Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-07T10:30:22.394Z Has data issue: false hasContentIssue false

6 - Modelling land-ice dynamics

Published online by Cambridge University Press:  16 October 2009

Cornelis J. Van Der Veen
Affiliation:
Byrd Polar Research Center, The Ohio State University
Antony J. Payne
Affiliation:
School of Geographical Sciences, University of Bristol
Jonathan L. Bamber
Affiliation:
University of Bristol
Antony J. Payne
Affiliation:
University of Bristol
Get access

Summary

Introduction

Glaciers respond dynamically to external forcings, such as climate variations, which cause ice masses to approach a new equilibrium compatible with the new environmental conditions. For example, it has been suggested that greenhouse warming may result in increased snow fall in the interior of Antarctica and increased ablation in the coastal regions of this ice sheet. Model simulations of the ice-sheet response indicate a thickening in the interior and surface lowering near the margins. Thus, the slope of the ice surface becomes steeper, resulting in greater discharge velocities to redistribute excess mass from the interior toward the margins to compensate for mass loss from ablation. Generally, the response of ice sheets to forcings may be complicated because feedback processes become operable that may amplify or mitigate the ice sheet's adjustment to forcing or because of internal instabilities that may cause rapid changes in ice volume due to changes in the dynamical flow regime. To model ice-sheet evolution adequately, it is therefore necessary to identify the important physical controls and processes affecting the flow of glaciers.

In most models, whether numerical time-evolving or analytical, simplifying assumptions are commonly made to allow a solution to be found. Such simplifications are permissible provided the essential physics are retained. A model aimed at simulating the evolution of the Greenland ice sheet over the last few glacial cycles need not explicitly calculate deformation of each individual ice crystal.

Type
Chapter
Information
Mass Balance of the Cryosphere
Observations and Modelling of Contemporary and Future Changes
, pp. 169 - 226
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdalati, W.et al. 2001. Outlet glacier and margin elevation changes: near-coastal thinning of the Greenland ice sheet. J. Geophys. Res. 106, 33729–41CrossRefGoogle Scholar
Alley, R. B. 1992. Flow-law hypotheses for ice-sheet modeling. J. Glaciol. 38, 245–56CrossRefGoogle Scholar
Alley, R. B. and Whillans, I. M. 1984. Response of the East Antarctic ice sheet to sea-level rise. J. Geophys. Res. 89, 6487–93CrossRefGoogle Scholar
Alley, R. B., Blankenship, D. D., Bentley, C. R. and Rooney, S. T. 1986. Deformation of till beneath ice stream B, West Antarctica. Nature 322, 57–9CrossRefGoogle Scholar
Alley, R. B., Blankenship, D. D., Bentley, C. R. and Rooney, S. T. 1987. Till beneath ice stream B. 3. Till deformation: evidence and implications. J. Geophys. Res. 92, 8921–9CrossRefGoogle Scholar
Baker, R. W. 1987. Is the creep of ice really independent of the third deviatoric stress invariant? In Waddington, E., ed., The Physical Basis of lce Sheet Modelling. IAHS publ. no. 170, pp. 7–16
Bamber, J. L., Hardy, R. J. and Joughin, I. 2000a. An analysis of balance velocities over the Greenland ice sheet and comparison with synthetic aperture radar interferometry. J. Glaciol. 46, 67–74CrossRefGoogle Scholar
Bamber, J. L., Vaughan, D. G. and Joughin, I. 2000b. Widespread complex flow in the interior of the Antarctic ice sheet. Science 287 (5456), 1248–50CrossRefGoogle Scholar
Bamber, J. L., Hardy, R. J., Huybrechts, P. and Joughin, I. 2000c. A comparison of balance velocities, measured velocities and thermomechanically modelled velocities for the Greenland Ice Sheet. Ann. Glaciol. 30, 211–16CrossRefGoogle Scholar
Bentley, C. R. 1983. The west Antarctic ice sheet: diagnosis and prognosis. In Proceedings of Carbon Dioxide Conference: Carbon Dioxide, Science and Consensus. Berkeley Springs, W. Va., Sept. 19–23, 1982, IV.3–IV.50
Bentley, C. R. 1984. Some aspects of the cryosphere and its role in climate change. In Hansen, J. E. and Takahashi, T., eds., Climate Processes and Climate Sensitivity. Geophysical Monograph 29. Washington, D. C., American Geophysical Union, pp. 207–20
Bentley, C. R., Lord, N. and Liu, C. 1998. Radar reflections reveal a wet bed beneath stagnant ice stream C and a frozen bed beneath ridge BC, west Antarctica. J. Glaciol. 44, 149–56CrossRefGoogle Scholar
Bindschadler, R. A. 1983. The importance of pressurized subglacial water in separation and sliding at the glacier bed. J. Glaciol. 29, 3–19CrossRefGoogle Scholar
Bindschadler, R., Vornberger, P., Blankenship, D., Scambos, T. and Jacobel, R. 1996. Surface velocity and mass balance of ice streams D and E, west Antarctica. J. Glaciol. 42 (142), 461–75CrossRefGoogle Scholar
Blatter, H. 1995. Velocity and stress fields in grounded glaciers: a simple algorithm for including deviatoric stress gradients. J. Glaciol. 41, 333–44CrossRefGoogle Scholar
Boulton, G. S. and Jones, A. S. 1979. Stability of temperate ice caps and ice sheets resting on beds of deformable sediments. J. Glaciol. 24, 29–43CrossRefGoogle Scholar
Brasseur, G. P. and Madronich, S. 1992. Chemistry-transport models. In Trenberth, K., ed., Climate System Modeling. Cambridge University Press, pp. 491–518
Budd, W. F. 1970a. The longitudinal stress and strain-rate gradients in ice masses. J. Glaciol. 9, 19–27CrossRefGoogle Scholar
Budd, W. F. 1970b. Ice flow over bedrock perturbations. J. Glaciol. 9, 29–48CrossRefGoogle Scholar
Budd, W. F. and Warner, R. C. 1996. A computer scheme for rapid calculations of balance-flux distributions. Ann. Glaciol. 23, 21–7CrossRefGoogle Scholar
Budd, W. F., Jenssen, D. and Radok, U. 1971. Derived physical characteristics of the Antarctic ice sheet. ANARE interim report, Series A (IV), Glaciology Publ. pp. 120, 178
Chapman, W. L., Welch, W. J., Bowman, K. P., Sacks, J. and Walsh, J. E. 1994. Arctic sea-ice variability – model sensitivities and a multidecadal simulation. J. Geophys. Res. 99, 919–35CrossRefGoogle Scholar
Clarke, G. K. C. and Marshall, S. J. 2002. Isotopic balance of the Greenland ice sheet: modelled concentrations of water isotopes from 30,000 BP to present. Quat. Sci. Rev. 21, 419–30CrossRefGoogle Scholar
Clarke, G. K. C., Nitsan, U. and Paterson, W. S. B. 1977. Strain heating and creep instability in glaciers and ice sheets. Rev. Geophys. & Space Phys. 15, 235–47CrossRefGoogle Scholar
Copland, L. and Sharp, M. 2001. Mapping thermal and hydrological conditions beneath a polythermal glacier with radio-echo sounding. J. Glaciol. 47, 232–242CrossRefGoogle Scholar
Corr, H., Moore, J. C. and Nicolls, K. W. 1993. Radar absorption due to impurities in Antarctic ice. Geophys. Res. Lett. 20, 1071–4CrossRefGoogle Scholar
Dansgaard, W. and Johnsen, S. J. 1969. A flow model and a time scale for the ice core from Camp Century, Greenland. J. Glaciol. 8, 215–23CrossRefGoogle Scholar
Dansgaard, W., Johnsen, S. J., Clausen, H. B. and Langway, C. C. 1973. Stable isotope glaciology. Medd. Gr⊘nl. 197 (2), 1–53Google Scholar
Dowdeswell, J. A. and Siegert, M. J. 1999. The dimensions and topographic setting of Antarctic subglacial lakes and implications for large-scale water storage beneath continental ice sheets. Geol. Soc. Am. Bull. 111, 254–632.3.CO;2>CrossRefGoogle Scholar
Fahnestock, M. A., Scambos, T. A., Bindschadler, R. A. and Kvaran, G. 2000. A millennium of variable ice flow recorded by the Ross ice shelf, Antarctica. J. Glaciol. 46, 652–64CrossRefGoogle Scholar
Fahnestock, M., Abdalati, W., Joughin, I., Brozena, J. and Gogineni, P. 2001. High geothermal heat flow, basal melt, and the origin of rapid ice flow in central Greenland. Science 294, 2338–42CrossRefGoogle ScholarPubMed
Fastook, J. L. and Prentice, M. 1994. A finite-element model of Antarctica – sensitivity test for meteorological mass-balance relationship. J. Glaciol. 40, 167–75CrossRefGoogle Scholar
Fowler, A. C. 1987a. Sliding with cavity formation. J. Glaciol. 33, 255–67CrossRefGoogle Scholar
Fowler, A. C. 1987b. A theory of glacier surges. J. Geophys. Res. 92, 9111–20CrossRefGoogle Scholar
, Gades A. M., , Raymond C. F., Conway, H. and Jacobel, R. W. 2000. Bed properties of Siple Dome and adjacent ice streams, west Antarctica, inferred from radio-echo sounding measurements. J. Glaciol. 46, 88–94Google Scholar
Glen, J. W. 1955. The creep of polycrystalline ice. Proc. Roy. Soc. London, Ser. A 228, 519–38CrossRefGoogle Scholar
Glen, J. W. 1958. The flow law of ice. A discussion of the assumptions made in glacier theory, their experimental foundations and consequences. IAHS publ. no. 147, pp. 171–83
Gray, A. L., Short, N., Mattar, K. E. and Jezek, K. C. 2001. Velocities and flux of the Filchner ice shelf and its tributaries determined from speckle tracking interferometry. Can. J. Remote Sensing 27 (3), 193–206CrossRefGoogle Scholar
Greuell, W. 1989. Glaciers and climate. Ph.D. Thesis, University of Utrecht
Greuell, W. 1992. Hintereisferner, Austria: mass-balance reconstruction and numerical modelling of the historical length variations. J. Glaciol. 38, 233–44CrossRefGoogle Scholar
Gudmundsson, G. H. 1999. A three-dimensional numerical model of the confluence area of Unteraargletscher, Bernese Alps, Switzerland. J. Glaciol. 45, 219–30CrossRefGoogle Scholar
Gudmundsson, G. H., Raymond, C. F. and Bindschadler, R. 1998. The origin and longevity of flow stripes on Antarctic ice streams. Ann. Glaciol. 27, 145–52CrossRefGoogle Scholar
Herterich, K. 1987. On the flow within the transition zone between ice sheet and ice shelf. In Van der Veen, C. J. and Oerlemans, J., eds., Dynamics of the West Antarctic Ice Sheet. Dordrecht, D. Reidel, pp. 185–202
Hindmarsh, R. C. A. 1997. Normal modes of an ice sheet. J. Fluid Mech. 335, 393–413CrossRefGoogle Scholar
Hindmarsh, R. C. A. 2001. Influence of channelling on heating in ice-sheet flows. Geophys. Res. Lett. 28, 3681–4CrossRefGoogle Scholar
Hindmarsh, R. C. A. and Meur, E. 2001. Dynamical processes involved in the retreat of marine ice sheets. J. Glaciol. 47, 271–82CrossRefGoogle Scholar
Hindmarsh, R. C. A. and Payne, A. J. 1996. Time-step limits for stable solutions of the ice-sheet equation. Ann. Glaciol. 23, 74–85CrossRefGoogle Scholar
Hooke, R. Le B. 1981. Flow law for polycrystalline ice in glaciers: comparison of theoretical predictions, laboratory data, and field measurements. Rev. Geophys. & Space Phys. 19, 664–72CrossRefGoogle Scholar
Hooke, R. Le B. 1989. Englacial and subglacial hydrology: a qualitative review. Arctic & Alpine Res. 21, 221–33CrossRefGoogle Scholar
Hooke, R. Le B. 1998. Principles of Glacier Mechanics. Upper Saddle River, NJ, Prentice Hall
Hughes, T. J. 1973. Is the West Antarctic ice sheet disintegrating?J. Geophys. Res. 78, 7884–910CrossRefGoogle Scholar
Hughes, T. J. 1983. The stability of the West Antarctic ice sheet: what has happened and what will happen. In Proceedings of Carbon Dioxide Conference: Carbon Dioxide, Science and Consensus. Berkeley Springs, W. Va. Sept. 19–23, 1982. IV.51–IV.73
Hughes, T. J. 1992. On the pulling power of ice streams. J. Glaciol. 38, 125–51CrossRefGoogle Scholar
Hughes, T. J. 1998. Ice Sheets. Oxford University Press
Hulbe, C. L. and MacAyeal, D. R. 1999. A new numerical model of coupled inland ice sheet, ice stream, and ice shelf flow and its application to the West Antarctic ice sheet. J. Geophys. Res. 104, 25349–66CrossRefGoogle Scholar
Hutter, K. 1983. Theoretical Glaciology. Dordrecht, D. Reidel
Huybrechts, P. 1992. The Antarctic ice sheet and environmental change: a three-dimensional modelling study. Berichte zur Polarforschung 99, 241 ppGoogle Scholar
Huybrechts, P. 1994. The present evolution of the Greenland ice sheet: an assessment by modelling. Global & Planetary Change 9, 39–51CrossRefGoogle Scholar
Huybrechts, P. 2002. Sea-level changes at the LGM from ice-dynamic reconstructions of the Greenland and Antarctic ice sheets during the glacial cycles. Quat. Sci. Rev. 21, 203–31CrossRefGoogle Scholar
Huybrechts, P. and Wolde, J. 1999. The dynamic response of the Greenland and Antarctic ice sheets to multiple-century climatic warming. J. Climate 12, 2169–882.0.CO;2>CrossRefGoogle Scholar
Huybrechts, P.et al. 1996. The EISMINT benchmarks for testing ice-sheet models. Ann. Glaciol. 23, 1–14CrossRefGoogle Scholar
Jenssen, D. 1977. A three-dimensional polar ice sheet model. J. Glaciol. 18, 373–90CrossRefGoogle Scholar
Joughin, I., Fahnestock, M., MacAyeal, D., Bamber, J. L. and Gogineni, P. 2001. Observation and analysis of ice flow in the largest Greenland ice stream. J. Geophys. Res. 106, 3421–34CrossRefGoogle Scholar
Jouzel, J.et al. 1987. Vostok ice core: a continuous isotope temperature record over the last climatic cycle (160,000 years). Nature 329, 402–8CrossRefGoogle Scholar
Kamb, B. 1970. Sliding motion of glaciers: theory and observations. Rev. Geophys. & Space Phys. 8, 673–728CrossRefGoogle Scholar
Kamb, B. 1987. Glacier surge mechanism based on linked cavity configuration of the basal water conduit system. J. Geophys. Res. 92, 9083–100CrossRefGoogle Scholar
Kamb, B. 1991. Rheological nonlinearity and flow instability in the deforming bed mechanism of ice stream motion. J. Geophys. Res. 96, 16585–95CrossRefGoogle Scholar
Kamb, W. and Echelmeyer, K. 1986. Stress-gradient coupling in glacier flow: IV. Effects of the ‘T’ term. J. Glaciol. 32, 342–9CrossRefGoogle Scholar
Kruss, P. D. and Smith, I. N. 1982. Numerical modelling of the Vernagtferner and its fluctuations. Zeits. Gletscherkund & Glazialgeol. 18, 93–106Google Scholar
Kwok, R. and Fahnestock, M. A. 1996. Ice sheet motion and topography from radar interferometry. IEEE Trans. Geosci. Remote Sensing 23 (1), 189–200CrossRefGoogle Scholar
Lingle, C. S. 1984. A numerical model of interactions between a polar ice stream and the ocean: application to Ice Stream E, west Antarctica. J. Geophys. Res. 89, 3523–49CrossRefGoogle Scholar
Lingle, C. S. 1985. A model of a polar ice stream, and future sea-level rise due to possible drastic retreat of the West Antarctic Ice Sheet. In Glaciers, Ice Sheets, and Sea Level: Effect of a CO2-induced Climatic Change. US Department of Energy Report DOE/EV/60235–1, pp. 317–30
Lingle, C. S. and Brown, T. J. 1987. A subglacial aquifer bed model and water pressure dependent basal sliding relationship for a west Antarctic ice stream. In Van der Veen, C. J. and Oerlemans, J., eds., Dynamics of the West Antarctic Ice Sheet. Dordrecht, D. Reidel, pp. 249–85
Lythe, M. B. and Vaughan, D. G. 2001. BEDMAP: a new ice thickness and subglacial topographic model of Antarctica. J. Geophys. Res. 106 (B6), 11 335–51CrossRefGoogle Scholar
MacAyeal, D. R. 1989. Large-scale ice flow over a viscous basal sediment – theory and application to ice stream-B, Antarctica. J. Geophys. Res. 94, 4071–87CrossRefGoogle Scholar
MacAyeal, D. R. 1993. A tutorial on the use of control methods in ice-sheet modelling. J. Glaciol. 39, 91–8CrossRefGoogle Scholar
MacAyeal, D. R., Bindschadler, R. A. and Scambos, T. A. 1995. Basal friction of ice-stream-E, west Antarctica. J. Glaciol. 41, 247–62CrossRefGoogle Scholar
MacAyeal, D. R., Rommelaere, V., Huybrechts, P., Hulbe, C. L., Determan, J. and Ritz, C. 1996. An ice-shelf model test based on the Ross ice shelf, Antarctica. Ann. Glaciol. 23, 46–51CrossRefGoogle Scholar
McTigue, D. F., Passman, S. L. and Jones, S. J. 1985. Normal stress effects in the creep of ice. J. Glaciol. 31, 120–6CrossRefGoogle Scholar
Man, C.-S. and Sun, Q.-X. 1987. On the significance of normal stress effects in the flow of glaciers. J. Glaciol. 33, 268–73CrossRefGoogle Scholar
Marshall, S. J. and Clarke, G. K. C. 1997. A continuum mixture model of ice stream thermomechanics in the Laurentide ice sheet 2. Application to the Hudson Strait ice stream. J. Geophys. Res. 102, 20615–37Google Scholar
Mercer, J. H. 1968. Antarctic ice and Sangamon sea level. IAHS publ. no. 79, pp. 217–25
Mercer, J. H. 1978. West Antarctic ice sheet and CO2 greenhouse effect: a threat of disaster. Nature 271, 321–5CrossRefGoogle Scholar
Murray, T.et al. 2000. Glacier surge propagation by thermal evolution at the bed. J. Geophys. Res. 105, 13491–507CrossRefGoogle Scholar
Nye, J. F. 1953. The flow law of ice from measurements in glacier tunnels, laboratory experiments and the Jungfraufirn borehole experiments. Proc. Roy. Soc. London, Ser. A 219, 477–89CrossRefGoogle Scholar
Nye, J. F. 1963. Correction factor for accumulation measured by the thickness of annual layers in an ice sheet. J. Glaciol. 4, 785–8CrossRefGoogle Scholar
Nye, J. F. 1965. The flow of a glacier in a channel of rectangular, elliptic or parabolic cross-section. J. Glaciol. 5, 661–90CrossRefGoogle Scholar
Nye, J. F. 1969. A calculation on the sliding of ice over a wavy surface using a Newtonian viscous approximation. Proc. Roy. Soc. London, Ser. A 311, 445–67CrossRefGoogle Scholar
Nye, J. F. 1970. Glacier sliding without cavitation in a linear viscous approximation. Proc. Roy. Soc. London, Ser. A 315, 381–403CrossRefGoogle Scholar
Oerlemans, J. and Van der Veen, C. J. 1984. Ice Sheets and Climate. Dordrecht, D. Reidel
Oerlemans, J.et al. 1998. Modelling the response of glaciers to climate warming. Climate Dyn. 14, 267–74CrossRefGoogle Scholar
Paterson, W. S. B. 1994. The Physics of Glaciers, 3rd edn. Oxford, Pergamon Press/Elsevier
Paterson, W. S. B. and Budd, W. F. 1982. Flow parameters for ice-sheet modeling. Cold Regions Sci. Tech. 6, 175–7CrossRefGoogle Scholar
Pattyn, F. 1996. Numerical modelling of a fast-flowing outlet glacier: experiments with different basal conditions. Ann. Glaciol. 23, 237–46CrossRefGoogle Scholar
Payne, A. J. 1995. Limit cycles in the basal thermal regime of ice sheets. J. Geophys. Res. 100, 4249–63CrossRefGoogle Scholar
Payne, A. J. 1998. Dynamics of the Siple Coast ice streams, west Antarctica: results from a thermomechanical ice sheet model. Geophys. Res. Lett. 25, 3173–6CrossRefGoogle Scholar
Payne, A. J. 1999. A thermomechanical model of ice flow in west Antarctica. Climate Dyn. 15, 115–25CrossRefGoogle Scholar
Payne, A. J.et al. 2000. Results from the EISMINT Phase 2 simplified geometry experiments: the effects of thermomechanical coupling. J. Glaciol. 46, 227–38CrossRefGoogle Scholar
Petit, J. R.et al. 1999. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429–36CrossRefGoogle Scholar
Raymond, C. F. 1980. Valley glaciers. In Colbeck, S. C., ed., Dynamics of Snow and Ice Masses. New York, Academic Press, pp. 79–139
Rigsby, G. P. 1958. Effect of hydrostatic pressure on the velocity of shear deformation of single ice crystals. J. Glaciol. 3, 273–8CrossRefGoogle Scholar
Ritz, C. 1987. Time dependent boundary conditions for calculation of temperature fields in ice sheets. In Waddington, E., ed., The Physical Basis of Ice Sheet Modelling. IAHS publ. no. 170, pp. 207–16
Ritz, C., Fabre, A. and Letréguilly, A. 1996. Sensitivity of a Greenland ice sheet model to ice flow and ablation parameters: consequences for the evolution through the last climatic cycle. Climate Dyn. 13, 11–24CrossRefGoogle Scholar
Ritz, C., Rommelaere, V. and Dumas, C. 2001. Modeling the evolution of Antarctic ice sheet over the last 420 000 years: implications for altitude changes in the Vostok region. J. Geophys. Res. 106, 31943–64CrossRefGoogle Scholar
Robin, R. de Q. 1983. Radio-echo studies of internal layering of polar ice sheets. In Robin, G. de Q., ed., The Climatic Record in Polar Ice Sheets. Cambridge University Press, pp. 180–4
Röthlisberger, H. 1972. Water pressure in intra- and subglacial channels. J. Glaciol. 11, 177–204CrossRefGoogle Scholar
Sanderson, T. J. O. and Doake, C. S. M. 1979. Is vertical shear in an ice shelf negligible?J. Glaciol. 22, 285–92CrossRefGoogle Scholar
Schowalter, W. R. 1978. Mechanics of Non-Newtonian Fluids. Oxford, Pergamon Press
Schubert, G. and Yuen, D. A. 1982. Initiation of ice ages by creep instability and surging of the east Antarctic ice sheet. Nature 296, 127–30CrossRefGoogle Scholar
Shepherd, A., Wingham, D. J., Mansley, J. A. D. and Corr, H. F. J. 2001. Inland thinning of Pine Island Glacier, west Antarctica. Science 291, 862–4CrossRefGoogle ScholarPubMed
Siegert, M. J. 1999. On the origin, nature and uses of Antarctic ice-sheet radio-echo layering. Prog. Phys. Geog. 23, 159–79CrossRefGoogle Scholar
Siegert, M. J., Dowdeswell, J. A., Gorman, M. R. and McIntyre, N. F. 1996. An inventory of Antarctic sub-glacial lakes. Antarctic Sci. 8, 281–6CrossRefGoogle Scholar
Siegert, M. J., Hodgkins, R. and Dowdeswell, J. A. 1998. A chronology for the dome C deep ice-core site through radio-echo layer correlation with the Vostok ice core, Antarctica. Geophy. Res. Lett. 25, 1019–22CrossRefGoogle Scholar
Siegert, M. J.et al. 2001. Physical, chemical and biological processes in Lake Vostok and other Antarctic subglacial lakes. Nature 414, 603–9CrossRefGoogle ScholarPubMed
Takeda, A. L., Cox, S. J. and Payne, A. J. 2002. Parallel numerical modelling of the Antarctic ice sheet. Computers & Geosci. 28, 723–34CrossRefGoogle Scholar
Tarboton, D. G. 1997. A new method for the determination of flow directions and contributing areas in grid digital elevation models. Water Resources Res. 33, 309–19CrossRefGoogle Scholar
Thomas, R. H. 1973. The creep of ice shelves: theory. J. Glaciol. 12, 45–53CrossRefGoogle Scholar
Thomas, R. H. 1979. The dynamics of marine ice sheets. J. Glaciol. 24, 167–77CrossRefGoogle Scholar
Thomas, R. H. and Bentley, C. R. 1978. A model for the Holocene retreat of the west Antarctic ice sheet. Quat. Res. 10, 150–70CrossRefGoogle Scholar
Thomas, R. H. and MacAyeal, D. R. 1982. Derived characteristics of the Ross ice shelf, Antarctica. J. Glaciol. 28, 397–412CrossRefGoogle Scholar
Thomas, R. H., Sanderson, T. J. O. and Rose, K. E. 1979. Effect of a climatic warming on the west Antarctic ice sheet. Nature 227, 355–8CrossRefGoogle Scholar
Thomas, R. H.et al. 2000. Substantial thinning of a major east Greenland outlet glacier. Geophys. Res. Lett. 27, 1291–4CrossRefGoogle Scholar
Vachaud, G. and Chen, T. 2002. Sensitivity of a large-scale hydrologic model to quality of input data obtained at different scales; distributed versus stochastic non-distributed modelling. J. Hydrology 264, 101–12CrossRefGoogle Scholar
Veen, C. J. 1985. Response of a marine ice sheet to changes at the grounding line. Quat. Res. 24, 257–67CrossRefGoogle Scholar
Van der Veen, C. J. 1987. Longitudinal stresses and basal sliding: a comparative study. In Van der Veen, C. J. and Oerlemans, J., eds., Dynamics of the West Antarctic Ice Sheet. Dordrecht, D. Reidel, pp. 223–48
Veen, C. J. 1989. A numerical scheme for calculating stresses and strain rates in glaciers. Math. Geol. 21, 363–77CrossRefGoogle Scholar
Van der Veen, C. J. 1999a. Fundamentals of Glacier Dynamics. Rotterdam, A. A. Balkema
Veen, C. J. 1999b. Evaluating the performance of cryospheric models. Polar Geog. 23, 83–96CrossRefGoogle Scholar
Veen, C. J. 2001. Greenland ice sheet response to external forcing. J. Geophys. Res. 106, 3447–58Google Scholar
Veen, C. J. 2002. Polar ice sheets and global sea level: how well can we predict the future?Global & Planetary Change 32, 165–94CrossRefGoogle Scholar
Veen, C. J. and Whillans, I. M. 1989. Force budget: I. Theory and numerical methods. J. Glaciol. 35, 53–60CrossRefGoogle Scholar
Veen, C. J. and Whillans, I. M. 1990. Flow laws for glacier ice: comparison of numerical predictions and field measurements. J. Glaciol. 36, 324–39CrossRefGoogle Scholar
Veen, C. J. and Whillans, I. M. 1996. Model experiments on the evolution and stability of ice streams. Ann. Glaciol. 23, 129–37CrossRefGoogle Scholar
Walder, J. S. 1986. Hydraulics of subglacial cavities. J. Glaciol. 32, 439–45CrossRefGoogle Scholar
Weertman, J. 1957a. On the sliding of glaciers. J. Glaciol. 3, 33–8CrossRefGoogle Scholar
Weertman, J. 1957b. Deformation of floating ice shelves. J. Glaciol. 3, 38–42CrossRefGoogle Scholar
Weertman, J. 1964. The theory of glacier sliding. J. Glaciol. 5, 287–303CrossRefGoogle Scholar
Weertman, J. 1972. General theory of water flow at the base of a glacier or ice sheet. Rev. Geophys. & Space Phys. 10, 287–333CrossRefGoogle Scholar
Weertman, J. 1974. Stability of the junction of an ice sheet and an ice shelf. J. Glaciol. 13, 3–11CrossRefGoogle Scholar
Weertman, J. 1976. Sliding-no sliding zone effect and age determinations of ice cores. Quat. Res. 6, 203–7CrossRefGoogle Scholar
Whillans, I. M. and Veen, C. J. 1993a. Patterns of calculated basal drag on ice stream-B and ice stream-C, Antarctica. J. Glaciol. 39, 437–46CrossRefGoogle Scholar
Whillans, I. M. and Veen, C. J. 1993b. New and improved determinations of velocity of ice streams B and C, West Antarctica. J. Glaciol. 39, 483–90CrossRefGoogle Scholar
Whillans, I. M. and Veen, C. J. 1997. The role of lateral drag in the dynamics of ice stream B, Antarctica. J. Glaciol. 43, 231–7CrossRefGoogle Scholar
Whillans, I. M., Bentley, C. R. and Van der Veen, C. J. 2001. Ice streams B and C. In Alley, R. B. and Bindschadler, R. A., eds., The West Antarctic Ice Sheet: Behavior and Environment. Antarctic Research Series vol. 77. Washington, D. C., American Geophysical Union, pp. 257–81
Wingham, D. J., Ridout, A. J., Scharroo, R., Arthern, R. J. and Shum, C. K. 1998. Antarctic elevation change from 1992 to 1996. Science 282, 456–8CrossRefGoogle ScholarPubMed
Yuen, D. A. and Schubert, G. 1979. The role of shear heating in the dynamics of large ice masses. J. Glaciol. 24, 195–212CrossRefGoogle Scholar
Yuen, D. A., Saari, M. R. and Schubert, G. 1986. Explosive growth of shear-heating instabilities in the down-slope creep of ice sheets. J. Glaciol. 32, 314–20CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×