Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-19T05:01:01.778Z Has data issue: false hasContentIssue false

4 - Remote-sensing techniques

Published online by Cambridge University Press:  16 October 2009

Jonathan L. Bamber
Affiliation:
School of Geographical Sciences, University of Bristol
Ron Kwok
Affiliation:
Jet Propulsion Laboratory, California Institute of Technology
Jonathan L. Bamber
Affiliation:
University of Bristol
Antony J. Payne
Affiliation:
University of Bristol
Get access

Summary

Introduction

The cryosphere covers a vast expanse of the polar oceans and land surfaces. The area of the Southern Ocean covered by sea ice fluctuates between about 3.4 and 19.1 × 106 km2. over the period of one year. The Antarctic ice sheet covers an area of some 13 × 106 km2., greater than the conterminous USA. The number of glaciers on the planet is not well known, but certainly exceeds 160 000. Monitoring such large areas, often in remote and hostile environments, is ideally suited to satellite-based observations, which provide the only practical means of obtaining synoptic, timely coverage. Due to the importance of satellite remote sensing to observations of the cryosphere, we provide here a brief introduction to the subject, covering the satellites and sensors most commonly employed and describing how they can be used to derive information on mass balance. These instruments and techniques are referred to extensively in the subsequent chapters covering observational data on mass balance. This section is a primer in the subject. For comprehensive coverage of the general principles of remote sensing of the environment, the reader is referred to a number of excellent textbooks on remote sensing, referenced in this chapter. In section 4.2 we provide an overview of the general principles of satellite remote sensing, which are common to both land- and sea-ice measurements. In section 4.3 the characteristics and pertinent operating principles of the satellites and sensors relevant to cryospheric studies are reviewed.

Type
Chapter
Information
Mass Balance of the Cryosphere
Observations and Modelling of Contemporary and Future Changes
, pp. 59 - 114
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aagaard, K. and Carmack, E. 1989. The role of sea ice and other fresh water in the Arctic circulation. J. Geophys. Res. 94 (C10), 14 485–98CrossRefGoogle Scholar
Abdalati, W. and Steffen, K. 1995. Passive microwave-derived snow melt regions on the Greenland ice-sheet. Geophys. Res. Lett. 22 (7), 787–90CrossRefGoogle Scholar
Agnew, L., Le, H. and Hirose, T. 1997. Estimation of large scale sea ice motion from SSM/I 85.5 GHz imagery. Ann. Glaciol. 25, 305–11CrossRefGoogle Scholar
Arthern, R. J. and Wingham, D. J. 1998. The natural fluctuations of firn densification and their effect on the geodetic determination of ice sheet mass balance. Climatic Change, 40 (3–4), 605–24CrossRefGoogle Scholar
Bamber, J. L. 1994. Ice sheet altimeter processing scheme. Int. J. Remote Sensing 14 (4), 925–38CrossRefGoogle Scholar
Bamber, J. L. and Bentley, C. R. 1994. A comparison of satellite altimetry and ice thickness measurements of the Ross ice shelf, Antarctica. Ann. Glaciol. 20, 357–64Google Scholar
Bamber, J. L. and Huybrechts, P. 1996. Geometric boundary conditions for modelling the velocity field of the Antarctic ice sheet. Ann. Glaciol. 23, 364–73CrossRefGoogle Scholar
Bamber, J. L. and Rignot, E. 2002. Unsteady flow inferred for Thwaites Glacier and comparison with Pine Island Glacier, West Antarctica. J. Glaciol. 48 (161), 237–46CrossRefGoogle Scholar
Bamber, J. L., Hardy, R. J. and Joughin, I. 2000a. An analysis of balance velocities over the Greenland ice sheet and comparison with synthetic aperture radar interferometry. J. Glaciol. 46 (152), 67–72CrossRefGoogle Scholar
Bamber, J. L., Vaughan, D. G. and Joughin, I. 2000b. Widespread complex flow in the interior of the Antarctic ice sheet. Science 287 (5456), 1248–50CrossRefGoogle Scholar
Bayr, K. J., Hall, D. K. and Kovalick, W. M. 1994. Observations on glaciers in the eastern Austrian Alps using satellite data. Int. J. Remote Sensing 15 (9), 1733–42CrossRefGoogle Scholar
Bindschadler, R. A. and Scambos, T. A. 1991. Satellite-image-derived velocity-field of an Antarctic ice stream. Science 252 (5003), 242–6CrossRefGoogle ScholarPubMed
Bindschadler, R. and Vornberger, P. 1998. Changes in the west Antarctic ice sheet since 1963 from declassified satellite photography. Science 279 (5351), 689–92CrossRefGoogle ScholarPubMed
Bindschadler, R.et al. 1996. Surface velocity and mass balance of ice streams D and E, West Antarctica. Science 42 (142), 461–75Google Scholar
Bindschadler, R.et al. 2001. Glaciological applications with Landsat-7 imagery: early assessments. Remote Sensing Environ. 78 (1–2), 163–79CrossRefGoogle Scholar
Bogorodskiy, V. and Bentley, C. 1985. Radioglaciology. Kluwer Academic Publishers
Budd, W. F. and Warner, R. C. 1996. A computer scheme for rapid calculations of balance-flux distributions. Ann. Glaciol. 23, 21–7CrossRefGoogle Scholar
Carsey, F. D. 1982. Arctic sea ice distribution at end of summer 1973–1976 from satellite microwave data. J. Geophys. Res. 87 (C8), 5809–35CrossRefGoogle Scholar
Cavalieri, D. J. 1992. The validation of geophysical products using multisensor data. In Carsey, F. D., ed., Microwave Remote Sensing of Sea Ice. Washington, D.C., American Geophysical Union, pp. 233–42
Cavalieri, D. J., Gloersen, P. and Campbell, W. J. 1984. Determination of sea ice parameters from Nimbus 7 SMMR. J. Geophys. Res. 89 (D4), 5355–69CrossRefGoogle Scholar
Cavalieri, D. J., St. Germain, K. M. and Swift, C. T. 1995. Reduction of weather effects in the calculation of sea ice concentration in DMSP SSM/I. J. Glaciol. 41 (139), 455–64CrossRefGoogle Scholar
Cavalieri, D. J., Parkinson, C. L., Gloersen, P., Comiso, J. C. and Zwally, H. J. 1999. Deriving long-term time series of sea ice cover from satellite passive-microwave multisensor data sets. J. Geophys. Res. 104 (C7), 15 803–14CrossRefGoogle Scholar
Chelton, D. B. et al. 2001. Satellite altimetry. In Fu, L.-L. and Cazenave, A., eds., Satellite Altimetry and the Earth Sciences. New York, Academic Press, pp. 1–132
Comiso, J. C. 1986. Characteristics of Arctic winter sea ice from satellite multispectral microwave observations. J. Geophys. Res. 91 (C1), 975–94CrossRefGoogle Scholar
Comiso, J. C. and Kwok, R. 1996. Surface and radiative characteristics of the summer Arctic sea cover from multisensor satellite observations. J. Geophys. Res. 101 (C12), 28 397–416CrossRefGoogle Scholar
Comiso, J. C., Grenfell, T. C., Lange, M. M., Lohanick, M., Moore, R. K. and Wadhams, P. 1992. Microwave remote sensing of the Southern Ocean ice cover. In Carsey, F. D., ed., Microwave Remote Sensing of Sea Ice. Washington, D.C., American Geophysical Union, pp. 243–59
Comiso, J. C., Cavalieri, D. J., Parkinson, C. L. and Gloersen, P. 1997. Passive microwave algorithms for sea ice concentration: a comparison of two techniques. Remote Sensing Environ. 60, 357–84CrossRefGoogle Scholar
Coon, M. D., Knoke, G. S., Echert, D. C. and Pritchard, R. S. 1998. The architecture of an anisotropic elastic-plastic sea ice mechanics constitutive law. J. Geophys. Res. 103 (C10), 21 915–25CrossRefGoogle Scholar
Cudlip, W.et al. 1994. Corrections for altimeter low-level processing at the Earth observation data center. Int. J. Remote Sensing. 15 (4), 889–914CrossRefGoogle Scholar
Cunningham, G. F., Kwok, R. and Banfield, J. 1994. Ice lead orientation characteristics in the winter Beaufort Sea. Proceedings of IGARSS. Pasadena, CA, 1994
Davis, C. H. 1995. Growth of the Greenland ice-sheet – a performance assessment of altimeter retracking algorithms. IEEE Trans. Geosci. & Remote Sensing 33 (5), 1108–16CrossRefGoogle Scholar
Davis, C. H. 1996a. Comparison of ice-sheet satellite altimeter retracking algorithms. IEEE Trans. Geosci. & Remote Sensing 34 (1), 229–36CrossRefGoogle Scholar
Davis, C. H. 1996b. Temporal change in the extinction coefficient of snow on the Greenland ice sheet from an analysis of Seasat and Geosat altimeter data. IEEE Trans. Geosci. & Remote Sensing 34 (5), 1066–73CrossRefGoogle Scholar
Davis, C. H. 1997. A robust threshold retracking algorithm for measuring ice-sheet surface elevation change from satellite radar altimeters. IEEE Trans. Geosci. & Remote Sensing 35 (4), 974–9CrossRefGoogle Scholar
Davis, C. H. and Moore, R. K. 1994. A combined surface and volume scattering model for ice sheet radar altimetry. J. Glaciol. 39 (133), 675–86CrossRefGoogle Scholar
Davis, C. H., Kluever, C. A. and Haines, B. J. 1998. Elevation change of the southern Greenland ice sheet. Science 279 (5359), 2086–8CrossRefGoogle ScholarPubMed
Drinkwater, M. R. 1998. Satellite microwave observations of Antarctic sea ice. In Tsatsoulis, C. and Kwok, R., eds., Analysis of SAR data of the Polar Oceans: Recent Advances. Berlin, Springer Verlag, pp. 145–87
Drinkwater, M. R., Long, D. G. and Bingham, A. W. 2001. Greenland snow accumulation estimates from satellite radar scatterometer data. J. Geophys. Res. 106 (D24), 33 935–50CrossRefGoogle Scholar
Emery, W. J., Fowler, C. W. and Maslanik, J. A. 1997. Satellite-derived maps of Arctic and Antarctic sea ice motion, 1988–1994. Geophys. Res. Lett. 24 (8), 897–900CrossRefGoogle Scholar
Fetterer, F., Gineris, D. and Kwok, R. 1994. Sea ice type maps from Alaska synthetic aperture radar facility imagery: an assessment. J. Geophys. Res. 99 (C11), 22 443–58CrossRefGoogle Scholar
Fily, M. and Rothrock, D. A. 1990. Opening and closing of sea ice leads: digital measurements from synthetic aperture radar. J. Geophys. Res. 95 (C1), 789–96CrossRefGoogle Scholar
Frezzotti, M. 1997. Ice front fluctuation, iceberg calving flux and mass balance of Victoria Land glaciers. Antarct. Sci. 9 (1), 61–73CrossRefGoogle Scholar
Fricker, H. A., Warner, R. C. and Allison, I. 2000. Mass balance of the Lambert glacier–Amery ice shelf system, East Antarctica: a comparison of computed balance fluxes and measured fluxes. J. Glaciol. 46 (155), 561–70CrossRefGoogle Scholar
Fricker, H. A.et al. 2001. Distribution of marine ice beneath the Amery ice shelf. Geophys. Res. Lett. 28 (11), 2241–4CrossRefGoogle Scholar
Fujii, Y.et al. 1987. Comparison of surface conditions of the inland ice sheet, Dronning Maud Land, Antarctica, derived from NOAA AVHRR data with ground observations. Ann. Glaciol. 9, 72–5CrossRefGoogle Scholar
Gloersen, P., Campbell, W. J., Cavalieri, D. J., Comiso, J. C., Parkinson, C. L. and Zwally, H. J. 1992. Arctic and Antarctic Sea Ice, 1978–1987: Satellite Passive-Microwave Observation and Analysis, NASA SP-511. Washington, D.C., National Aeronautics and Space Administration
Gogineni, S.et al. 1998. An improved coherent radar depth sounder. J. Glaciol. 44 (148), 659–69CrossRefGoogle Scholar
Gohin, F. and Cavanie, A. 1994. A first try at identification of sea ice using the three beam scatterometer of ERS-1. Int. J. Remote Sensing 15 (6), 1221–8CrossRefGoogle Scholar
Goldstein, R. M., Zebker, H. A. and Werner, C. 1988. Satellite radar interferometry: two-dimensional phase unwrapping. Radio Sci. 23 (4), 713–20CrossRefGoogle Scholar
Grandell, J., Johannessen, J. A. and Hallikainen, M. T. 1999. Development of a synergistic sea ice retrieval method for the ERS-1 AMI wind scatterometer and SSM/I radiometer. IEEE Trans. Geosci. Remote Sensing 37 (2), 668–79CrossRefGoogle Scholar
Gray, A. L. et al. 1998. In SAR results from the RADARSAT Antarctic mapping mission data: estimation of glacier motion using a simple registration procedure. In Stein, T., ed., 1998 International Geoscience and Remote Sensing Symposium (IGARSS 98) on Sensing and Managing the Environment. Seattle, WA, 6–10 July 1998. Piscataway, NJ, IEEE Service Center, pp. 1638–40
Haefliger, M., Steffen, K. and Fowler, C. 1993. AVHRR surface temperature and narrow-band albedo comparison with ground measurements for the Greenland ice sheet. Ann. Glaciol. 17, 49–54CrossRefGoogle Scholar
Hanna, E. and Bamber, J. 2001. Derivation and optimization of a new Antarctic sea-ice record. Int. J. Remote Sensing 22 (1), 113–39CrossRefGoogle Scholar
Hardy, R. J., Bamber, J. L. and Orford, S. 2000. The delineation of major drainage basins on the Greenland ice sheet using a combined numerical modelling and GIS approach. Hydrol. Process 14 (11–12), 1931–413.0.CO;2-2>CrossRefGoogle Scholar
Hibler, W. D. III and Schulson, E. M. 2000. On modeling the anisotropic failure and flow of flawed sea ice. J. Geophys. Res. 105, 17 105–20CrossRefGoogle Scholar
Higgins, A. K. 1990. North Greenland glacier velocities and calf ice production. Polarforschung 60 (1), 1–23Google Scholar
Holt, B. D., Rothrock, A. and Kwok, R. 1992. Determination of sea ice motion from satellite images. In Carsey, F. D., ed., Microwave Remote Sensing of Sea Ice. Washington, D. C., American Geophysical Union, pp. 343–54
Jezek, K. C., Sohn, H. G. and Noltimier, K. F. 1998. The radarsat Antarctic mapping project. In Stein, T., ed., 1998 International Geoscience and Remote Sensing Symposium (IGARSS. 98) on Sensing and Managing the Environment. Seattle, WA, 6–10, July 1998. Piscataway, NJ, IEEE Service Center, pp. 2462–4
Joughin, I. and Tulaczyk, S. 2002. Positive mass balance of the Ross Ice Streams, West Antarctica. Science 295 (5554), 476–80CrossRefGoogle ScholarPubMed
Kaab, A. 2000. Photogrammetric reconstruction of glacier mass balance using a kinematic ice-flow model: a 20 year time series on Grubengletscher, Swiss Alps. Ann. Glaciol. 31, 45–52CrossRefGoogle Scholar
Kaab, A. and Funk, M. 1999. Modelling mass balance using photogrammetric and geophysical data: a pilot study at Griesgletscher, Swiss Alps. J. Glaciol. 45 (151), 575–83CrossRefGoogle Scholar
Krabill, W.et al. 1995a. Greenland ice-sheet thickness changes measured by laser altimetry. Geophys. Res. Lett. 22 (17), 2341–4CrossRefGoogle Scholar
Krabill, W. B.et al. 1995b. Accuracy of airborne laser altimetry over the Greenland ice sheet. Int. J. Remote Sensing 16 (7), 1211–22CrossRefGoogle Scholar
Krabill, W.et al. 1999. Rapid thinning of parts of the southern Greenland ice sheet. Science 283 (5407), 1522–4CrossRefGoogle ScholarPubMed
Kwok, R. 1998. The RADARSAT geophysical processor system, In Tsatsoulis, C. and Kwok, R., eds., Analysis of SAR data of the Polar Oceans: Recent Advances. Berlin, Springer Verlag, pp. 235–57
Kwok, R. 2000. Recent changes of the Arctic Ocean sea ice motion associated with the north Atlantic oscillation. Geophys. Res. Lett. 27 (6), 775–8CrossRefGoogle Scholar
Kwok, R. 2001. Deformation of the Arctic Ocean sea ice cover: November 1996 through April 1997. In Dempsey, J. and Shen, H. H., eds., Scaling Laws in Ice Mechanics and Dynamics. Dordrecht, Kluwer Academic, pp. 315–23
Kwok, R. and Comiso, J. C. 1998. The perennial ice cover of the Beaufort Sea from active and passive microwave observations. Ann. Glaciol. 25, 376–81CrossRefGoogle Scholar
Kwok, R. and Cunningham, G. F. 1992. Backscatter characteristics of the winter sea ice cover in the Beaufort Sea. J. Geophys. Res. 99 (C4), 7787–803CrossRefGoogle Scholar
Kwok, R. and Cunningham, G. F. 2002. Seasonal ice area and volume production of the Arctic Ocean: November 1996 through April 1997. J. Geophys. Res. 107 (C10), 8038CrossRefGoogle Scholar
Kwok, R. and Fahnestock, M. A. 1996. Ice sheet motion and topography from radar interferometry. IEEE Trans. Geosci. Remote Sensing 34 (1), 189–200CrossRefGoogle Scholar
Kwok, R. and Rothrock, D. A. 1999. Variability of Fram Strait ice flux and North Atlantic oscillation. J. Geophy. Res. 104, 5177–89CrossRefGoogle Scholar
Kwok, R., Rothrock, D. A., Stern, H. L. and Cunningham, G. F. 1995. Determination of Ice Age using Lagrangian observations of ice motion. IEEE Trans. Geosci. Remote Sensing 33 (2), 392–400CrossRefGoogle Scholar
Kwok, R., Schweiger, A., Rothrock, D. A., Pang, S. and Kottmeier, C. 1998. Sea ice motion from satellite passive microwave data assessed with ERS SAR and buoy data. J. Geophys. Res. 103 (C4), 8191–214CrossRefGoogle Scholar
Kwok, R., Cunningham, G. F. and Yueh, S. 1999. Area balance of the Arctic Ocean perennial ice zone: Oct 1996–April 1997. J. Geophys. Res. 104 (C11), 25 747–9CrossRefGoogle Scholar
Laxon, S. W. 1994. Sea ice altimeter processing scheme at the EODC. Int. J. Remote Sensing 15 (4), 915–24CrossRefGoogle Scholar
Li, F. K. and Goldstein, R. M. 1990. Studies of multi-baseline interferometric synthetic aperature radars. IEEE Trans. Geosci. & Remote Sensing 28, 88–97CrossRefGoogle Scholar
Lillesand, T. M. and Kiefer, R. W. 2000. Remote Sensing and Image Interpretation, 4th edn. New York, John Wiley
Liu, A. and Cavalieri, D. J. 1998. On sea ice drift from the wavelet analysis of DMSP SSM/I data. Int. J. Remote Sensing 19 (7), 1415–23CrossRefGoogle Scholar
Long, D. G. and Drinkwater, M. 1999. Cryosphere applications of NSCAT data. IEEE Trans. Geosci. Remote Sensing 37 (3), 1671–84CrossRefGoogle Scholar
Lucchitta, B. and Ferguson, H. 1986. Antarctica-measuring glacier velocity from satellite images. Science 234 (4780), 1105–8CrossRefGoogle ScholarPubMed
Martin, T. and Augstein, E. 2000. Large-scale drift of Arctic Sea ice retrieved from passive microwave satellite data. J. Geophys. Res. 105 (C4), 8775–88CrossRefGoogle Scholar
Maslanik, J. A. 1992. Effects of weather on the retrieval of sea ice concentration from passive microwave data. Int. J. Remote Sensing 13, 37–54CrossRefGoogle Scholar
Maykut, G. A. 1986. The surface heat and mass balance. In Untersteiner, N., ed., Geophysics of Sea Ice. Series B: Physics Vol. 146. Plenum Press, pp. 395–463
Oelke, C. 1997. Atmospheric signatures in sea ice concentration estimates from passive microwave data: modeled and observed. Int. J. Remote Sensing 18, 1113–36CrossRefGoogle Scholar
Overland, J. E., McNutt, S. L., Salo, S., Groves, J. and Li, S. S. 1998. Arctic sea ice as a granular plastic. J. Geophys. Res. 103 (C10), 21 845–67CrossRefGoogle Scholar
Parkinson, C., Comiso, J. C., Zwally, H. J., Cavalieri, D. J., Gloersen, P. and Campbell, W. J. 1987. Arctic Sea Ice, 1973–1976: Satellite Passive-Microwave Observations, NASA SP-489. Washington, D. C., National Aeronautics and Space Administration
Parmerter, R. R. and Coon, M. 1972. Model of pressure ridge formation in sea ice. J. Geophys. Res. 77, 6565–75CrossRefGoogle Scholar
Paterson, W. S. B. 1994. The Physics of Glaciers, 3rd edn. Oxford, Pergamon Press
Peacock, N. R., Laxon, S. W., Maslowski, W., Winebrenner, D. P. and Arthern, R. J. 1998. Geophysical signatures from precise altimetric height measurements in the Arctic Ocean. In Stein, T., ed., 1998 International Geoscience and Remote Sensing Symposium (IGARSS. 98) on Sensing and Managing the Environment. Seattle, WA, July 6–10, 1998. Piscataway, NJ, IEEE Service Center, pp. 1964–6
Qin, Z. H.et al. 2001. Derivation of split window algorithm and its sensitivity analysis for retrieving land surface temperature from NOAA-advanced very high resolution radiometer data. J. Geophys. Res. 106 (D19), 22 655–70CrossRefGoogle Scholar
Raney, R. K. 1998. The delay/Doppler radar altimeter. IEEE Trans. Geosci. Remote Sensing 36 (5), 1578–88CrossRefGoogle Scholar
Reeh, N.et al. 1997. Mass balance of North Greenland. Science 278 (5336), 207–9CrossRefGoogle Scholar
Rees, W. G. 2001. Physical Principles of Remote Sensing. Cambridge University Press
Reynolds, J. R. and Young, G. J. 1997. Changes in areal extent, elevation and volume of Athabasca Glacier, Alberta, Canada, as estimated from a series of maps produced between 1919 and 1979. Ann. Glaciol. 24, 60–5CrossRefGoogle Scholar
Ridley, J. K. and Partington, K. C. 1988. A model of satellite altimeter return from ice sheets. Int. J. Remote Sensing 9 (4), 601–24CrossRefGoogle Scholar
Rignot, E. 1996. Tidal motion, ice velocity and melt rate of Petermann Gletscher, Greenland, measured from radar interferometry. J. Glaciol. 42 (142), 476–85CrossRefGoogle Scholar
Rignot, E. 1998. Fast recession of a West Antarctic glacier. Science 281 (5376), 549–51CrossRefGoogle Scholar
Rignot, E. 2002. Mass balance of East Antarctic glaciers and ice shelves from satellite data. Ann. Glaciol. 34, 217–27CrossRefGoogle Scholar
Rignot, E. J.et al. 1997a. North and northeast Greenland ice discharge from satellite radar interferometry. Science 276 (5314), 934–7CrossRefGoogle Scholar
Rignot, E. J. 1997b. Mass balance of North Greenland – response. Science 278 (5336), 209Google Scholar
Rignot, E. J. 2000. Mass balance of the northeast sector of the Greenland ice sheet: a remote-sensing perspective. J. Glaciol. 46 (153), 265–73CrossRefGoogle Scholar
Robin, G. de Q. 1966. Mapping the Antarctic ice sheet by satellite altimetry. Can. J. Earth Sci., 3 (6), 893–901CrossRefGoogle Scholar
Rodriguez, E. and Martin, J. 1992. Theory and design of interferometric SARs. Proc. IEE Radar & Signal Processing 139 (2), 147–59CrossRefGoogle Scholar
Scambos, T. A. and Bindschadler, R. A. 1991. Feature maps of ice streams C, D and E, West Antarctica. Antarc. J. US 26 (5), 312–13Google Scholar
Scambos, T. A.et al. 1992. Application of image cross-correlation to the measurement of glacier velocity using satellite image data. Remote Sensing of Environment 42 (3), 177–86CrossRefGoogle Scholar
Scharroo, R. and Visser, P. 1998. Precise orbit determination and gravity field improvement for the ERS satellites. J. Geophys. Res. Oceans 103 (C4), 8113–27CrossRefGoogle Scholar
Steffen, K. and Heinrichs, J. 1994. Feasibility of sea ice typing with SAR: merging of Landsat TM and ERS-1 SAR satellite imagery. J. Geophys. Res. 99 (C11), 22 413–24CrossRefGoogle Scholar
Steffen, K. et al. 1993. Snow and ice application of AVHRR in polar regions. Ann. Glaciol. 1–16
Stern, H. L., Rothrock, D. A. and Kwok, R. 1995. Open water production in Arctic sea ice: satellite measurements and model parameterizations. J. Geophys. Res. 100 (C10), 20 601–12CrossRefGoogle Scholar
Stroeve, J., Nolin, A. and Steffen, K. 1997. Comparison of AVHRR-derived and in situ surface albedo over the Greenland Ice Sheet. Remote Sensing Environ. 62 (3), 262–76CrossRefGoogle Scholar
Theakstone, W. H. and Jacobsen, F. M. 1997. Digital terrain modelling of the surface and bed topography of the glacier Austre Okstindbreen, Okstindan, Norway. Geogr. Ann. Ser. A-Phys. Geogr. 79A (4), 201–14CrossRefGoogle Scholar
Thomas, D. R. 1993. Arctic sea ice signatures for passive microwave algorithms. J. Geophys. Res. 98 (C6), 10 037–52CrossRefGoogle Scholar
Thomas, D. R. and Rothrock, D. A. 1993. The Arctic Ocean ice balance: a Kalman filter smoother estimate. J. Geophys. Res. 98 (C6), 10 053–67CrossRefGoogle Scholar
Vaughan, D. G.et al. 1999. Reassessment of net surface mass balance in Antarctica. J. Climate 12 (4), 933–462.0.CO;2>CrossRefGoogle Scholar
Winebrenner, D. P., Arthern, R. J. and Shuman, C. A. 2001. Mapping Greenland accumulation rates using observations of thermal emission at 4.5-cm wavelength. J. Geophys. Res. 106 (D24), 33 919–34CrossRefGoogle Scholar
Winebrenner, D. P., Tsang, L.Wen, B. and West, R. 1989. Sea-ice characterization measurements needed for testing of microwave remote sensing models. IEEE J. Oceanic. Engng. 14 (2), 149–57CrossRefGoogle Scholar
Wingham, D. J.et al. 1998. Antarctic elevation change from 1992 to 1996. Science 282 (5388), 456–8CrossRefGoogle ScholarPubMed
Young, N. W.et al. 1998. Near-coastal iceberg distributions in East Antarctica, 50–145 degrees E.Ann. Glaciol. 27, 68–74CrossRefGoogle Scholar
Yu, Y. and Rothrock, D. A. 1996. Thin ice thickness from satellite thermal imagery. J. Geophys. Res. 101 (C10), 25 753–66CrossRefGoogle Scholar
Yueh, S. and Kwok, R. 1998. Arctic sea ice extent and melt onset from NSCAT observations. Geophys. Res. Lett. 25 (23), 4369–72CrossRefGoogle Scholar
Yueh, S., Kwok, R., Lou, S. H. and Tsai, W. Y. 1997. Sea ice identification using dual-polarized Ku-band scatterometer data. IEEE Trans. Geosci. Remote Sensing 35 (3), 560–9CrossRefGoogle Scholar
Zebker, H. A. and Goldstein, R. 1986. Topographic mapping from interferometric SAR observations. J. Geophys. Res. 91 (B5), 4993–9CrossRefGoogle Scholar
Zhang, J., Hibler, W., Steele, M. and Rothrock, D. 1998. Arctic ice-ocean modeling with and without climate restoring. J. Phys. Oceanography 28 191–2172.0.CO;2>CrossRefGoogle Scholar
Zhang, Y., Maslowski, W. and Semtner, A. J. 1999. Impact of mesoscale ocean currents on sea ice in high-resolution Arctic ice and ocean simulations. J. Geophys. Res. 104 (C8), 18 409–30CrossRefGoogle Scholar
Zwally, H. J. 1977. Microwave emissivity and accumulation rate of polar firn. J. Glaciol. 18, 195–215CrossRefGoogle Scholar
Zwally, H. J. 1989. Growth of Greenland ice sheet: interpretation. Science 246, 1589–91CrossRefGoogle ScholarPubMed
Zwally, H. J. and Giovinetto, M. B. 1995. Accumulation in Antarctica and Greenland derived from passive-microwave data: a comparison with contoured compilations. Ann. Glaciol. 21, 123–30CrossRefGoogle Scholar
Zwally, H. J.et al. 1983. Surface elevation contours of Greenland and Antarctic ice sheets. J. Geophys. Res. 88 (C3), 1589–96CrossRefGoogle Scholar
Zwally, H. J., Comiso, J. C., Parkinson, C., Cavalieri, D. J., Gloersen, P. and Campbell, W. J. 1987. Antarctic Sea Ice, 1973–1976: Satellite Passive-Microwave Observations, NASA SP-459. Washington, D. C., National Aeronautics and Space Administration
Zwally, H. J.et al. 1989. Growth of Greenland ice sheet: measurement. Science 246, 1587–9CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×