Published online by Cambridge University Press: 04 August 2010
The current generation of millimeter interferometers have revealed a population of compact (r ≳ 0.1 pc), massive (M ∼ 100 M⊙) gas cores that are the likely progenitors of massive stars. I review models for the evolution of these objects from the observed massive-core phase through collapse and into massive-star formation, with particular attention to the least well-understood aspects of the problem: fragmentation during collapse, interactions of newborn stars with the gas outside their parent core, and the effects of radiation-pressure feedback. Through a combination of observation, analytic argument, and numerical simulation, I develop a model for massive-star formation by gravitational collapse in which massive cores collapse to produce single stars or (more commonly) small-multiple systems, and these stars do not gain significant mass from outside their parent core by accretion of either gas or other stars. Collapse is only very slightly inhibited by feedback from the massive star, thanks to beaming of the radiation by a combination of protostellar outflows and radiation-hydrodynamic instabilities. Based on these findings, I argue that many of the observed properties of young star clusters can be understood as direct translations of the properties of their gas-phase progenitors. Finally, I discuss unsolved problems in the theory of massive-star formation, and directions for future work on them.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.