Published online by Cambridge University Press: 05 June 2012
Abstract: Matched sampling is a method of data collection designed to reduce bias and variability due to specific matching variables. Although often used to control for bias in studies in which randomization is practically impossible, there is virtually no statistical literature devoted to investigating the ability of matched sampling to control bias in the common case of many matching variables. An obvious problem in studying the multivariate matching situation is the variety of sampling plans, underlying distributions, and intuitively reasonable matching methods. This article considers one class of multivariate matching methods which yield the same percent reduction in expected bias for each of the matching variables. The primary result is the derivation of the expression for the maximum attainable percent reduction in bias given fixed distributions and fixed sample sizes. An examination of trends in this maximum leads to a procedure for estimating minimum ratios of sample sizes needed to obtain well-matched samples.
INTRODUCTION
This introduction is brief; the reader is referred to Rubin [1976b] for a more detailed explanation of the notation and terminology.
Let G1 and G2 be two random samples of sizes N1 and N2 from two populations, P1 and P2. Matched sampling is an attempt to find subsamples of G1 and G2, G1* and G2* of sizes N1* and N2*, such that the distributions of the p matching variables X are more similar in G1* and G2* than in G1 and G2.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.