCE–50 CE. In Campbell-Kelly, M., Croarken, M., Flood, R., & Robson, E. (Eds.), The history of mathematical tables: From Sumer to spreadsheets (pp. 1948). Oxford University Press.Google Scholar
Robson, E. (2007a). Literacy, numeracy and the state in early Mesopotamia. In Lomas, K., Whitehouse, R., & Wilkins, J. B. (Eds.), Literacy and the state in the ancient Mediterranean (pp. 3750). Accordia Research Institute.Google Scholar
Robson, E. (2007b). Mesopotamian mathematics. In Katz, V. (Ed.), The mathematics of Egypt, Mesopotamia, China, India, and Islam: A sourcebook (pp. 57186). Princeton University Press.Google Scholar
Rolfe, J. C. (1946). Quintus Curtius (Vol. I). Harvard University Press.Google Scholar
Rooryck, J., Saw, J., Tonda, A., & Pica, P. (2017). Mundurucú number words as a window on short-term memory. The Royal Society of London. https://halshs.archives-ouvertes.fr/halshs-01497577Google Scholar
Rosenfelder, M. (2018). Numbers from 1 to 10 in over 5000 languages. www.zompist.com/numbers.shtmlGoogle Scholar
Roth, W. E. (1897). Ethnological studies among the North-West-Central Queensland Aborigines. Edmund Gregory, Government Printer.Google Scholar
Rotman, B. (1987). Signifying nothing: The semiotics of zero. Stanford University Press.Google Scholar
Rotman, B. (2000). Mathematics as sign: Writing, imagining, counting. Stanford University Press.Google Scholar
Rouillon, A. (2006). Au Gravettien, dans la grotte Cosquer (Marseille, Bouches-du-Rhône), l’Homme a-t-il compté sur ses doigts? Anthropologie, 110(4), 500509.Google Scholar
Routledge, K. M. (1920). Survey of the village and carved rocks of Orongo, Easter Island, by the Mana Expedition. Journal of the Royal Anthropological Institute of Great Britain and Ireland, 50, 425451.Google Scholar
Roux, F., Boetto, S., Sacko, O., Chollet, F., & Trémoulet, M. (2003). Writing, calculating, and finger recognition in the region of the angular gyrus: A cortical stimulation study of Gerstmann syndrome. Journal of Neurosurgery, 99(4), 716727.Google Scholar
Rubio, G. (2005). The languages of the ancient Near East. In Snell, D. C. (Ed.), A companion to the ancient Near East (pp. 7994). Blackwell.Google Scholar
Ruck, L. (2014). Manual praxis in stone tool manufacture: Implications for language evolution. Brain and Language, 139, 6883.Google Scholar
Rugani, R., Vallortigara, G., Priftis, K., & Regolin, L. (2015). Number-space mapping in the newborn chick resembles humans’ mental number line. Science, 347(6221), 534536.Google Scholar
Russell, B. (1910). The theory of logical types. In Lackey, D. (Ed.), Essays in analysis (pp. 215252). George Braziller.Google Scholar
Russell, B. (1920). Introduction to mathematical philosophy (2nd ed.). George Allen & Unwin.Google Scholar
Sakel, J. (2012). Acquiring complexity: The Portuguese of some Pirahã men. Linguistic Discovery, 10(1), 7588.Google Scholar
Sangamithra, A., Gabriela, J. S., Prema, R. S., et al. (2016). Moisture dependent physical properties of maize kernels. International Food Research Journal, 23(1), 109.Google Scholar
Saxe, G. B. (2012). Cultural development of mathematical ideas. Cambridge University Press.Google Scholar
Sayce, A. H. (1875). An elementary grammar; with full syllabary and progressive reading book, of the Assyrian language, in the cuneiform type (Vol. 2). Samuel Bagster and Sons.Google Scholar
Scheil, J.-V. (1923). Textes de comptabilité proto-Élamites (nouvelle série). In Mémoires de la mission archéologique de Perse, Mission en Susiane sous la direction de MM. R. de Mecquenem et V. Scheil (Vol. XVII). Ernest Leroux.Google Scholar
Schlanger, N. (1996). Understanding Levallois: Lithic technology and cognitive archaeology. Cambridge Archaeological Journal, 6(2), 231254.Google Scholar
Schlaudt, O. (2020). Type and token in the prehistoric origins of numbers. Cambridge Archaeological Journal, 30(4), 629646.Google Scholar
Schlimm, D. (2018). Numbers through numerals: The constitutive role of external representations. In Bangu, S. (Ed.), Naturalizing logico-mathematical knowledge: Approaches from psychology and cognitive science (pp. 195217). Routledge.Google Scholar
Schlimm, D., & Neth, H. (2008). Modeling ancient and modern arithmetic practices: Addition and multiplication with Arabic and Roman numerals. In Love, B. C., McRae, K., & Sloutsky, V. M. (Eds.), Proceedings of the Cognitive Science Society (Vol. 30, pp. 20972102). Cognitive Science Society.Google Scholar
Schmandt-Besserat, D. (1978). The earliest precursor of writing. Scientific American, 238(6), 5059.Google Scholar
Schmandt-Besserat, D. (1981). From tokens to tablets: A re-evaluation of the so-called “numerical tablets.Visible Language, 15(4), 321344.Google Scholar
Schmandt-Besserat, D. (1982). The emergence of recording. American Anthropologist, New Series, 84(4), 871878.Google Scholar
Schmandt-Besserat, D. (1992a). Before writing: From counting to cuneiform (2 vols.). University of Texas Press.Google Scholar
Schmandt-Besserat, D. (1992b). How writing came about. University of Texas Press.Google Scholar
Schrumpf, C. (1862). Sessuto. Ein Beitrag zur Süd-Afrikanischen Sprachenkunde, geschöpft aus meiner sechszehnjährigen Erfahrung. Zeitschrift Der Deutschen Morgenländischen Gesellschaft, 16, 448481.Google Scholar
Sehasseh, E. M., Fernandez, P., Kuhn, S., et al. (2021). Early Middle Stone Age personal ornaments from Bizmoune Cave, Essaouira, Morocco. Science Advances, 7, 111.Google Scholar
Semaw, S., Rogers, M. J., Quade, J., et al. (2003). 2.6-million-year-old stone tools and associated bones from OGS-6 and OGS-7, Gona, Afar, Ethiopia. Journal of Human Evolution, 45(2), 169177.Google Scholar
Senghas, A., & Coppola, M. (2001). Children creating language: How Nicaraguan sign language acquired a spatial grammar. Psychological Science, 12(4), 323328.Google Scholar
Senner, W. M. (1989). Theories and myths on the origins of writing: A historical overview. In Senner, W. M. (Ed.), The origins of writing (pp. 126). University of Nebraska Press.Google Scholar
Sfard, A., & Linchevski, L. (1994). The gains and the pitfalls of reification? The case of algebra. Educational Studies in Mathematics, 26(2–3), 191228.Google Scholar
Shapiro, L., & Spaulding, S. (2021). Embodied cognition. In Zalta, E. N. (Ed.), Stanford Encyclopedia of Philosophy (Winter 2021). Stanford University. https://plato.stanford.edu/archives/win2021/entries/embodied-cognition/Google Scholar
Shendge, M. J. (1983). The use of seals and the invention of writing. Journal of the Economic and Social History of the Orient, 26(2), 113136.Google Scholar
Sihler, A. L. (1995). Numerals. In New comparative grammar of Greek and Latin (pp. 402441). Oxford University Press.Google Scholar
Sikora, M., Seguin-Orlando, A., Sousa, V. C., et al. (2017). Ancient genomes show social and reproductive behavior of early Upper Paleolithic foragers. Science, 358(6363), 659662.Google Scholar
Sillitoe, P. (2002). Contested knowledge, contingent classification: Animals in the highlands of Papua New Guinea. American Anthropologist, 104(4), 11621171.Google Scholar
Silva, W. de L. (2012). A descriptive grammar of Desano. University of Utah.Google Scholar
Simon, O., Mangin, J.-F., Cohen, L., Le Bihan, D., & Dehaene, S. (2002). Topographical layout of hand, eye, calculation, and language-related areas in the human parietal lobe. Neuron, 33(3), 475487.Google Scholar
Smith, B. C. (1999). Situatedness/embeddedness. In Wilson, R. A. & Keil, F. C. (Eds.), The MIT encyclopedia of the cognitive sciences (pp. 769770). MIT Press.Google Scholar
Smith, J. W. (1977). Recuay gaming boards: A preliminary study. Indiana, 4, 111137.Google Scholar
Smith, M. A. (1955). The limitations of inference in archaeology. The Archaeological News Letter, 6, 37.Google Scholar
Snow, D. R. (2013). Sexual dimorphism in European Upper Paleolithic cave art. American Antiquity, 78(4), 746761.Google Scholar
Soames, S. (2003). The dawn of analysis. Philosophical analysis in the twentieth century (Vol. 1). Princeton University Press.Google Scholar
Sparkman, P. S. (1905). Sketch of the grammar of the Luiseño language of California. American Anthropologist, New Series, 7(4), 656662.Google Scholar
Stampe, D. (1976). Cardinal number systems. In Mufwene, S. S., Walker, C. A., & Steever, S. B. (Eds.), Papers from the twelfth regional meeting, Chicago Linguistic Society, April 23–25, 1976 (Vol. 12, pp. 594609). Chicago Linguistic Society.Google Scholar
Starkey, P., Spelke, E. S., & Gelman, R. (1990). Numerical abstraction by human infants. Cognition, 36(2), 97127.Google Scholar
Stewart, S. B. (1985). Time before time: Prehistory and archaeology in the Lake Sonoma area. U.S. Army Corps of Engineers, Sacramento District.Google Scholar
Stolper, M. W. (2004). Elamite. In Woodard, R. D. (Ed.), The Cambridge encyclopedia of the world’s ancient languages (pp. 6094). Cambridge University Press.Google Scholar
Stone, W. E. (1972). Abacists versus algorists. Journal of Accounting Research, 10(2), 345350.Google Scholar
Stout, D., Toth, N. P., Schick, K. D., & Chaminade, T. (2008). Neural correlates of Early Stone Age tool-making: Technology, language and cognition in human evolution. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 363(1499), 19391949.Google Scholar
Strassler, R. B. (Ed.). (2007). The landmark Herodotus: The histories (A. L. Purvis, Trans.). Pantheon Books.Google Scholar
Stringer, C., & Galway-Witham, J. (2017). On the origin of our species. Nature, 546(7657), 212214.Google Scholar
Sugden, K. E. (1981). History of the abacus. Accounting Historians Journal, 8(2), 122.Google Scholar
Tallerman, M. (2012). Protolanguage. In Gibson, K. R. & Tallerman, M. (Eds.), The Oxford handbook of language evolution (pp. 479491). Oxford University Press.Google Scholar
Tang, Y., Zhang, W., Chen, K., et al. (2006). Arithmetic processing in the brain shaped by cultures. Proceedings of the National Academy of Sciences of the United States of America, 103(28), 1077510780.Google Scholar
Taraban, R., & Bandara, A. (2017). Beyond recursion: Critique of Hauser, Chomsky, and Fitch. Eastern European Journal of Psycholinguistics, 4(2), 5866.Google Scholar
Tavernier, J. (2020). Elamite. In Hasselbach-Andee, R. (Ed.), A companion to ancient Near Eastern languages (pp. 163184). John Wiley & Sons.Google Scholar
Taylor, J. (2011). Tablets as artefacts, scribes as artisans. In Radner, K. & Robson, E. (Eds.), The Oxford handbook of cuneiform culture (pp. 531). Cambridge University Press.Google Scholar
Tempels, P. (1938). De telgebaren der Bashila. Congo-Overzee, IV(2), 4953.Google Scholar
Tennant, N. (2017). Logicism and neologicism. In Zalta, E. N. (Ed.), Stanford Encyclopedia of Philosophy (Winter 2017). Stanford University. https://plato.stanford.edu/archives/win2017/entries/logicism/Google Scholar
Thompson, R. K., & Oden, D. L. (2000). Categorical perception and conceptual judgments by nonhuman primates: The paleological monkey and the analogical ape. Cognitive Science, 24(3), 363396.Google Scholar
Thompson, R. K., Oden, D. L., & Boysen, S. T. (1997). Language-naive chimpanzees (Pan troglodytes) judge relations between relations in a conceptual matching-to-sample task. Journal of Experimental Psychology: Animal Behavior Processes, 23(1), 3143.Google Scholar
Thompson, W. I. (1981). The time falling bodies take to light: Mythology, sexuality, and the origins of culture. St. Martin’s Press.Google Scholar
Thomson, J. B. (1846). Practical arithmetic, uniting the inductive with the synthetic mode of instruction: Also, illustrating the principles of cancelation. Durrie & Peck.Google Scholar
Thureau-Dangin, F. (1939). Sketch of a history of the sexagesimal system. Osiris, 7, 95141.Google Scholar
Tipping, M. J. (1966). Buckley, William (1780–1856). Australian dictionary of biography. https://adb.anu.edu.au/biography/buckley-william-1844/text2133Google Scholar
Tixier, J. (1974). Poinçon décoré du Paléolithique supérieur à Ksar’Aqil (Liban). Paléorient, 2(1), 187192.Google Scholar
Tobias, P. V. (1981). The emergence of man in Africa and beyond. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 292(1057), 4356.Google Scholar
Tomonaga, M. (2008). Relative numerosity discrimination by chimpanzees (Pan troglodytes): Evidence for approximate numerical representations. Animal Cognition, 11(1), 4357.Google Scholar
Tremblay, P., & Dick, A. S. (2016). Broca and Wernicke are dead, or moving past the classic model of language neurobiology. Brain and Language, 162, 6071.Google Scholar
Trumbull, J. H. (1874, September). How Indians count. The New York Tribune: One Year of Science: Lecture and Letter Extras, 21, 1920.Google Scholar
Tun, M. (2014). Yupana. In Selin, H. (Ed.), Encyclopaedia of the history of science, technology, and medicine in non-Western cultures (pp. 19). Springer.Google Scholar
Turnbull, D. (2013). Otros conocimientos, otros espacios otras racionalidades: Heterarquía, complejidad y tensión. Norte Chico, Amazonia y narrativas de la prehistoria de América del Sur. In Forero, O. R. (Ed.), Ensamblado heteroglosias (pp. 2538). Universidad Nacional de Colombia.Google Scholar
Uller, C., Jaeger, R., Guidry, G., & Martin, C. (2003). Salamanders (Plethodon cinereus) go for more: Rudiments of number in an amphibian. Animal Cognition, 6(2), 105112.Google Scholar
Ullman, M. T., Corkin, S., Coppola, M., et al. (1997). A neural dissociation within language: Evidence that the mental dictionary is part of declarative memory, and that grammatical rules are processed by the procedural system. Journal of Cognitive Neuroscience, 9(2), 266276.Google Scholar
Unsworth, S. J., Sears, C. R., & Pexman, P. M. (2005). Cultural influences on categorization processes. Journal of Cross-Cultural Psychology, 36(6), 662688.Google Scholar
Urton, G. (2010). Recording measure(ment)s in the Inka khipu. In Renfrew, C. & Morley, I. (Eds.), The archaeology of measurement: Comprehending heaven, earth and time in ancient societies (pp. 5468). Cambridge University Press.Google Scholar
Vaesen, K., Dusseldorp, G. L., & Brandt, M. J. (2021a). An emerging consensus in palaeoanthropology: Demography was the main factor responsible for the disappearance of Neanderthals. Scientific Reports, 11(1), 19.Google Scholar
Vaesen, K., Dusseldorp, G. L., & Brandt, M. J. (2021b). Author correction: An emerging consensus in palaeoanthropology: Demography was the main factor responsible for the disappearance of the Neandertals. Scientific Reports, 11(1), 12.Google Scholar
Valério, M., & Ferrara, S. (2022). Numeracy at the dawn of writing: Mesopotamia and beyond. Historia Mathematica, 59, 3553.Google Scholar
Vandervert, L. R. (2003). How working memory and cognitive modeling functions of the cerebellum contribute to discoveries in mathematics. New Ideas in Psychology, 21, 159175.Google Scholar
Vandervert, L. R. (2009). The appearance of the child prodigy 10,000 years ago: An evolutionary and developmental explanation. Journal of Mind and Behavior, 30(1), 1532.Google Scholar
Vandervert, L. R. (2016). The prominent role of the cerebellum in the learning, origin and advancement of culture. Cerebellum & Ataxias, 3(10), 113.Google Scholar
Vandervert, L. R. (2017). The origin of mathematics and number sense in the cerebellum: With implications for finger counting and dyscalculia. Cerebellum & Ataxias, 4(12), 116.Google Scholar
Vandervert, L. R. (2018). How prediction based on sequence detection in the cerebellum led to the origins of stone tools, language, and culture and, thereby, to the rise of Homo sapiens. Frontiers in Cellular Neuroscience, 12, 113.Google Scholar
Vandervert, L. R., Schimpf, P. H., & Liu, H. (2007). How working memory and the cerebellum collaborate to produce creativity and innovation. Creativity Research Journal, 19(1), 118.Google Scholar
Vanhaeren, M., d’Errico, F., Stringer, C. B., et al. (2006). Middle Paleolithic shell beads in Israel and Algeria. Science, 312(5781), 17851788.Google Scholar
Van Peer, P. (1992). The Levallois reduction strategy. Monographs in World Archaeology 13. Prehistory Press.Google Scholar
Varela, F. J., Thompson, E., & Rosch, E. (2017). The embodied mind: Cognitive science and human experience (Revised edition). MIT Press.Google Scholar
Varga, M. E., Pavlova, O. G., & Nosova, S. V. (2010). The counting function and its representation in the parietal cortex in humans and animals. Neuroscience and Behavioral Physiology, 40(2), 185196.Google Scholar
Varley, R. A., Klessinger, N. J. C., Romanowski, C. A. J., & Siegal, M. (2005). Agrammatic but numerate. Proceedings of the National Academy of Sciences of the United States of America, 102(9), 35193524.Google Scholar
Vedder, H. (1923). Die Bergdama, Part 1. L. Friederichsen & Co.Google Scholar
Velasco, J. de. (1841). Historia del reino de Quito en la America meridional. Tome II, y Parte II. Juan Campuzano.Google Scholar
Veldhuis, N. (2011). Levels of literacy. In Radner, K. & Robson, E. (Eds.), The Oxford handbook of cuneiform culture (pp. 6889). Oxford University Press.Google Scholar
Veldhuis, N. (2014). History of the cuneiform lexical tradition. Ugarit-Verlag.Google Scholar
Verran, H. (2000a). Aboriginal Australian mathematics: Disparate mathematics of land ownership. In Selin, H. (Ed.), Mathematics across cultures: The history of non-Western mathematics (pp. 289311). Kluwer Academic.Google Scholar
Verran, H. (2000b). Accounting mathematics in West Africa: Some stories of Yoruba number. In Selin, H. (Ed.), Mathematics across cultures: The history of non-Western mathematics (pp. 345371). Kluwer Academic.Google Scholar
Verran, H. (2001). Science and an African logic. University of Chicago Press.Google Scholar
Villa, P., & Roebroeks, W. (2014). Neandertal demise: An archaeological analysis of the modern human superiority complex. PLoS ONE, 9(4), 110.Google Scholar
Vogel, A. C., Petersen, S. E., & Schlaggar, B. L. (2014). The VWFA: It’s not just for words anymore. Frontiers in Human Neuroscience, 8, 110.Google Scholar
Voigt, M. (1983). Hajji Firuz Tepe, Iran: The Neolithic settlement. Hasanlu Excavation Report I. The University Museum.Google Scholar
Volterra, V., & Erting, C. J. (Eds.). (1994). From gesture to language in hearing and deaf children. Gallaudet University Press.Google Scholar
Von Chamisso, A. (1821). Corrections and remarks. In Von Kotzebue, O. (Ed.), A voyage of discovery, into the South Sea and Beering’s Straits, for the purpose of exploring a north-east passage, undertaken in the years 1815–1818, at the expense of his highness the Chancellor of the Empire, Count Romanzoff, in the ship Rurick (Vol. III, pp. 439442). Longman, Hurst, Rees, Orme, and Brown.Google Scholar
Von Chamisso, A. (1825). Du Grand Océan, de ses îles et de ses côtes. In Bajot, L.-M. (Ed.), Annales maritimes et coloniales, année 1825 – II.e partie – Tome 2 (pp. 141). L’imprimerie Royale.Google Scholar
Von den Driesch, A., & Boessneck, J. (1985). Osteologische Besonderheiten vom Morro de Mezquitillá Malága. Madrider Mitteilungen, 26, 4548.Google Scholar
Von den Steinen, K. (1894a). Among the primitive peoples of Central Brazil: A travel account and the results of the second Xingu Expedition 1887–1888 (F. Schütze, Trans.). Dietrich Reimer.Google Scholar
Von den Steinen, K. (1894b). Unter den Naturvölkern Zentral-Brasiliens. Reiseschilderung und Ergebnisse der Zweiten Schingú-Expedition 1887–1888. Dietrich Reimer.Google Scholar
Von Humboldt, W. (1839). Über die Kawi-Sprache aus der Insel Java, nebst einer Einleitung über die Verschiedenheit des menschlichen Sprachbaues und ihren Einsluss aus die geistige Entwickelung des Menschengeschlechts. Band III. Südsee-Sprachen, als östlicher Zweig des Malayischen. F. Dümmler.Google Scholar
Wade, A. D., & Nelson, A. J. (2013a). Evisceration and excerebration in the Egyptian mummification tradition. Journal of Archaeological Science, 40(12), 41984206.Google Scholar
Wade, A. D., & Nelson, A. J. (2013b). Radiological evaluation of the evisceration tradition in ancient Egyptian mummies. Homo, 64(1), 128.Google Scholar
Wade, A. D., Nelson, A. J., & Garvin, G. J. (2011). A synthetic radiological study of brain treatment in ancient Egyptian mummies. Homo, 62(4), 248269.Google Scholar
Wagensonner, K. (2010). Early lexical lists revisited: Structures and classification as a mnemonic device. In Kogan, L., Koslova, N., Loesov, S., & Tishchenko, S. (Eds.), Proceedings of the 53e Rencontre Assyriologique Internationale, Moscow and St. Petersburg, July 2007: Vol. 1. Language in the ancient Near East (pp. 285310). Eisenbrauns.Google Scholar
Wassén, H. (1931). The ancient Peruvian abacus. Comparative Ethnographical Studies, 9, 189205.Google Scholar
Wassmann, J., & Dasen, P. R. (1994). Yupno number system and counting. Journal of Cross-Cultural Psychology, 25(1), 7894.Google Scholar
Watson, P. J., & LeBlanc, S. A. (1990). Girikihaciyan, A Halafian site in Southeastern Turkey. University of California at Los Angeles.Google Scholar
Weaver, A. H. (2005). Reciprocal evolution of the cerebellum and neocortex in fossil humans. Proceedings of the National Academy of Sciences of the United States of America, 102(10), 35763580.Google Scholar
Weaver, A. H. (2010). Cerebellum and brain evolution in Holocene humans. In Broadfield, D., Yuan, M., Schick, K. D., & Toth, N. P. (Eds.), The human brain evolving: Paleoneurological studies in honor of Ralph L. Holloway (pp. 97106). Stone Age Institute Press.Google Scholar
Weber, E. H. (1834). De pulsu, resorptione, auditu et tactu. C. F. Koehler.Google Scholar
Wetzel, L. (2018). Types and tokens. In Zalta, E. N. (Ed.), Stanford Encyclopedia of Philosophy (Fall 2018). Stanford University. https://plato.stanford.edu/archives/fall2018/entries/types-tokens/Google Scholar
White, R. (1999). Intégrer la complexité sociale et opérationnelle: La construction matérielle de l’identité sociale à Sungir. In Camps-Fabrer, H. (Ed.), Préhistoire d’os: Recueil d’études sur l’industrie osseuse préhistorique (pp. 319331). Publications de l’Université de Provence.Google Scholar
White, R., Bourrillon, R., Mensan, R., et al. (2018). Newly discovered Aurignacian engraved blocks from Abri Cellier: History, context and dating. Quaternary International, 498, 99125.Google Scholar
White, R., & Knecht, H. (1992). Abri Cellier (or La Ruth), Commune de Tursac (Dordogne): Results of the 1927 Beloit College excavations. French Paleolithic Collections in the Logan Museum of Anthropology, 1(2), 3996.Google Scholar
Williams, F. E. (1936). Papuans of the Trans-Fly. Clarendon Press.Google Scholar
Williams, W. (1844). A dictionary of the New-Zealand language, and a concise grammar; to which are added a selection of colloquial sentences. The Press of the Church Mission Society.Google Scholar
Wilson-Wright, A. (2014). The word for “one” in Proto-Semitic. Journal of Semitic Studies, LIX(1), 113.Google Scholar
Winter, W. (1999). When numeral systems are expanded. In Gvozdanović, J. (Ed.), Numeral types and changes worldwide (pp. 4353). Mouton de Gruyter.Google Scholar
Wittgenstein, L. (1933). Tractatus Logico-Philosophicus. Kegan Paul, Trench, Trubner & Co.Google Scholar
Wobst, H. M. (2016). The analogy generation game. Antiquity, 90(352), 10831084.Google Scholar
Wolfe, J. M., & Horowitz, T. S. (2004). What attributes guide the deployment of visual attention and how do they do it? Nature Reviews: Neuroscience, 5(6), 495501.Google Scholar
Wolfers, E. P. (1971). The original counting systems of Papua and New Guinea. The Arithmetic Teacher, 18(2), 7783.Google Scholar
Woods, C. (2017). The abacus in Mesopotamia: Considerations from a comparative perspective. In Feliu, L., Karahashi, F., & Rubio, G. (Eds.), The first ninety years: A Sumerian celebration in honor of Miguel Civil (pp. 416478). Walter de Gruyter.Google Scholar
Wylie, A. (2002). The reaction against analogy. In Thinking from things: Essays in the philosophy of archaeology (pp. 136153). University of California Press.Google Scholar
Wynn, T., & Coolidge, F. L. (2004). The expert Neandertal mind. Journal of Human Evolution, 46(4), 467487.Google Scholar
Wynn, T., & Coolidge, F. L. (2010). How Levallois reduction is similar to, and not similar to, playing chess. In Nowell, A. & Davidson, I. (Eds.), Stone tools and the evolution of human cognition (pp. 83104). University of Colorado Press.Google Scholar
Wynn, T., & Coolidge, F. L. (2012). How to think like a Neandertal. Oxford University Press.Google Scholar
Wynn, T., & Coolidge, F. L. (2019). The expert performance model of Neandertal cognition. In Nishiaki, Y. & Jöris, O. (Eds.), Learning among Neanderthals and Palaeolithic modern humans: Archaeological evidence. Springer.Google Scholar
Wynn, T., Coolidge, F. L., & Overmann, K. A. (2013). The archaeology of number concept and its implications for the evolution of language. In Botha, R. & Everaert, M. (Eds.), The evolutionary emergence of human language: Evidence and inference (pp. 118138). Oxford University Press.Google Scholar
Wynn, T., Overmann, K. A., & Coolidge, F. L. (2016). The false dichotomy: A refutation of the Neandertal indistinguishability claim. Journal of Anthropological Sciences, 94, 201221.Google Scholar
Wynn, T., Overmann, K. A., Coolidge, F. L., & Janulis, K. (2017). Bootstrapping ordinal thinking. In Wynn, T. & Coolidge, F. L. (Eds.), Cognitive models in Palaeolithic archaeology (pp. 197213). Oxford University Press.Google Scholar
Wynn, T., Overmann, K. A., & Malafouris, L. (2021). 4E cognition in the Lower Paleolithic: An introduction. Adaptive Behavior, 29(2), 99106.Google Scholar
Xiao, R., & McEnery, T. (2004). The Lancaster corpus of Mandarin Chinese. www.lancaster.ac.uk/fass/projects/corpus/LCMC/Google Scholar
Xu, F., Spelke, E. S., & Goddard, S. (2005). Number sense in human infants. Developmental Science, 8(1), 88101.Google Scholar
Yalçinkaya, I., Leotard, J. M., Kartal, M., et al. (1995). Les occupations Tardiglaciaires du site d’Öküzini (Sud-Ouest de la Turquie), Résultats préliminaires. L’anthropologie, 99(4), 562583.Google Scholar
Yang, B. (2019). Cowrie shells and cowrie money: A global history. Routledge.Google Scholar
Zahidi, K. (2021). Radicalizing numerical cognition. Synthese, 198(1), 529545.Google Scholar
Zamarian, L., Ischebeck, A., & Delazer, M. (2009). Neuroscience of learning arithmetic: Evidence from brain imaging studies. Neuroscience and Biobehavioral Reviews, 33(6), 909925.Google Scholar
Zarbaliev, H. M. (2015). ЧИСЛИТЕЛЬНЫЕ В АВСТРОНЕЗИЙСКИХ ЯЗЫКАХ (ЯЗЫКОВЫЕ СИСТЕМЫ СЧИСЛЕНИЯ) [Numerals in the Austronesian languages (language number systems)]. Lambert Academic Publishing.Google Scholar
Zaslavsky, C. (1970). Mathematics of the Yoruba people and of their neighbors in Southern Nigeria. The Two-Year College Mathematics Journal, 1(2), 7699.Google Scholar
Zaslavsky, C. (1992). Women as the first mathematicians. International Study Groups on Ethnomathematics Newsletter, 7(1). http://web.nmsu.edu/~pscott/isgem71.htmGoogle Scholar
Zhou, K., & Bowern, C. (2015). Quantifying uncertainty in the phylogenetics of Australian numeral systems. Proceedings of the Royal Society of London. Series B, Biological Sciences, 282(1815), 16.Google Scholar
Zilhão, J. (2007). The emergence of ornaments and art: An archaeological perspective on the origins of “behavioral modernity.Journal of Archaeological Research, 15(1), 154.Google Scholar
Zilhão, J. (2012). Personal ornaments and symbolism among the Neanderthals. In Elias, S. (Ed.), Origins of human innovation and creativity (pp. 3549). Elsevier.Google Scholar
Zilhão, J. (2013). Neandertal-modern human contact in Western Eurasia: Issues of dating, taxonomy, and cultural associations. In Akazawa, T., Nishiaki, Y., & Aoki, K. (Eds.), Dynamics of learning in Neanderthals and modern humans: Cultural perspectives (Vol. 1, pp. 2157). Springer.Google Scholar
Zimansky, P. (1993). Review of Denise Schmandt-Besserat’s Before writing, Volumes I and II. Journal of Field Archaeology, 20(4), 513517.Google Scholar
Zipf, G. K. (1949). Human behavior and the principle of least effort: An introduction to human ecology. Addison-Wesley.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Karenleigh A. Overmann, University of Colorado, Colorado Springs
  • Foreword by Tom Wynn, University of Colorado, Colorado Springs
  • Book: The Materiality of Numbers
  • Online publication: 11 May 2023
  • Chapter DOI: https://doi.org/10.1017/9781009361262.017
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Karenleigh A. Overmann, University of Colorado, Colorado Springs
  • Foreword by Tom Wynn, University of Colorado, Colorado Springs
  • Book: The Materiality of Numbers
  • Online publication: 11 May 2023
  • Chapter DOI: https://doi.org/10.1017/9781009361262.017
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Karenleigh A. Overmann, University of Colorado, Colorado Springs
  • Foreword by Tom Wynn, University of Colorado, Colorado Springs
  • Book: The Materiality of Numbers
  • Online publication: 11 May 2023
  • Chapter DOI: https://doi.org/10.1017/9781009361262.017
Available formats
×