Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-17T14:03:26.362Z Has data issue: false hasContentIssue false

20 - In situ observations of the physical properties of the Martian surface

from Part IV - Physical Properties of Surface Materials

Published online by Cambridge University Press:  10 December 2009

K. E. Herkenhoff
Affiliation:
U.S. Geological Survey Astrogeology Team 2255 N. Gemini Drive Flagstaff, AZ 86001-1698, USA
M. P. Golombek
Affiliation:
JPL MS 183-501 4800 Oak Grove Drive Pasadena, CA 91109, USA
E. A. Guinness
Affiliation:
Washington University, Campus Box 1169 St Louis, MO 63130, USA
J. B. Johnson
Affiliation:
Cold Regions Research & Engineering Laboratory Alaska Office PO Box 35170 Ft. Wainwright, AK 99703, USA
A. Kusack
Affiliation:
Honeybee Robotics Spacecraft Mechanisms Corporation 460 W. 34th Street, New York, NY 10001, USA
L. Richter
Affiliation:
German Aerospace Center (DLR), Institute of Space Simulation Linder Hoehe Cologne, D-51170, Germany
R. J. Sullivan
Affiliation:
CRSR Cornell University, 308 Space Sciences Building, Ithaca, NY 14853, USA
S. Gorevan
Affiliation:
Honeybee Robotics Spacecraft Mechanisms Corporation 460 W. 34th Street, New York, NY 10001, USA
Jim Bell
Affiliation:
Cornell University, New York
Get access

Summary

ABSTRACT

The physical properties of rocks and soils on the surface of Mars have been investigated by several landed spacecraft. Studies of these physical properties constrain interpretation of Martian geologic processes and provide engineering data for future mission planning. As on Earth, these properties vary considerably from place to place, and provide constraints on the origin and evolution of the surface materials. Martian soils commonly have thin surface crusts that may be caused by salts cementing grains together. Estimates of soil physical properties at the various landing sites are generally comparable, but rather uncertain in many cases. Rock physical properties, based on abrasion by the Mars Exploration Rover (MER) Rock Abrasion Tool (RAT) and other experiments, vary widely.

Type
Chapter
Information
The Martian Surface
Composition, Mineralogy and Physical Properties
, pp. 451 - 467
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arvidson, R. E., Gooding, J. L., and Moore, H. J., The martian surface as imaged, sampled and analyzed by the Viking Landers, Rev. Geophys. 27, 39–60, 1989.CrossRefGoogle Scholar
Arvidson, R. E., Anderson, R. C., Haldemann, A. F. C., et al., Physical properties and localization investigations associated with the 2003 Mars Exploration Rovers, J. Geophys. Res. 108 (E12), 8070, doi:10.1029/2002JE002041, 2003.CrossRefGoogle Scholar
Arvidson, R. E., Anderson, R. C., Bartlett, P., et al., Localization and physical properties experiments conducted by Spirit at Gusev crater, Science 305, 821–4, 2004a.CrossRefGoogle Scholar
Arvidson, R. E., Anderson, R. C., Bartlett, P., et al., Localization and physical properties experiments conducted by Opportunity at Meridiani Planum, Science 306, 1730–3, 2004b.CrossRefGoogle Scholar
Ball, A. J., Solomon, C. J., and Zarnecki, J. C., The response of gamma backscatter density gauges to spatial inhomogeneity: an extension of the single scattering model, Nucl. Instrum. Meth. Phys. Res. B 140(3/4), 449–62, 1998.CrossRefGoogle Scholar
Ball, A. J., Gadomski, S., Banaszkiewicz, M., et al., An instrument for in situ comet nucleus surface density profile measurement by gamma ray attenuation, Planet. Space Sci. 49(9), 961–76, 2001.CrossRefGoogle Scholar
Bell, J. F. III, Squyres, S., Herkenhoff, K., et al., Mars Exploration Rover Athena Panoramic Camera (Pancam) investigation, J. Geophys. Res. 108(E12), 8063, doi:10.1029/2003JE002070, 2003.CrossRefGoogle Scholar
Binder, A. B., Arvidson, R. E., Guinness, E. A., et al., The geology of the Viking Lander 1 site, J. Geophys. Res. 82, 4439–51, 1977.CrossRefGoogle Scholar
Carrier III, W. D., G. R. Olhoeft, and W. Mendell, Physical properties of the lunar surface. In Lunar Sourcebook (ed. Heiken, G. H., Vaniman, D. T., and French, B. M.), Cambridge University Press, pp. 475–594, 1991.Google Scholar
Christensen, P. R., The spatial distribution of rocks on Mars, Icarus68, 217–38, 1986.CrossRefGoogle Scholar
Christensen, P. R. and H. J. Moore, The Martian surface layer. In Mars (ed. Kieffer, H. H., Jakosky, B. M., Snyder, C. W., and Matthews, M. S.), Tucson: University of Arizona Press, pp. 686–727, 1992.
Christensen, P. R., Mehall, G. L., Silverman, S. H., et al., Miniature thermal emission spectrometer for the Mars Exploration Rovers, J. Geophys. Res. 108 (E12), 8064, doi:10.1029/2003JE002117, 2003.CrossRefGoogle Scholar
Clark, B. C., Baird, A. K., Rose, H. J. Jr., et al., The Viking X-ray fluorescence experiment: analytical methods and early results, J. Geophys. Res. 82, 4577–94, 1977.CrossRefGoogle Scholar
Clark, B. C., Baird, A. K., Weldon, R. J., et al., Chemical composition of martian fines, J. Geophys. Res. 87, 10059–67, 1982.CrossRefGoogle Scholar
Cundall, P. A. and Strack, O. D. L., A discrete numerical model for granular assemblies, Geotechnique 29, 47–65, 1979.CrossRefGoogle Scholar
Evans, J. V. and Hagfors, T., Radar Astronomy, New York: McGraw-Hill, 620pp., 1968.Google Scholar
Fergason, R. L., Christensen, P. R., Bell, J. F. III, et al., Physical properties of the Mars Exploration Rover landing sites as inferred from Mini-TES derived thermal inertia, J. Geophys. Res. 111(E2), E02S21, doi:10.1029/2005JE002583, 2006.CrossRefGoogle Scholar
Ferguson, D. C., Kolecki, J. C., Siebert, M. W., Wilt, D. M., and Matijevic, J. R., Evidence for martian electrostatic charging and abrasive wheel wear from wheel abrasion experiment on the Pathfinder Sojourner rover, J. Geophys. Res. 104, 8747–89, 1999.CrossRefGoogle Scholar
Garciano, L. O., S. K. Upadhyaya, R. A. Jones, and S. R. Jersy, Development of an Instrumented Portable Device that Measures Shear, Sinkage and Friction Properties of Soil in-situ, American Society of Agricultural and Biological Engineers meeting presentation paper No. 061093, 14pp., 2006.
Golombek, M. P., and the Mars Pathfinder science team, Overview of the Mars Pathfinder mission: launch through landing, surface operations, data sets, and science results, J. Geophys. Res. 104, 8523–53, 1999a.CrossRefGoogle Scholar
Golombek, M. P., Moore, H. J., Haldemann, A. F. C., Parker, T. J., and Schofield, J. T., Assessment of Mars Pathfinder landing site predictions, J. Geophys. Res. 104, 8585–94, 1999b.CrossRefGoogle Scholar
Golombek, M. P., Haldemann, A. F. C., Forsberg-Taylor, N. K., et al., Rock size-frequency distributions on Mars and implications for MER landing safety and operations, J. Geophys. Res. 108(E12), 8086, doi:10.1029/2002JE002035, 2003.CrossRefGoogle Scholar
Golombek, M. P., Arvidson, R. E., Bell, J. F. III, et al., Assessment of Mars Exploration Rover landing site predictions, Nature 436, 44–8, 2005.CrossRefGoogle ScholarPubMed
Gorevan, S. P., Myrick, T., Davis, K., et al., Rock Abrasion Tool: Mars Exploration Rover mission, J. Geophys. Res. 108, 8068, doi:10.129/2003JE002061, 2003.CrossRefGoogle Scholar
Greeley, R., Silt-clay aggregates on Mars, J. Geophys. Res. 84, 6248–54, 1979.CrossRefGoogle Scholar
Greeley, R., Kraft, M., Sullivan, R., et al., Aeolian features and processes at the Mars Pathfinder landing site, J. Geophys. Res. 104, 8573–84, 1999.CrossRefGoogle Scholar
Greeley, R., Kraft, M. D., Kuzmin, R. O., and Bridges, N. T., Mars Pathfinder landing site: evidence for a change in wind regime and climate from lander and orbiter data, J. Geophys. Res. 105, 1829–40, 2000.CrossRefGoogle Scholar
Greeley, R., Squyres, S. W., Arvidson, R. E., et al., Wind-related processes detected by the Spirit rover at Gusev crater, Mars, Science 305, 810–21, 2004.CrossRefGoogle ScholarPubMed
Hagfors, T., Backscattering from an undulating surface with applications to radar returns from the Moon, J. Geophys. Res. 69, 3779–84, 1964.CrossRefGoogle Scholar
Herkenhoff, K. E., Squyres, S. W., Bell, J. F. III, et al., Athena Microscopic Imager investigation, J. Geophys. Res. 108, 8065, doi:10.1029/2003JE002076, 2003.CrossRefGoogle Scholar
Herkenhoff, K. E., Squyres, S. W., Arvidson, R., et al., Textures of the soils and rocks at Gusev crater from Spirit's Microscopic Imager, Science 305, 824–6, 2004a.CrossRefGoogle Scholar
Herkenhoff, K. E., Squyres, S. W., Arvidson, R., et al., Evidence for ancient water on Meridiani Planum from Opportunity's Microscopic Imager, Science 306, 1727–30, 2004b.CrossRefGoogle Scholar
Hopkins, M. A., Discrete element modeling with dilated particles, J. Eng. Comput. 21(2), 422–30, doi:10.1108/02644400410519866, 2004.CrossRefGoogle Scholar
Huck, F. O., McCall, H. F., Patterson, W. R., and Taylor, G. R., The Viking Mars lander camera, Space Sci. Instrum. 1, 189–241, 1975.Google Scholar
Iagnemma, K. and Dubowsky, S., Traction control of wheeled robotic vehicles in rough terrain with application to planetary rovers, Int. J. Robot. Res. 23, 1029–40, doi:10.1177/0278364904047392, http://ijr.sagepub.com/cgi/content/abstract/23/10-11/1029, 2004.CrossRefGoogle Scholar
Iagnemma, K., Kang, S., Shibly, H., and Dubowsky, S., On-line terrain parameter estimation for planetary rovers, IEEE Trans. Robot., 20(2), 921–7, 2004.CrossRefGoogle Scholar
Jerolmack, D. J., Mohrig, D., Grotzinger, J. P., Fike, D. A., and Watters, W. A., Spatial grain size sorting in eolian ripples and estimation of wind conditions on planetary surfaces: application to Meridiani Planum, Mars. J. Geophys. Res. 111, E12S02, doi:10.1029/2005JE002544, 2006.CrossRefGoogle Scholar
Johnson, J. B. and Hopkins, M. A., Identifying microstructural deformation mechanisms in snow using discrete element modeling, J. Glaciology 51, 432–42, 2005.CrossRefGoogle Scholar
Kemurdzhian, A. L., O. G. Ivanov, P. S. Pavlov, et al., The self-propelled chassis of Lunokhod-1 as an instrument for investigating the lunar surface. In Mobile Laboratory on the Moon (ed. Barsukov, V. L.), Lunokhod-1, Moscow: Nauka, Vol. 2, pp. 25–66, 1978.Google Scholar
Kieffer, H. H., Martin, T. Z., Peterfreund, A. R., et al., Thermal and albedo mapping of Mars during the Viking Primary Mission, J. Geophys. Res. 82, 4249–91, 1977.CrossRefGoogle Scholar
Klingelhöfer, G., Morris, R. V., Bernhardt, B., et al., Athena MIMOS II Mössbauer spectrometer investigation, J. Geophys. Res. 108, 8067, doi:10.1029/2003JE002138, 2003.CrossRefGoogle Scholar
Lieberman, S. H. and Knowles, D. S., Cone penetrometer deployable in situ video microscope for characterizing sub-surface soil properties, Field Analyt. Chem. & Technol. 2(2), 127–32, 1998.3.0.CO;2-T>CrossRefGoogle Scholar
Maki, J. N., Bell, J. F. III, Herkenhoff, K. E., et al., The Mars Exploration Rover engineering cameras, J. Geophys. Res. 108, doi:10.1029/2003JE002077, 2003.CrossRefGoogle Scholar
Matijevic, J. R., Crisp, J., Bickler, D. B., et al., Characterization of the Martian surface deposits by the Mars Pathfinder rover, Sojourner, Science 278, 1765–8, 1997.Google Scholar
McLane, M., Sedimentology, New York: Oxford University Press, 1995.Google Scholar
McSween, H. Y. Jr, Murchie, S. L. III, Britt, D. T., et al., Chemical, multispectral, and textural constraints on the composition and origin of rocks at the Mars Pathfinder landing site, J. Geophys. Res. 104, 8679–716, doi:10.1029/98JE02551, 1999.CrossRefGoogle Scholar
McSween, H. Y., Arvidson, R. E., Bell, J. F. III, et al., Basaltic rocks analyzed by the Spirit rover in Gusev crater, Science 305, 842–5, 2004.CrossRefGoogle ScholarPubMed
Mitchell, J. K., Houston, W. N., Scott, R. F., et al., Mechanical properties of lunar soils: density, porosity, cohesion, and angle of internal friction, Proc. Lunar Sci. Conf. III, Sup. 3, Geochim. Cosmochim. Acta 3, 3235–53, 1972.Google Scholar
Momozua, M., Oidaa, A., Yamazakib, M., and Koolenc, A. J., Simulation of a soil loosening process by means of the modified distinct element method, J. Terramechanics 39, 207–20, 2003.CrossRefGoogle Scholar
Moore, H. J. and Jakosky, B. M., Viking landing sites, remote-sensing observations, and physical properties of martian surface materials, Icarus 81, 164–84, 1989.CrossRefGoogle Scholar
Moore, H. J. and J. M. Keller, Surface-material maps of Viking landing sites on Mars, Reports of Planetary Geology and Geophysics Program – 1990, NASA Technical Memorandum 4300, 160–2, 1991.
Moore, H. J., Hutton, R. E., Scott, R. F., Spitzer, C. R., and Shorthill, R. W., Surface materials of the Viking landing sites, J. Geophys. Res. 82, 4497–523, 1977.CrossRefGoogle Scholar
Moore, H. J., Spitzer, C. R., Bradford, K. Z., et al., Sample fields of the Viking landers, physical properties, and aeolian processes, J. Geophys. Res. 84, 8365–77, 1979.CrossRefGoogle Scholar
Moore, H. J., Clow, G. D., and Hutton, R. E., A summary of Viking sample-trench analyses for angles of internal friction and cohensions, J. Geophys. Res. 87, 10043–50, 1982.CrossRefGoogle Scholar
Moore, H. J., R. E. Hutton, G. D. Clow, and C. R. Spitzer, Physical Properties of the Surface Materials of the Viking Landing Sites on Mars, USGS Prof. Paper, 1389, 222pp., 1987.
Moore, H. J., Bickler, D., Crisp, J., et al., Soil-like deposits observed by Sojourner, the Pathfinder rover, J. Geophys. Res. 104, 8729–46, 1999.CrossRefGoogle Scholar
Mungas, G., C. Sepulveda, K. Johnson, et al., Raman/CHAMP Instrument for Lunar in-situ Resource Prospecting I–Imager Design, IEEEAC paper #1554, 2007.
Mutch, T. A., Arvidson, R. E., Binder, A. B., et al., Fine particles on Mars: observations with the Viking 1 Lander cameras, Science 194, 87–91, 1976.CrossRefGoogle ScholarPubMed
Mutch, T. A., Arvidson, R. E., Binder, A. B., Guinness, E. A., and Morris, E. C., The geology of the Viking Lander 2 site, J. Geophys. Res. 82, 4452–67, 1977.CrossRefGoogle Scholar
Myrick, T. M., P. Bartlett, L. Carlson, et al., The RAT as a Mars Rock Physical Properties Tool, Space 2004 Conference and Exhibit, San Diego, CA, AIAA-2004–6096, American Institute of Aeronautics and Astronautics, Reston, VA, September 28–30, 2004.
Nakashima, H. and Oida, A., Algorithm and implementation of soil–tire contact analysis code based on dynamic FE–DE method, J. Terramechanics 41, 127–37, 2004.CrossRefGoogle Scholar
Nakashima, H., Fujii, H., Oida, A., et al., Parametric analysis of lugged wheel performance for a lunar microrover by means of DEM, J. Terramechanics 44, 153–62, 2007.CrossRefGoogle Scholar
Ojeda, L., J. Borenstein, and G. Witus, Terrain trafficability characterization with mobile robot, Proc. SPIE Defense and Security Conf., Unmanned Ground Vehicle Technology VII, Orlando, FL, March 28–April 1, 2005.
Olhoeft, G. R. and Strangway, D. W., Dielectrical properties of the first 100 meters of the Moon, Earth Planet. Sci. Lett. 24, 394–404, 1975.CrossRefGoogle Scholar
Presley, M. A. and Christensen, P. R., Thermal conductivity measurements of particulate materials: 2. Results, J. Geophys. Res. 102, 6551–66, 1997.CrossRefGoogle Scholar
Richter, L., Coste, P., Gromov, V. V., et al., Development and testing of subsurface sampling devices for the Beagle 2 lander, Planet. Space Sci. 50, 903–13, 2002.CrossRefGoogle Scholar
Richter, L., A. Ellery, Y. Gao, et al., A predictive wheel-soil interaction model for planetary rovers validated in testbeds and against MER Mars Rover performance data, Proc. 10th European Conf. Int. Soc. Terrain-Vehicle Systems (ISTVS), Budapest, October 3–6, 2006.
Rieder, R., Gellert, R., Anderson, R. C., et al., Chemistry of rocks and soils at Meridiani Planum from the Alpha Particle X-ray Spectormeter, Science 306, 1746–9, 2004.CrossRefGoogle Scholar
Rossabi, J., Riha, B. D., Haas, J. W., et al., Field tests of a DNAPL characterization system using cone penetrometer-based Raman spectroscopy, Ground Water Monit. Rem. 20(4), 72–81, 2000.CrossRefGoogle Scholar
Rover Team, The Pathfinder microrover, J. Geophys. Res. 102, 3989–4001, 1997.CrossRef
Sagan, C., Pieri, D., Fox, P., Arvidson, R. E., and Guinness, E. A., Particle motion on Mars inferred from the Viking Lander cameras, J. Geophys. Res. 82, 4430–8, 1977.CrossRefGoogle Scholar
Sharp, R. P. and Malin, M. C., Surface geology from Viking landers on Mars: a second look, Geol. Soc. Am. Bull. 95, 1398–412, 1984.2.0.CO;2>CrossRefGoogle Scholar
Smalley, I. J. and Krinsley, D. H., Eolian sedimentation on Earth and Mars: some comparisons, Icarus 40, 276–88, 1979.CrossRefGoogle Scholar
Smith, P., Tomasko, M., Britt, D., et al., The imager of Mars Pathfinder experiment, J. Geophys. Res. 102, 4003–25, 1997.CrossRefGoogle Scholar
Soderblom, L. A., Anderson, R. C., Arvidson, R. E., et al., Soils of Eagle crater and Meridiani Planum at the Opportunity rover landing site, Science 306, 1723–6, 2004.CrossRefGoogle ScholarPubMed
Squyres, S. W., Arvidson, R. E., Blaney, D. L., et al., Rocks of the Columbia Hills, J. Geophys. Res. 111, E02S11, doi:10.1029/2005JE002562, 2006.CrossRefGoogle Scholar
Stoker, C. R., L. Richter, W. H. Smith, et al., The Mars Underground Mole (MUM): a subsurface penetration device with in situ infrared reflectance and Raman spectroscopic sensing capability, 6th Int. Mars Conf., Abstract #3007, 2003.
Sullivan, R., Banfield, D., Bell, J. F. III, et al., Aeolian processes at the Mars Exploration Rover Meridiani Planum landing site, Nature 436, 58–61, 2005.CrossRefGoogle ScholarPubMed
Tanaka, H., Momozua, M., Oida, A., and Yamazaki, M., Simulation of soil deformation and resistance at bar penetration by the Distinct Element Method, J. Terramechanics 37, 41–56, 2000.CrossRefGoogle Scholar
Wänke, H., Brückner, J., Dreibus, G., Rieder, R., and Ryabchikov, I., Chemical composition of rocks and soils at the Pathfinder site, Space Sci. Rev. 96, 317–30, 2001.CrossRefGoogle Scholar
Weitz, C. M., Anderson, R. C., Bell, J. F. III, et al., Soil grain analyses at Meridiani Planum, Mars, J. Geophys. Res. 111, E12S04, doi:10.1029/2005JE002541, 2006.CrossRefGoogle Scholar
Zhang, R. and Li, J., Simulation on mechanical behavior of cohesive soil by distinct element method, J. Terramech. 43, 303–16, 2006.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • In situ observations of the physical properties of the Martian surface
    • By K. E. Herkenhoff, U.S. Geological Survey Astrogeology Team 2255 N. Gemini Drive Flagstaff, AZ 86001-1698, USA, M. P. Golombek, JPL MS 183-501 4800 Oak Grove Drive Pasadena, CA 91109, USA, E. A. Guinness, Washington University, Campus Box 1169 St Louis, MO 63130, USA, J. B. Johnson, Cold Regions Research & Engineering Laboratory Alaska Office PO Box 35170 Ft. Wainwright, AK 99703, USA, A. Kusack, Honeybee Robotics Spacecraft Mechanisms Corporation 460 W. 34th Street, New York, NY 10001, USA, L. Richter, German Aerospace Center (DLR), Institute of Space Simulation Linder Hoehe Cologne, D-51170, Germany, R. J. Sullivan, CRSR Cornell University, 308 Space Sciences Building, Ithaca, NY 14853, USA, S. Gorevan, Honeybee Robotics Spacecraft Mechanisms Corporation 460 W. 34th Street, New York, NY 10001, USA
  • Edited by Jim Bell, Cornell University, New York
  • Book: The Martian Surface
  • Online publication: 10 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511536076.021
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • In situ observations of the physical properties of the Martian surface
    • By K. E. Herkenhoff, U.S. Geological Survey Astrogeology Team 2255 N. Gemini Drive Flagstaff, AZ 86001-1698, USA, M. P. Golombek, JPL MS 183-501 4800 Oak Grove Drive Pasadena, CA 91109, USA, E. A. Guinness, Washington University, Campus Box 1169 St Louis, MO 63130, USA, J. B. Johnson, Cold Regions Research & Engineering Laboratory Alaska Office PO Box 35170 Ft. Wainwright, AK 99703, USA, A. Kusack, Honeybee Robotics Spacecraft Mechanisms Corporation 460 W. 34th Street, New York, NY 10001, USA, L. Richter, German Aerospace Center (DLR), Institute of Space Simulation Linder Hoehe Cologne, D-51170, Germany, R. J. Sullivan, CRSR Cornell University, 308 Space Sciences Building, Ithaca, NY 14853, USA, S. Gorevan, Honeybee Robotics Spacecraft Mechanisms Corporation 460 W. 34th Street, New York, NY 10001, USA
  • Edited by Jim Bell, Cornell University, New York
  • Book: The Martian Surface
  • Online publication: 10 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511536076.021
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • In situ observations of the physical properties of the Martian surface
    • By K. E. Herkenhoff, U.S. Geological Survey Astrogeology Team 2255 N. Gemini Drive Flagstaff, AZ 86001-1698, USA, M. P. Golombek, JPL MS 183-501 4800 Oak Grove Drive Pasadena, CA 91109, USA, E. A. Guinness, Washington University, Campus Box 1169 St Louis, MO 63130, USA, J. B. Johnson, Cold Regions Research & Engineering Laboratory Alaska Office PO Box 35170 Ft. Wainwright, AK 99703, USA, A. Kusack, Honeybee Robotics Spacecraft Mechanisms Corporation 460 W. 34th Street, New York, NY 10001, USA, L. Richter, German Aerospace Center (DLR), Institute of Space Simulation Linder Hoehe Cologne, D-51170, Germany, R. J. Sullivan, CRSR Cornell University, 308 Space Sciences Building, Ithaca, NY 14853, USA, S. Gorevan, Honeybee Robotics Spacecraft Mechanisms Corporation 460 W. 34th Street, New York, NY 10001, USA
  • Edited by Jim Bell, Cornell University, New York
  • Book: The Martian Surface
  • Online publication: 10 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511536076.021
Available formats
×