Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-10T00:54:35.641Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  07 October 2011

Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[Ack77] Ackerhalt, J.R. and Shore, B.W.Rate equations versus Bloch equations in multiphoton ionization”. Phys. Rev. A, 16, 277–282 (1977).CrossRefGoogle Scholar
[Aga90] Agarwal, G.S. and Simon, R.Berry phase, interference of light beams, and the Hannay angle”. Phys. Rev. A, 42, 6924–6927 (1990).CrossRefGoogle ScholarPubMed
[Aha87] Aharonov, Y. and Anandan, J.Phase change during a cyclic quantum evolution”. Phys. Rev. Lett, 58, 1593–1596 (1987).CrossRefGoogle ScholarPubMed
[Ale92] Alekseef, A.V. and Sushilov, N.V.Analytic solutions of Bloch and Maxwell-Bloch equations in the case of arbitrary field amplitude and phase modulation”. Phys. Rev. A, 46, 351–355 (1992).Google Scholar
[All87] Allen, L. and Eberly, J.H.Optical Resonance and Two Level Atoms (Dover, New York, 1987).Google Scholar
[All03] Allen, L., Barnett, S.M. and Padgett, M.J.Optical Angular Momentum (Institute of Physics, Bristol, 2003).CrossRefGoogle Scholar
[Alz79] Alzetta, G., Moi, L. and Orriols, G.Nonabsoprtion hyperfine resonances in a sodium vapour irradiated by a multimode dye laser”. Nuov. Cim. B, 52, 209–218 (1979).CrossRefGoogle Scholar
[Ana87] Anandan, J. and Stodolsky, L.Some geometrical considerations of Berry's phase”. Phys. Rev. D, 35, 2597–2600 (1987).CrossRefGoogle ScholarPubMed
[Ana88] Anandan, J.Non-adiabatic non-abelian geometric phase”. Phys. Lett. A, 133, 171–175 (1988).CrossRefGoogle Scholar
[Ana97] Anandan, J.S., Christian, J. and Wanelik, K.Resource letter GPP-1: Geometric phases in physics”. Am. J. Phys., 65, 178–185 (1997).CrossRefGoogle Scholar
[And06] Andreev, A.Atomic Spectroscopy: Introduction to the Theory of Hyperfine Structure (Springer, New York, 2006).Google Scholar
[Ang01] Angelakis, D.G., Paspalakis, E. and Knight, P.L.Coherent phenomena in photonic crystals”. Phys. Rev. A, 64, 013801 (2001).CrossRefGoogle Scholar
[Ari96] Arimondo, E.Coherent population trapping in laser spectroscopy”. Prog. Opt., 35, 259–356 (1996).Google Scholar
[Arm75] Armstrong, L.J., Beers, B.L. and Feneuille, S.Resonant multiphoton ionization via the Fano autoionization formalism”. Phys. Rev. A, 12, 1903–1910 (1975).CrossRefGoogle Scholar
[Aro06] Aroca, R.Surface-Enhanced Vibrational Spectroscopy (Wiley, New York, 2006).CrossRefGoogle Scholar
[Ash80] Ashkin, A.Applications of laser radiation pressure”. Science, 210, 1081–1087 (1980).CrossRefGoogle ScholarPubMed
[Ash07] Ashkin, A.Optical Trapping and Manipulation of Neutral Particles Using Lasers (World Scientific, Hackensack, N.J., 2007).Google Scholar
[Ass98] Assion, A., Baumert, T., Bergt, M. et al. “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses”. Science, 282, 919–922 (1998).CrossRefGoogle ScholarPubMed
[Aut55] Autler, S.H. and Townes, C.H.Stark effect in rapidly varying fields”. Phys. Rev., 100, 703–722 (1955).CrossRefGoogle Scholar
[Auz95] Auzinsh, M. and Ferber, R. (eds.) Optical Polarization of Molecules (Cambridge University Press, Cambridge, 1995).CrossRef
[Auz10] Auzinsh, M., Budker, D. and Rochester, S.M.Optically Polarized Atoms: Understanding Light–Atom Interactions (Oxford University Press, Oxford, 2010).Google Scholar
[Bam81] Bambini, A. and Berman, P.R.Analytic solutions to the two-state problem for a class of coupling potentials”. Phys. Rev. A, 23, 2496–2501 (1981).CrossRefGoogle Scholar
[Ban91b] Band, Y.B. and Julienne, P.S.Density matrix calculation of population transfer between vibrational levels of Na2 by stimulated Raman scattering with temporally shifted laser beams”. J. Chem. Phys., 94, 5291–5298 (1991).CrossRefGoogle Scholar
[Bar03] Barabasi, A.L.Linked: How Everything Is Connected to Everything Else and What It Means for Business, Science, and Everyday Life (Plume, New York, 2003).Google Scholar
[Bar77] Barone, S.R., Narcowich, M.A. and Narcowich, F.J.Floquet theory and applications”. Phys. Rev., 15, 1109–1125 (1977).CrossRefGoogle Scholar
[Bar06] Bartschat, K. “Density matrices”. In G., Drake (ed.) Springer Handbook of Atomic, Molecular, and Optical Physics, 123–134 (Springer, New York, 2006).Google Scholar
[Bar09] Barnett, S.M.Quantum Information (Oxford University Press, Oxford, 2009).Google Scholar
[Bas75] Bashkin, S. and Stoner, J.O.J.Atomic Energy Levels and Grotrian Diagrams (Elsevier, New York, 1975).Google Scholar
[Bay06a] Baylis, W.E. and Drake, G.W.F. “Units and constants”. In G., Drake (ed.) Springer Handbook of Atomic, Molecular, and Optical Physics, 1–8 (Springer, New York, 2006).Google Scholar
[Bay06b] Baylis, W.E. “Atomic multipoles”. In G.W.F., Drake (ed.) Springer Handbook of Atomic, Molecular, and Optical Physics, 221–226 (Springer, New York, 2006).Google Scholar
[Bei00] Beige, A., Braun, D. and Knight, P.L.Driving atoms into decoherence-free states”. New J. Phys., 2, 22.1–22.15 (2000).CrossRefGoogle Scholar
[Ber74] Berman, P.R.Two-level approximation in atomic systems”. Am. J. Phys., 42, 992–997 (1974).CrossRefGoogle Scholar
[Ber80] Bergmann, K., Hefter, U. and Witt, J.State-to-state differential cross sections for rotationally inelastic scattering of Na2 by He”. J. Chem. Phys., 72, 4777–4790 (1980).CrossRefGoogle Scholar
[Ber81] Bernhardt, A.F. and Shore, B.W.Coherent atomic deflection by resonant standing waves”. Phys. Rev. A, 23, 1290 (1981).CrossRefGoogle Scholar
[Ber84a] Berman, P.R.Theory of photon echoes in dressed states”. Opt. Comm., 52, 225–230 (1984).CrossRefGoogle Scholar
[Ber84b] Berry, M.V.Quantal phase factors accompanying adiabatic changes”. Proc. Roy. Soc. (London) A, 392, 45 (1984).CrossRefGoogle Scholar
[Ber87] Berry, M.V.The adiabatic phase and Pancharatnam's phase for polarized light”. J. Mod. Opt., 34, 1401–1407 (1987).CrossRefGoogle Scholar
[Ber89] Berry, M.V. “The quantum phase, five years after”. In A., Shapere and F., Wilczek (eds.) Geometric Phases in Physics, 7 (World Scientific, Singapore, 1989).Google Scholar
[Ber90] Berry, M.V.Histories of adiabatic quantum transitions”. Proc. Roy. Soc. (London) A, 429, 61–72 (1990).CrossRefGoogle Scholar
[Ber91] Bergou, J. and Englert, B.Operators of the phase: Fundamentals”. Ann. Phys., 209, 479–505 (1991).CrossRefGoogle Scholar
[Ber98] Bergmann, K., Theuer, H. and Shore, B.W.Coherent population transfer among quantum states of atoms and molecules”. Rev. Mod. Phys., 70, 1003–1023 (1998).CrossRefGoogle Scholar
[Bha97] Bhandari, R.Polarization of light and topological phases”. Phys. Rep., 281, 2–64 (1997).CrossRefGoogle Scholar
[Bia75] Bialynicki-Birula, I. and Bialynicka-Birula, Z.Quantum Electrodynamics (Pergamon, New York, 1975).Google Scholar
[Bia76] Bialynicki-Birula, I. and Bialynicka-Birula, Z.Quantum electrodynamics of intense photon beams. New approximation method”. Phys. Rev. A, 14, 1101–1108 (1976).CrossRefGoogle Scholar
[Bia77] Bialynicka-Birula, Z., Bialynicki-Birula, I., Eberly, J.H. and Shore, B.W.Coherent dynamics of N-level atoms and molecules. II. Analytic solutions”. Phys. Rev. A, 16, 2048–2054 (1977).CrossRefGoogle Scholar
[Bia96] Bialynicki-Birula, I.Photon wave functions”. Prog. Opt., 36, 245–294 (1996).Google Scholar
[Bic85] Bickel, W. and Baily, W.Stokes vectors, Mueller matrices, and polarized scattered light”. Am. J. Phys., 53, 468–478 (1985).CrossRefGoogle Scholar
[Bie81a] Biedenharn, L.C. and Louck, J.D.Angular Momentum in Quantum Physics (Addison-Wesley, Reading, Mass., 1981).Google Scholar
[Bie81b] Biedenharn, L.C. and Louck, J.D.The Racah–Wigner Algebra in Quantum Theory (Addison-Wesley, Reading, Mass., 1981).Google Scholar
[Bie09] Biedenharn, L.C. and Louck, J.D.Angular Momentum in Quantum Physics: Theory and Application (Cambridge University Press, Cambridge, 2009).Google Scholar
[Bie65] Biedenharn, L.C. and Van Dam, H.Quantum Theory of Angular Momentum (Academic, New York, 1965).Google Scholar
[Bix68] Bixon, M. and Jortner, J.Intramolecular radiationless transitions”. J. Chem. Phys., 48, 715–726 (1968).CrossRefGoogle Scholar
[Bla88] Blatt, R. and Zoller, P.Quantum jumps in atomic systems”. Eur. J. Phys., 9, 250 (1988).CrossRefGoogle Scholar
[Bla08] Blatt, R. and Wineland, D.Review article: Entangled states of trapped atomic ions”. Nature, 453, 1008–1015 (2008).CrossRefGoogle Scholar
[Blo45] Bloch, F. and Rabi, I.I.Atoms in variable magnetic fields”. Rev. Mod. Phys., 17, 237 (1945).CrossRefGoogle Scholar
[Blu96] Blum, K.Density Matrix Theory and Applications (Plenum, New York, 1996), 2nd edition.CrossRefGoogle Scholar
[Bok06] Bokhan, P.A., Buchanov, V.V., Fateev, N.V. et al. Laser Isotope Separation in Atomic Vapor (Wiley-VCH, Weinheim, 2006).CrossRefGoogle Scholar
[Boo08] Boozer, A.D.Stimulated Raman adiabatic passage in a multilevel atom”. Phys. Rev. A, 77, 023411 (2008).CrossRefGoogle Scholar
[Bor99] Born, M. and Wolf, E.Principles of Optics (Pergamon, New York, 1999), 7th edition.CrossRefGoogle Scholar
[Boy08] Boyd, R.W.Nonlinear Optics (Academic, New York, 2008), 3rd edition.Google Scholar
[Bra92] Braginsky, V.B. and Khalili, F.Y.Quantum Measurement (Cambridge University Press, Cambridge, 1992).CrossRefGoogle Scholar
[Bra99] Brandt, H.E.Positive operator valued measure in quantum information processing”. Am. J. Phys., 67, 434–439 (1999).CrossRefGoogle Scholar
[Bre32] Breit, G.Quantum theory of dispersion”. Rev. Mod. Phys., 4, 504–575 (1932).CrossRefGoogle Scholar
[Bre36] Breit, G. and Wigner, E.P.Capture of slow neutrons”. Phys. Rev., 49, 519 (1936).CrossRefGoogle Scholar
[Bre02] Breuer, H.P. and Petruccione, F.The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2002).Google Scholar
[Bri10] Brif, C., Chakrabarti, R. and Rabitz, H.Control of quantum phenomena: past, present and future”. New J. Phys., 12, 075008 (2010).CrossRefGoogle Scholar
[Bri04] Brixner, T., Pfeifer, T., Gerber, G., Wollenhaupt, M. and Baumert, T. “Optimal control of atomic, molecular and electron dynamics with tailored femtosecond laser pulses”. In P., Hannaford (ed.) Femtosecond Laser Spectroscopy, 225–266 (Springer, Berlin, 2004).Google Scholar
[Bro02] Brown, E. and Rabitz, H.Some mathematical and algorithmic challenges in the control of quantum dynamics phenomena”. J. Math. Chem., 1, 17–63 (2002).Google Scholar
[Bru03] Brumer, P.W. and Shapiro, M.Principles of the Quantum Control of Molecular Processes (Wiley, New York, 2003).Google Scholar
[Bur82] Burkey, R.S. and Cantrell, C.D.Solution of the Schrödinger equation for systems driven by an exponential or semiexponential pulse”. Opt. Comm., 43, 64–68 (1982).CrossRefGoogle Scholar
[Buz90] Buzek, V., Jex, I. and Quang, T.K-photon coherent states”. J. Mod. Opt., 37, 159–163 (1990).CrossRefGoogle Scholar
[Buz97] Buzek, V., Drobny, G., Adam, G., Derka, R. and Knight, P.L.Reconstruction of quantum states of spin systems via the Jaynes principle of maximum entropy”. J. Mod. Opt., 44, 2607–2627 (1997).CrossRefGoogle Scholar
[Buz98] Buzek, V., Derka, R., Adam, G. and Knight, P.L.Reconstruction of quantum states of spin systems: from quantum Bayesian inference to quantum tomography”. Ann. Phys., 266, 454–496 (1998).CrossRefGoogle Scholar
[Car68] Carrier, G.F. and Pearson, C.E.Ordinary Differential Equations (Blaisdell, Waltham, Mass., 1968).Google Scholar
[Car86] Carroll, C.E. and Hioe, F.T.A new class of analytic solutions of the two-state problem”. J. Phys. A, 19, 3579–3597 (1986).CrossRefGoogle Scholar
[Car87] Carmichael, H.J.Spectrum of squeezing and photocurrent shot noise: a normally ordered treatment”. J. Opt. Soc. Am. B, 4, 1588–1603 (1987).CrossRefGoogle Scholar
[Car88a] Carroll, C.E. and Hioe, F.T.Driven three-state model and its analytic solutions”. J. Math. Phys., 29, 487–509 (1988).CrossRefGoogle Scholar
[Car88b] Carroll, C.E. and Hioe, F.T.Three-state system driven by resonant optical pulses of different shapes”. J. Opt. Soc. Am. B, 5, 1335–1340 (1988).CrossRefGoogle Scholar
[Car90] Carroll, C.E. and Hioe, F.T.Analytic solutions for three-state systems with overlapping pulses”. Phys. Rev. A, 42, 1522–1531 (1990).CrossRefGoogle ScholarPubMed
[Car93] Carroll, C.E. and Hioe, F.T.Selective excitation via the continuum and suppression of ionization”. Phys. Rev. A, 47, 571–580 (1993).CrossRefGoogle ScholarPubMed
[Car07] Carroll, B.W. and Ostlie, D.A.Introduction to Modern Astrophysics (Pearson Addison-Wesley, San Francisco, 2007), 2nd edition.Google Scholar
[Car09] Carlin, B.P. and Louis, T.A.Bayesian Methods for Data Analysis. Texts in Statistical Science (CRC Press, Boca Raton, Fla., 2009).Google Scholar
[Cha60] Chandrasekhar, S.Radiative Transfer (Dover, New York, 1960).Google Scholar
[Cha07] Chakrabarti, R. and Rabitz, H.Quantum control landscapes”. Int. Rev. Phys. Chem., 26, 671–735 (2007).CrossRefGoogle Scholar
[Chi86] Chiao, R.Y. and Wu, Y.S.Manifestations of Berry's topological phase for the photon”. Phys. Rev. Lett., 57, 933–936 (1986).CrossRefGoogle ScholarPubMed
[Chu85] Chu, S.I.Recent developments in semiclassical Floquet theories for intense field multiphoton processes”. Adv. At. Mol. Phys., 21, 197–253 (1985).Google Scholar
[Chu86] Chu, S., Bjorkholm, J.E., Ashkin, A. and Cable, A.Experimental observation of optically trapped atoms”. Phys. Rev. Lett., 57, 314–317 (1986).CrossRefGoogle ScholarPubMed
[Coe07] Coello Coello, C.A., Lamont, G.B. and Van Veldhuisen, D.A.Evolutionary Algorithms for Solving Multi-Objective Problems (Springer, New York, 2007).Google Scholar
[Coh89] Cohen, L.Time-frequency distributions: A review”. Proc. IEEE, 77, 941–981 (1989).CrossRefGoogle Scholar
[Coh92] Cohen-Tannoudji, C., Dupont-Roc, J. and Grynberg, G.Atom–Photon Interactions: Basic Processes and Applications (Wiley, New York, 1992).Google Scholar
[Coh98] Cohen-Tannoudji, C.N.Manipulating atoms with photons”. Rev. Mod. Phys., 70, 707–719 (1998).CrossRefGoogle Scholar
[Coo79] Cook, R.J. and Shore, B.W.Coherent dynamics of N-level atoms and molecules III. An analytically soluble periodic case”. Phys. Rev. A, 20, 539–544 (1979).CrossRefGoogle Scholar
[Coo80] Cooper, J., Ballagh, R.J. and Burnett, K.Zeeman degeneracy effects in collisional intense-field resonance fluorescence”. Phys. Rev. A, 22, 535–544 (1980).CrossRefGoogle Scholar
[Coo82] Cooper, J., Ballagh, R.J., Burnett, K. and Hummer, D.G.On redistribution and the equations for radiative transfer”. Ap. J., 260, 299–316 (1982).CrossRefGoogle Scholar
[Coo90] Cook, R.J.Quantum jumps”. Prog. Opt., 28, 363–416 (1990).Google Scholar
[Cou95] Cousins, R.D.Why isn't every physicist a Bayesian”. Am. J. Phys., 63, 398–410 (1995).CrossRefGoogle Scholar
[Cow81] Cowan, R.D.The Theory of Atomic Structure and Spectra (University of California Press, Berkeley, 1981).Google Scholar
[Cra84] Craig, D.P. and Thirunamachandran, T.Molecular Quantum Electrodynamics: An Introduction to Radiation–Molecule Interactions (Academic, New York, 1984).Google Scholar
[Cri70] Crisp, M.D.Propagation of small-area pulses of coherent light through a resonant medium”. Phys. Rev. A, 1, 1604–1611 (1970).CrossRefGoogle Scholar
[Cri73] Crisp, M.D.Adiabatic-following approximation”. Phys. Rev. A, 8, 2128–2135 (1973).CrossRefGoogle Scholar
[Cro09] Cronin, A.D., Schmiedmayer, J. and Pritchard, D.E.Optics and interferometry with atoms and molecules”. Rev. Mod. Phys., 81 (2009).CrossRefGoogle Scholar
[Dai94] Dai, H.L. and Field, R.W. (eds.) Molecular Dynamics and Spectroscopy by Stimulated Emission Pumping (World Scientific, Singapore, 1994).
[Dal82] Dalton, B.J. and Knight, P.L.The effects of laser field fluctuations on coherent population trapping”. J. Phys. B, 15, 3997–4015 (1982).CrossRefGoogle Scholar
[Dav76a] Davies, E.B.Quantum Theory of Open Systems (Academic, New York, 1976).Google Scholar
[Dav76b] Davis, J.P. and Pechukas “Nonadiabatic transitions induced by a time-dependent Hamiltonian in the semiclassical/adiabatic limit: The two-state case”. J. Chem. Phys., 64, 3129–3137 (1976).CrossRefGoogle Scholar
[Dav76c] Davydov, A.S.Quantum Mechanics (Pergamon, Oxford, 1976).Google Scholar
[Dav91] Davis, L.Handbook of Genetic Algorithms (Van Nostrand Reinhold, New York, 1991).Google Scholar
[Deb05] Debnath, L. and Mikusinski, P.Introduction to Hilbert Spaces: With Applications (Academic, New York, 2005).Google Scholar
[DeG69] de Groot, S.R.The Maxwell Equations (North-Holland, Amsterdam, 1969).Google Scholar
[Deh90] Dehmelt, H.Experiments with an isolated subatomic particle at rest”. Rev. Mod. Phys., 62, 525–530 (1990).CrossRefGoogle Scholar
[Del89] Delone, N.B. and Fedorov, M.V.Above threshold ionization”. Prog. Quant. Electron., 13, 267–298 (1989).CrossRefGoogle Scholar
[Del00] Delone, N.B. and Krainov, V.P.Multiphoton Processes in Atoms (Springer, Berlin, 2000), 2nd edition.CrossRefGoogle Scholar
[Dem64] Demkov, Y.N.Charge transfer at small resonance defects”. Sov. Phys. JETP, 18, 138 (1964).Google Scholar
[Dem69] Demkov, Y.N. and Kunike, M.Hypergeometric model for two-state approximation in collision theory” In Russian. Vestn. Leningr. Univ., Ser. 4: Fiz. Khim., 16, 39 (1969).Google Scholar
[Dem03] Demtröder, W.Laser Spectroscopy: Basic Concepts and Instrumentation (Springer, Berlin, 2003), 3rd edition.CrossRefGoogle Scholar
[Die05] Diestel, R.Graph Theory (Springer, Heidelberg, 2005), 3rd edition.Google Scholar
[Die06] Diels, J.C. and Rudolph, W.Ultrashort Laser Pulse Phenomena: Fundamentals, Techniques, and Applications on a Femtosecond Time Scale (Academic, San Diego, 2006), 2nd edition.Google Scholar
[Dir27] Dirac, P.A.M.The quantum theory of the emission and absorption of radiation”. Proc. Roy. Soc. (London) A, 114, 243 (1927).CrossRefGoogle Scholar
[Dir58] Dirac, P.A.M.The Principles of Quantum Mechanics (Clarendon, Oxford, 1958).Google Scholar
[Dra06] Drake, G.W.F. (ed.) Springer Handbook of Atomic, Molecular, and Optical Physics (Springer, New York, 2006).CrossRef
[Dre99] Drese, K. and Holthaus, M.Floquet theory for short laser pulses”. Eur. Phys. J. D, 5, 119–134 (1999).CrossRefGoogle Scholar
[Dua10] Duan, L.M. and Monroe, C.Colloquium: Quantum networks with trapped ions”. Rev. Mod. Phys., 82, 1209 (2010).CrossRefGoogle Scholar
[Dyk60] Dykhne, A.M.Quantum transitions in the adiabatic approximation”. Sov. Phys. JETP, 11, 411–415 (1960).Google Scholar
[Ebe77] Eberly, J.H. and Wodkiewicz, K.The time-dependent physical spectrum of light”. J. Opt. Soc. Am., 67, 1252–1260 (1977).CrossRefGoogle Scholar
[Ebe82] Eberly, J.H., Yeh, J.J. and Bowden, C.M.Interrupted coarse-grained theory of quasi-continuum photoexcitation”. Chem. Phys. Lett., 86, 76–80 (1982).CrossRefGoogle Scholar
[Ebe91] Eberly, J.H., Javanainen, J. and Rzazewski, K.Above-threshold ionization”. Phys. Rep., 204, 331–383 (1991).CrossRefGoogle Scholar
[Ebe93] Eberly, J.H. and Kulander, K.C.Atomic stabilization by super-intense lasers”. Science, 262, 1229–1233 (1993).CrossRefGoogle ScholarPubMed
[Ebe06] Eberly, J.H. and Stroud, C.R.J. “Coherent transients”. In G., Drake (ed.) Springer Handbook of Atomic, Molecular, and Optical Physics, 1065–1076 (Springer, New York, 2006).Google Scholar
[Edm57] Edmonds, A.R.Angular Momentum in Quantum Mechanics (Princeton University Press, Princeton, 1957).CrossRefGoogle Scholar
[Ehl90] Ehlotzky, F.Atomic phenomena in bichromatic laser fields”. Phys. Rep., 345, 175–264 (1990).Google Scholar
[Ein76] Einwohner, T.H., Wong, J. and Garrison, J.C.Analytical solutions for laser excitation of multilevel systems in the rotating-wave approximation”. Phys. Rev. A, 14, 1452–1456 (1976).CrossRefGoogle Scholar
[Ein79] Einwohner, T.H., Wong, J. and Garrison, J.C.Effects of alternative transition sequences on coherent photoexcitation”. Phys. Rev. A, 20, 940–947 (1979).CrossRefGoogle Scholar
[Eke00] Ekert, A., Ericsson, M., Hayden, P. et al. “Geometric quantum computation”. J. Mod. Opt., 47, 2501–2513 (2000).CrossRefGoogle Scholar
[Elg80] Elgin, J.N.Semiclassical formalism for the treatment of three-level systems”. Phys. Lett. A, 80, 140–142 (1980).CrossRefGoogle Scholar
[Elk95] Elk, M.Adiabatic transition histories of population transfer in the lambda system”. Phys. Rev. A, 52, 4017–4022 (1995).CrossRefGoogle ScholarPubMed
[Eme06] Emery, G.T. “Hyperfine structure”. In G., Drake (ed.) Springer Handbook of Atomic, Molecular, and Optical Physics, 253–260 (Springer, New York, 2006).Google Scholar
[Fai69] Fain, V.M. and Khanin, Y.I.Quantum Electronics. 1: Basic Theory (MIT Press, Cambridge, Mass., 1969).Google Scholar
[Fai87] Faisal, F.H.M.Theory of Multiphoton Processes (Plenum, New York, 1987).CrossRefGoogle Scholar
[Fan57] Fano, U.Description of states in quantum mechanics by density matrix and operator techniques”. Rev. Mod. Phys., 29, 74–93 (1957).CrossRefGoogle Scholar
[Fan61] Fano, U.Effects of configuration interaction on intensities and phase shifts”. Phys. Rev., 124, 1866–1878 (1961).CrossRefGoogle Scholar
[Fan63] Fano, U. and Racah, G.Irreducible Tensorial Sets (Academic, New York, 1963).Google Scholar
[Fan65] Fano, U. and Cooper, J.W.Line profiles in the far-uv absorption spectra of the rare gases”. Phys. Rev. 137, A1364–A1379 (1965).CrossRefGoogle Scholar
[Fen75] Feneuille, S. and Schweighofer, M.G.Conditions for the observation of the Autler-Townes effect in a two step resonance experiment”. J. de Phys., 36, 781–786 (1975).CrossRefGoogle Scholar
[Fer50] Fermi, E.Nuclear Physics (University of Chicago Press, Chicago, 1950).Google Scholar
[Few93] Fewell, M.P.The absorption of arbitrarily polarized light by atoms and molecules”. J. Phys. B, 26, 1957–1974 (1993).CrossRefGoogle Scholar
[Fey57] Feynman, R.P., Vernon, F.L.J. and Hellwarth, R.W.Geometrical representation of the Schrödinger equation for solving maser problems”. J. Appl. Phys., 28, 49–52 (1957).CrossRefGoogle Scholar
[Fil85] Filipovicz, P., Meystre, P., Rempe, G. and Walther, H.Rydberg atoms. A testing ground for quantum electrodynamics”. Opt. Acta, 32, 1105–1123 (1985).Google Scholar
[Fiu63] Fiutak, J.The multipole expansion in quantum theory”. Can. J. Phys., 41, 12–20 (1963).CrossRefGoogle Scholar
[Fle99] Fleischhauer, M., Unanyan, R., Bergmann, K. and Shore, B.W.Coherent population transfer beyond the adiabatic limit: Generalized matched pulses and higher-order trapping state”. Phys. Rev. A, 59, 3751–3760 (1999).CrossRefGoogle Scholar
[Fle02] Fleischhauer, M. and Lukin, M.D.Quantum memory for photons: Dark-state polaritons”. Phys. Rev. A, 65, 002314 (2002).CrossRefGoogle Scholar
[Fle05] Fleischhauer, M., Imamoglu, A. and Marangos, J.P.Electromagnetically induced transparency: Optics in coherent media”. Rev. Mod. Phys., 77, 633–673 (2005).CrossRefGoogle Scholar
[For07] Fortagh, J. and Zimmermann, C.Magnetic microtraps for ultracold atoms”. Rev. Mod. Phys., 79, 235–289 (2007).CrossRefGoogle Scholar
[Fra63] Frantz, L.M. and Nodvik, J.S.Theory of pulse propagation in a laser amplifier”. J. Appl. Phys., 34, 2346–2349 (1963).CrossRefGoogle Scholar
[Fre06] Freyberger, M., Voge, K., Schleich, W.P. and O'Connell, R.F. “Quantized field effects”. G., Drake (ed.) Springer Handbook of Atomic, Molecular, and Optical Physics, 1141–1166 (Springer, New York, 2006).Google Scholar
[Gae06] Gaeto, A.L. and Boyd, R.W. “Nonlinear optics”. In G., Drake (ed.) Springer Handbook of Atomic, Molecular, and Optical Physics, 1051–1064 (Springer, New York, 2006).Google Scholar
[Gar02] Garraway, B.M. and Suominen, K.A.Wave packet dynamics in molecules”. Contemp. Phys., 43, 97–114 (2002).CrossRefGoogle Scholar
[Gar10] Garg, A.Berry phases near degeneracies: Beyond the simplest case”. Am. J. Phys., 78, 661 (2010).CrossRefGoogle Scholar
[Gau90] Gaubatz, U., Rudecki, P., Schiemann, S. and Bergmann, K.Population transfer between molecular vibrational levels. A new concept and experimental results”. J. Chem. Phys., 92, 5363–5376 (1990).CrossRefGoogle Scholar
[Ger97] Gerry, C.C. and Knight, P.L.Quantum superpositions and Schrödinger cat states in quantum optics”. Am. J. Phys., 65, 964–974 (1997).CrossRefGoogle Scholar
[Gia80] Giacobino, E. and Cagnac, B.Doppler-free multiphoton spectroscopy”. Prog. Opt., 17, 85–162 (1980).Google Scholar
[Gla63a] Glauber, R.J.Coherent states of the quantum oscillator”. Phys. Rev. Lett., 10, 84–86 (1963).Google Scholar
[Gla63b] Glauber, R.J.The quantum theory of optical coherence”. Phys. Rev., 130, 2529–2539 (1963).CrossRefGoogle Scholar
[Gol06] Goldman, S.P. and Cassar, M.M. “Atoms in strong fields”. In G., Drake (ed.) Springer Handbook of Atomic, Molecular, and Optical Physics, 227–234 (Springer, New York, 2006).Google Scholar
[Gol94] Goldner, L.S., Gerz, C., Spreeuw, R.J. et al. “Momentum transfer in laser-cooled cesium by adiabatic passage in a light field”. Phys. Rev. Lett., 72, 997–1000 (1994).CrossRefGoogle Scholar
[Gol50] Goldstein, H.Classical Mechanics (Addison-Wesley, Reading, Mass., 1980), 2nd edition.Google Scholar
[Gon80] Gontier, Y., Poirier, M. and Trahin, M.Multiphoton absorptions above the ionisation threshold”. J. Phys. B, 13, 1381 (1980).CrossRefGoogle Scholar
[Gor97] Gordon, R.J. and Rice, S.A.Active control of the dynamics of atoms and molecules”. Ann. Rev. Phys. Chem., 48, 601–641 (1997).CrossRefGoogle ScholarPubMed
[Got66] Gottfried, K.Quantum Mechanics (Benjamin, New York, 1966).Google Scholar
[Goy83] Goy, P., Raimond, J.M., Gross, M. and Haroch, S.Observation of cavity-enhanced single-atom spontaneous emission”. Phys. Rev. Lett., 50, 1903–1906 (1983).CrossRefGoogle Scholar
[Gra78a] Gray, H.R. and Stroud, C.R.Autler-Townes effect in double optical resonance”. Opt. Comm., 25, 359–362 (1978).CrossRefGoogle Scholar
[Gra78b] Gray, H.R., Whitley, R.M. and Stroud, C. R. J.Coherent trapping of atomic populations”. Opt. Lett., 3, 218–220 (1978).CrossRefGoogle ScholarPubMed
[Gra07] Gradshteyn, I.S. and Ryzhik, I.M.Tables of Integrals, Series and Products (Academic, New York, 2007), 7th edition.Google Scholar
[Gri73] Grischkowsky, D.Adiabatic following and slow optical pulse propagation in rubidium vapor”. Phys. Rev. A, 7, 2096–2101 (1973).CrossRefGoogle Scholar
[Gro98] Grover, L.K.Quantum computing: The advantages of superposition”. Science, 280, 228 (1998).CrossRefGoogle Scholar
[Gry77] Grynberg, G. and Cagnac, B.Doppler-free multiphotonic spectroscopy”. Rep. Prog. Phys., 40, 791–841 (1977).CrossRefGoogle Scholar
[Gue98] Guérin, S., Yatsenko, L.P., Halfmann, T., Shore, B.W. and Bergmann, K.Stimulated hyper-Raman adiabatic passage II. Static compensation of dynamic Stark shifts”. Phys. Rev. A, 58, 4691–4704 (1998).CrossRefGoogle Scholar
[Gue02] Guérin, S., Thomas, S. and Jauslin, H.R.Optimization of population transfer by adiabatic passage”. Phys. Rev. A, 65, 023409 (2002).CrossRefGoogle Scholar
[Gue03] Guérin, S. and Jauslin, H.R.Control of quantum dynamics by laser pulses: Adiabatic Floquet theory”. Adv. Chem. Phys., 125, 147–267 (2003).Google Scholar
[Hai10] Hairer, E. and Wanner, G.Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems (Springer, Berlin, 2010).Google Scholar
[Ham68] Hammerling, P.Generalized Bloch equations for any multipole”. J. Phys. B, 1, 759–767 (1968).CrossRefGoogle Scholar
[Han35] Hansen, W.W.A new type of expansion in radiation problems”. Phys. Rev., 47, 139–143 (1935).CrossRefGoogle Scholar
[Han85] Hannay, J.H.Angle variable holonomy in adiabatic excursion of an integrable Hamiltonian”. J. Phys. A, 18, 221 (1985).CrossRefGoogle Scholar
[Hap72] Happer, W.Optical pumping”. Rev. Mod. Phys., 44, 169–238 (1972).CrossRefGoogle Scholar
[Hap10] Happer, W., Jau, Y.Y. and Walker, T.G.Optically Pumped Atoms (Wiley-VCH, Weinheim, 2010).CrossRefGoogle Scholar
[Har97] Harris, S.E.Electromagnetically induced transparency”. Phys. Today, 50, 36–42 (1997).CrossRefGoogle Scholar
[Har03] Hariharan, P.Optical Interferometry (Academic, New York, 2003), 2nd edition.CrossRefGoogle Scholar
[Har06] Haroche, S. and Raimond, J.M.Exploring the Quantum. Atoms, Cavities and Photons (Oxford University Press, New York, 2006).CrossRefGoogle Scholar
[Has75] Hassan, S.S. and Bullough, R.K.Theory of the dynamical Stark effect”. J. Phys. B, 8, L147–L152 (1975).CrossRefGoogle Scholar
[Hay03] Hay, N., Lein, M., Velotta, R., et al. “Investigations of electron wave-packet dynamics and high-order harmonic generation in laser-aligned molecules”. J. Mod. Opt., 50, 561–577 (2003).CrossRefGoogle Scholar
[Hec87] Hecht, E.Optics (Addison-Wesley, Reading, Mass., 1987).Google Scholar
[Hen06] Henkel, C. and Wilkens, M. “De Broglie Optics”. G., Drake (ed.), Springer Handbook of Atomic, Molecular, and Optical Physics, 1125–1140 (Springer, New York, 2006).Google Scholar
[Her50a] Herzberg, G.Molecular Spectra and Molecular Structure I. Spectra of Diatomic Molecules (Van Nostrand, New York, 1950).Google Scholar
[Her50b] Herzberg, G.Molecular Spectra and Molecular Structure II. Infrared and Raman Spectra of Polyatomic Molecules (Van Nostrand, New York, 1950).Google Scholar
[Her09] Herman, G.T.Fundamentals of Computerized Tomography. Image Reconstruction from Projections (Springer, Dordrecht, 2009).CrossRefGoogle Scholar
[Hin90] Hinds, E.A. “Cavity quantum electrodynamics”. In D., Bates and B., Bederson (eds.) Advances in Atomic, Molecular, and Optical Physics, volume 28, 237 (Academic, New York, 1991).Google Scholar
[Hio81] Hioe, F.T. and Eberly, J.H.N-level coherence vector and higher conservation laws in quantum optics and quantum mechanics”. Phys. Rev. Lett., 47, 838–841 (1981).CrossRefGoogle Scholar
[Hio83] Hioe, F.T.Theory of generalized adiabatic following in multilevel systems”. Phys. Lett. A, 99, 150–155 (1983).CrossRefGoogle Scholar
[Hio84a] Hioe, F.T.Linear and nonlinear constants of motion for two-photon processes in three-level systems”. Phys. Rev. A, 29, 3434–3436 (1984).CrossRefGoogle Scholar
[Hio84b] Hioe, F.T.Solutions of Bloch equations involving amplitude and frequency modulations”. Phys. Rev., 30, 2100–2107 (1984).CrossRefGoogle Scholar
[Hio85a] Hioe, F.T. and Carroll, C.E.Two-state problems involving arbitrary amplitude and frequency modulations”. Phys. Rev. A, 32, 1541–1549 (1985).CrossRefGoogle ScholarPubMed
[Hio85b] Hioe, F.T.Gell-Mann dynamic symmetry for N-level quantum systems”. Phys. Rev. A, 32, 2824–2836 (1985).CrossRefGoogle ScholarPubMed
[Hio87] Hioe, F.T.N-level quantum systems with SU(2) dynamic symmetry”. J. Opt. Soc. Am. B, 4, 1327–1332 (1987).CrossRefGoogle Scholar
[Hio88] Hioe, F.T. and Carroll, C.E.Coherent population trapping in N-level quantum systems”. Phys. Rev. A, 37, 3000–3005 (1988).CrossRefGoogle ScholarPubMed
[Hol89] Holstein, B.R.The adiabatic propagator”. Am. J. Phys., 57, 714–720 (1989).CrossRefGoogle Scholar
[Hol94] Holthaus, M. and Just, B.Generalized pi pulses”. Phys. Rev. A, 49, 1950–1960 (1994).CrossRefGoogle ScholarPubMed
[Hou58a] Householder, A.S.The approximate solution of matrix problems”. J. ACM, 5, 205–243 (1958).CrossRefGoogle Scholar
[Hou58b] Householder, A.S.Unitary triangularization of a nonsymmetric matrix”. J. ACM, 5, 339–342 (1958).CrossRefGoogle Scholar
[Hue06] Huestis, D.L. “Radiative transition probabilities”. In G., Drake (ed.) Springer Handbook of Atomic, Molecular, and Optical Physics, 514–534 (Springer, New York, 2006).Google Scholar
[Hus91] Husman, M., Schwieters, C., Littman, M. and Rabitz, H.Molecular-dynamics simulator for optimal control of molecular motion”. Am. J. Phys., 59, 1012–1017 (1991).CrossRefGoogle Scholar
[Ics69] Icsevgi, A. and Lamb, W.E.J.Propagation of light pulses in a laser amplifier”. Phys. Rev., 185, 517–545 (1969).CrossRefGoogle Scholar
[Ish78] Ishimaru, A.Wave Propagation and Scattering in Random Media (Academic, New York, 1978).Google Scholar
[Iva06] Ivanov, P.A., Kyoseva, E.S. and Vitanov, N.V.Engineering of arbitrary U(N) transformations by quantum Householder reflections”. Phys. Rev. A, 74, 22323 (2006).CrossRefGoogle Scholar
[Iva07] Ivanov, P.A., Torosov, B.T. and Vitanov, N.V.Navigation between quantum states by quantum mirrors”. Phys. Rev. A, 75, 012323 (2007).CrossRefGoogle Scholar
[Iva08] Ivanov, P.A. and Vitanov, N.V.Synthesis of arbitrary unitary transformations of collective states of trapped ions by quantum Householder reflections”. Phys. Rev. A, 77, 012335 (2008).CrossRefGoogle Scholar
[Jac99] Jackson, J.D.Classical Electrodynamics (Wiley, New York, 1999), 3rd edition.Google Scholar
[Jav06] Javanainen, J. “Cooling and trapping”. In G., Drake (ed.) Springer Handbook of Atomic, Molecular, and Optical Physics, 1091–1106 (Springer, New York, 2006).Google Scholar
[Jay63] Jaynes, E.T. and Cummings, F.W.Comparison of quantum and semiclassical radiation theories with application to the beam maser”. Proc. IEEE, 51, 89 (1963).CrossRefGoogle Scholar
[Jay03] Jaynes, E.T.Probability Theory: The Logic of Science (Cambridge University Press, New York, 2003).CrossRefGoogle Scholar
[Jes96] Jessen, P.S. and Deutsch, I.H. “Optical lattices”. Advances in Atomic Molecular Optical Physics, volume 37, 1–44 (Academic, New York 1996).Google Scholar
[Jex95] Jex, I., Torma, P. and Stenholm, S.Multimode coherent states”. J. Mod. Opt., 42, 1377–1386 (1995).CrossRefGoogle Scholar
[Joa95] Joannopoulos, J.D., Meade, R.D. and Winn, J.N.Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, N.J., 1995).Google Scholar
[Jon41] Jones, R.C.A new calculus for the treatment of optical systems I. Description and discussion of the calculus”. J. Opt. Soc. Am., 31, 488–493 (1941).Google Scholar
[Jon47] Jones, R.C.A new calculus for the treatment of optical systems V. A more general formulation and description of another calculus”. J. Opt. Soc. Am., 37, 107–110 (1947).CrossRefGoogle Scholar
[Jon56] Jones, R.C.A new calculus for the treatment of optical systems VIII. Electromagnetic theory”. J. Opt. Soc. Am., 46, 126–131 (1956).CrossRefGoogle Scholar
[Jud92] Judson, R.S. and Rabitz, H.Teaching lasers to control molecules”. Phys. Rev. Lett., 68, 1500–1503 (1992).CrossRefGoogle ScholarPubMed
[Kar04] Karpati, A., Kis, Z. and Adam, P.Engineering mixed states in a degenerate four-state system”. Phys. Rev. Lett., 93, 193003 (2004).CrossRefGoogle Scholar
[Kaz90] Kazantsev, A.P., Durdotovich, G.I. and Yakovlev, V.P.Mechanical Action of Light on Atoms (World Scientific, Singapore, 1990).CrossRefGoogle Scholar
[Kib68] Kibble, T.W.B. “Some applications of coherent states”. In M., Levy (ed.) Cargese Lectures in Physics, volume 2 (Gordon and Breach, New York, 1968).Google Scholar
[Kis01a] Kis, Z. and Stenholm, S.Nonadiabatic dynamics in the dark subspace of a multilevel stimulated Raman adiabatic passage process”. Phys. Rev. A, 64, 063406 (2001).CrossRefGoogle Scholar
[Kis01b] Kis, Z., Vogel, W., Davidovich, L. and Zagury, N.Dark SU(2) states of the motion of a trapped ion”. Phys. Rev. A, 63, 1–7 (2001).CrossRefGoogle Scholar
[Kis04] Kis, Z., Karpati, A., Shore, B.W. and Vitanov, N.V.Stimulated Raman adiabatic passage among degenerate-level manifolds”. Phys. Rev. A, 70, 053405 (2004).CrossRefGoogle Scholar
[Kis05] Kis, Z., Vitanov, N.V., Karpati, A., Barthel, C. and Bergmann, K.Creation of arbitrary coherent superposition states by stimulated Raman adiabatic passage”. Phys. Rev. A, 72, 033403 (2005).CrossRefGoogle Scholar
[Kni80] Knight, P.L. and Milonni, P.W.The Rabi frequency in optical spectra”. Phys. Rep., 66, 21–107 (1980).CrossRefGoogle Scholar
[Kni88] Knize, R.J., Wu, Z. and Happer, W.Optical pumping and spin exchange in gas cells”. In Advances in Atomic and Molecular Physics, volume 24, 223–267 (Academic, New York 1988).Google Scholar
[Kni90] Knight, P.L., Lauder, M.A. and Dalton, B.J.Laser-induced continuum structure”. Phys. Rep., 190, 1–61 (1990).CrossRefGoogle Scholar
[Kni93] Knight, P. and Shore, B.Schrödinger-cat states of the electromagnetic field and multilevel atoms”. Phys. Rev. A, 48, 642–655 (1993).CrossRefGoogle ScholarPubMed
[Kop58] Kopferman, H.Nuclear Moments (Academic, New York, 1958).Google Scholar
[Kor03] Korsunsky, E.A., Halfmann, T., Marangos, J.P. and Bergmann, K.Analytical study of four-wave mixing with large atomic coherence”. Eur. Phys. J. D, 23, 167–180 (2003).CrossRefGoogle Scholar
[Kra83] Kraus, K.States, Effects, and Operations: Fundamental Notions of Quantum Theory (Springer, Berlin, 1983).CrossRefGoogle Scholar
[Kra07] Král P., Thanopulos, I. and Shapiro, M.Colloquium: Coherently controlled adiabatic passage”. Rev. Mod. Phys., 79, 53–77 (2007).Google Scholar
[Kub80] Kubo, H. and Nagata, R.Stokes parameters representation of the light propagation equations in inhomogeneous anisotropic, optically active media”. Opt. Comm., 34, 306–308 (1980).CrossRefGoogle Scholar
[Kuh98] Kuhn, A., Steuerwald, S. and Bergmann, K.Coherent population transfer in NO with pulsed lasers: The consequences of hyperfine structure, Doppler broadening and electromagnetically induced absorption”. Eur. Phys. J. B, 1, 57–70 (1998).Google Scholar
[Kuh01] Kuhr, S., Alt, W., Schrader, D., et al. “Deterministic delivery of a single atom”. Science, 293, 278–280 (2001).CrossRefGoogle ScholarPubMed
[Kuh10] Kuhn, A. and Ljunggren, D.Cavity-based single-photon sources”. Contemp. Phys., 51, 1–25 (2010).CrossRefGoogle Scholar
[Kuk89] Kuklinski, J.R., Gaubatz, U., Hioe, F.T. and Bergmann, K.Adibatic population transfer in a three-level system driven by delayed laser pulses”. Phys. Rev. A, 40, 6741–6744 (1989).CrossRefGoogle Scholar
[Kul06] Kulander, K.C. and Lewenstein, M. “Multiphoton and strong-field processes”. In G., Drake (ed.) Springer Handbook of Atomic, Molecular, and Optical Physics, 1077–1090 (Springer, New York, 2006).Google Scholar
[Kyo06] Kyoseva, E.S. and Vitanov, N.V.Coherent pulsed excitation of degenerate multistate systems: Exact analytic solutions”. Phys. Rev. A, 73, 023420 (2006).CrossRefGoogle Scholar
[Kyo07] Kyoseva, E.S., Vitanov, N.V. and Shore, B.W.Physical realization of coupled Hilbert-space mirrors for quantum-state engineering”. J. Mod. Opt., 54, 13–15 (2007).CrossRefGoogle Scholar
[Lam06] Lambropoulos, P. and Petrosyan, D.Quantum Optics and Quantum In- formation: An Introduction (Springer, New York, 2006).Google Scholar
[Lan32a] Landau, L.D.Zur Theorie der Energieübertragung bei Stössen”. Phys. Z. Sowjet., 1, 88–98 (1932).Google Scholar
[Lan32b] Landau, L.D.Zur Theorie der Energieübertragung II”. Phys. Z. Sowjet., 2, 46–51 (1932).Google Scholar
[Lan77] Langhoff, P.W., Epstein, S.T. and Karplus, M.Aspects of time-dependent perturbation theory”. Rev. Mod. Phys., 44, 602–644 (1977).Google Scholar
[Lan84] Landau, L.D., Pitaevskii, L.P. and Lifshitz, E.Electrodynamics of Continuous Media (Elsevier, New York, 1984), 2nd edition.Google Scholar
[Lan99] Lang, K.R.Astrophysical Formulae. I. Radiation, Gas Processes and High Energy Astrophysics (Springer, Berlin, 1999), 3rd edition.Google Scholar
[Leb72] Lebedev, N.N.Special Functions and Their Application (Dover, New York, 1972).Google Scholar
[Lei03] Leibfried, D., Blatt, R., Monroe, C. and Wineland, D.Quantum dynamics of single trapped ions”. Rev. Mod. Phys., 75, 281–325 (2003).CrossRefGoogle Scholar
[Let78] Letokhov, V. and Makarov, A.Excitation of multilevel molecular systems by laser IR field”. Appl. Phys. A, 16, 47–57 (1978).Google Scholar
[Lev69] Levine, R.D.Quantum Mechanics of Molecular Rate Processes (Clarendon, Oxford, 1969).Google Scholar
[Lid98] Lidar, D.A., Chuang, I.L. and Whaley, K.B.Decoherence-free subspaces for quantum computation”. Phys. Rev. Lett., 81, 2594–2597 (1998).CrossRefGoogle Scholar
[Lid01a] Lidar, D.A., Bacon, D., Kempe, J. and Whaley, K.B.Decoherence-free subspaces for multiple-qubit errors. I. Characterization”. Phys. Rev. A, 63, 022306 (2001).Google Scholar
[Lid01b] Lidar, D.A., Bacon, D., Kempe, J. and Whaley, K.B.Decoherence-free subspaces for multiple-qubit errors. II. Universal, fault-tolerant quantum computation”. Phys. Rev. A, 63, 022307 (2001).Google Scholar
[Lim91] Lim, R. and Berry, M.V.Superadiabatic tracking of quantum evolution”. J. Phys. A, 24, 3255–3264 (1991).CrossRefGoogle Scholar
[Lin76] Lindblad, G.On the generators of quantum dynamical semigroups”. Commun. Math. Phys., 48, 119–130 (1976).CrossRefGoogle Scholar
[Lin04] Lindinger, A., Lupulescu, C., Plewicki, M. et al. “Isotope selective ionization by optimal control using shaped femtosecond laser pulses”. Phys. Rev. Lett., 93, 033001 (2004).CrossRefGoogle ScholarPubMed
[Liu01] Liu, C., Dutton, Z., Behroozi, C.H. and Hau, L.V.Observation of coherent optical information storage in an atomic medium using halted light pulses”. Nature, 409, 490–493 (2001).CrossRefGoogle Scholar
[Lou73] Loudon, R.The Quantum Theory of Light (Clarendon, Oxford, 1973).Google Scholar
[Lou06] Louck, J.D. “Angular momentum theory”. In G., Drake (ed.) Springer Handbook of Atomic, Molecular, and Optical Physics, 9–74 (Springer, New York, 2006).Google Scholar
[Loy74] Loy, M.M.T.Observation of population inversion by optical adiabatic rapid passage”. Phys. Rev. Lett., 32, 814–817 (1974).CrossRefGoogle Scholar
[Lu03] Lu, Z.T. and Wendt, K.D.A.Laser-based methods for ultrasensitive trace-isotope analyses”. Rev. Sci. Instrum, 74, 1169–1179 (2003).CrossRefGoogle Scholar
[Luk69] Luke, Y.L.The Special Functions and Their Approximations (Academic, New York, 1969).Google Scholar
[Luk03] Lukin, M.D.Colloquium: Trapping and manipulating photon states in atomic ensembles”. Rev. Mod. Phys., 75, 457–472 (2003).CrossRefGoogle Scholar
[Mac03] MacKay, D.J.C.Information Theory, Inference, and Learning Algorithms (Cambridge University Press, Cambridge, 2003).Google Scholar
[Mac10] Macleod, H.A.Thin Film Optical Filters (CRC Press, Boca Raton, Fla. 2010), 4th edition.Google Scholar
[Mai91] Mainfray, G. and Manus, C.Multiphoton ionization of atoms”. Rep. Prog. Phys., 54, 1333–1372 (1991).CrossRefGoogle Scholar
[Maj32] Majorana, E.Atomi orientati in campo magnetico variabile”. Nuov. Cim., 9, 43–50 (1932).Google Scholar
[Mak78] Makarov, A.A., Platonenko, V.T. and Tyakht, V.V.Interaction of a ‘level-band’ quantum system with a quasiresonant monochromatic field”. Sov. Phys. JETP, 48, 1044–1052 (1978).Google Scholar
[Mak10] Mäkelä, H. and Messina, A.N-qubit states as points on the Bloch sphere”. Phys. Sci., T140, 014054 (2010).CrossRefGoogle Scholar
[Mal97] Malinovsky, V.S. and Tannor, D.J.Simple and robust extension of the stimulated Raman adiabatic passage technique to n-level systems”. Phys. Rev. A, 56, 4929–4937 (1997).CrossRefGoogle Scholar
[Mar91] Marte, P., Zoller, P. and Hall, J.L.Coherent atomic mirrors and beam splitters by adiabatic passage in multilevel systems”. Phys. Rev. A, 44, R4118–R4121 (1991).CrossRefGoogle ScholarPubMed
[Mar95] Martin, J., Shore, B.W. and Bergmann, K.Coherent population transfer in multilevel systems with magnetic sublevels. II. Algebraic analysis”. Phys. Rev. A, 52, 583–593 (1995).CrossRefGoogle ScholarPubMed
[Mar96] Martin, J., Shore, B.W. and Bergmann, K.Coherent population transfer in multilevel systems with magnetic sublevels. III. Experimental results”. Phys. Rev. A, 53, 1556–1569 (1996).Google Scholar
[Mar06a] Maroulis, G.Atoms, Molecules, and Clusters in Electric Fields: Theoretical Approaches to the Calculation of Electric Polarizability (Imperial College Press, London, 2006).CrossRefGoogle Scholar
[Mar06b] Martin, W.C. and Wielse, W.L. “Atomic spectroscopy”. In G., Drake (ed.) Springer Handbook of Atomic, Molecular, and Optical Physics, 175–197 (Springer, New York, 2006).Google Scholar
[Mat06] Matsumoto, Y. and Watanabe, K.Coherent vibrations of adsorbates induced by femtosecond laser excitation”. Chem. Rev., 106, 4234–4260 (2006).CrossRefGoogle ScholarPubMed
[Max54] Maxwell, J.C.Treatise on Electricity and Magnetism (Dover, New York, 1954).Google Scholar
[McC69] McCall, S.L. and Hahn, E.L.Self-induced transparency”. Phys. Rev., 183, 457–485 (1969).CrossRefGoogle Scholar
[Mea60] Mead, C.A.Theory of the complex refractive index”. Phys. Rev., 120, 854–866 (1960).CrossRefGoogle Scholar
[Mec58] Meckler, A.Majorana formula”. Phys. Rev., 111, 1447–1449 (1958).CrossRefGoogle Scholar
[Mes62] Messiah, A.Quantum Mechanics (Wiley, New York, 1962).Google Scholar
[Mes85] Meschede, D., Walther, H. and Muller, G. “One-atom maser”. Phys. Rev. Lett., 54, 551–554 (1985).Google Scholar
[Mes06] Meschede, D. and Rauschenbeutel, A.Manipulating single atoms”. In Advances in Atomic Molecular and Optical Physics, 53, 75 (2006).CrossRefGoogle Scholar
[Met99] Metcalf, H.J. and Straten, P. vander. Laser Cooling and Trapping (Springer, New York, 1999).CrossRefGoogle Scholar
[Mey89] Meystre, P., Schumacher, E. and Stenholm, S.Atomic beam deflection in a quantum field”. Opt. Comm., 73, 443–447 (1989).CrossRefGoogle Scholar
[Mey01] Meystre, P.Atom Optics (Springer, New York, 2001).CrossRefGoogle Scholar
[Mic81] Michelson, A.A.The relative motion of earth and ether”. Am. J. Sci., 22, 20 (1881).Google Scholar
[Mih78] Mihalas, D.Stellar Atmospheres (Freeman, San Francisco, 1978).Google Scholar
[Mil83] Milonni, P.W.,Ackerhalt, J.R., Galbraith, H.W. and Shih, M.L.Exponential decay, recurrences and quantum-mechanical spreading in a quasicontinuum model”. Phys. Rev. A, 28, 32–39 (1983).CrossRefGoogle Scholar
[Mil88] Milonni, P.W. and Eberly, J.H.Lasers (Wiley, New York, 1988).Google Scholar
[Mil91] Milonni, P.W. and Singh, S. “Some recent developments in the fundamental theory of light”. In D., Bates and B., Bederson (eds.) Advances in Atomic Molecular and Optical Physics, volume 28, 75 (Academic, New York, 1991).Google Scholar
[Mil92] Milonni, P.W. and Thode, L.E.Theory of mesospheric sodium fluorescence excited by pulse trains”. Appl. Opt., 31, 785–800 (1992).CrossRefGoogle ScholarPubMed
[Mil94] Milonni, P.W.The Quantum Vacuum (Academic, Boston, 1994).Google Scholar
[Mil96] Milner, V., Chernobrod, B.M. and Prior, Y.Coherent-population trapping in a highly degenerate open system”. Europhys. Lett., 34, 557–562 (1996).CrossRefGoogle Scholar
[Mil98] Milner, V. and Prior, Y.Multilevel dark states: Coherent population trapping with elliptically polarized incoherent light”. Phys. Rev. Lett., 80, 940 (1998).CrossRefGoogle Scholar
[Mil99] Milner, V., Chernobrod, B.M. and Prior, Y.Arbitrary orientation of atoms and molecules via coherent population trapping by elliptically polarized light”. Phys. Rev. A, 60, 1293 (1999).CrossRefGoogle Scholar
[Mly81] Mlynek, J. and Lange, W.High-resolution coherence spectroscopy using pulse trains”. Phys. Rev. A, 24, 1099–1102 (1981).CrossRefGoogle Scholar
[Mof08] Moffitt, J.R., Chemla, Y.R., Smith, S.B. and Bustamante, C.Recent advances in optical tweezers”. Ann. Rev. Biochem., 77, 205–228 (2008).CrossRefGoogle ScholarPubMed
[Mol69] Mollow, B.R. and Miller, M.M.The damped driven two-level atom”. Ann. Phys., 52, 464–478 (1969).CrossRefGoogle Scholar
[Moo68] Moore, C.E. and Merrill, P.W.Partial Grotrian Diagrams of Astrophysical Interest (U.S. Government Printing Off, Washington, D.C., 1968).CrossRefGoogle Scholar
[Mor53] Morse, P.M. and Feshbach, H.Methods of Theoretical Physics (McGraw-Hill, New York, 1953).Google Scholar
[Mor83] Morris, J.R. and Shore, B.W.Reduction of degenerate two-level excitation to independent two-state systems”. Phys. Rev. A, 27, 906–912 (1983).CrossRefGoogle Scholar
[Mot65] Mott, N.F. and Massey, H.S.W.The Theory of Atomic Collisions (Clarendon Press, Oxford, 1965).Google Scholar
[Moy99] Moya-Cessa, H., Wallentowitz, S. and Vogel, W.Quantum-state engineering of a trapped ion by coherent-state superpositions”. Phys. Rev. A, 59, 2920 (1999).CrossRefGoogle Scholar
[Mue48] Mueller, H.The foundations of optics”. J. Opt. Soc. Am., 38, 661–669 (1948).Google Scholar
[Muk99] Mukamel, S.Principles of Nonlinear Optical Spectroscopy (Oxford University Press, Oxford, 1999).Google Scholar
[Mur06] Murr, K., Nussmann, S., Puppe, T. et al. “Three-dimensional cavity cooling and trapping in an optical lattice”. Phys. Rev. A, 73, 063415 (2006).CrossRefGoogle Scholar
[Nak94] Nakajima, T., Elk, M., Jian, Z. and Lambropoulos, P.Population transfer through the continuum”. Phys. Rev. A, 50, R913–R916 (1994).CrossRefGoogle ScholarPubMed
[Nar81] Narozhny, N.B., Sanchez-Mondragon, J.J. and Eberly, J.H.Coherence versus incoherence: collapse and revival in a single quantum model”. Phys. Rev. A, 23, 236–246 (1981).CrossRefGoogle Scholar
[New68] Newton, R.G. and Young, B.Measurability of the spin density matrix”. Ann. Phys. (NY), 49, 393–402 (1968).CrossRefGoogle Scholar
[Nie00] Nielsen, M.A. and Chuang, I.L.Quantum Computation and Quantum Information (Cambridge University Press, New York, 2000).Google Scholar
[Nik74] Nikitin, E.E.Theory of Elementary Atomic and Molecular Processes in Gases (Clarendon, Oxford, 1974).Google Scholar
[Nus05] Nussmann, S., Hijlkema, M., Weber, B. et al. “Submicron positioning of single atoms in a microcavity”. Phys. Rev. Lett., 95, 173602 (2005).CrossRefGoogle Scholar
[Obe06] Oberst, M., Klein, J. and Halfmann, T.Enhanced four-wave mixing in mercury isotopes, prepared by Stark-chirped rapid adiabatic passage”. Opt. Comm., 264, 463–470 (2006).CrossRefGoogle Scholar
[Olv10] Olver, F.W.J., Lozier, D.W., Boisvert, R.F. and Clark, C.W. (eds.) NIST Handbook of Mathematical Functions (Cambridge University Press, Cambridge, 2010).
[Omo77] Omont, A.Irreducible components of the density matrix. Application to optical pumping”. Prog. Quant. Electron., 5, 69–138 (1977).CrossRefGoogle Scholar
[Ore84a] Oreg, J., Hioe, F.T. and Eberly, J.H.Adiabatic following in multilevel systems”. Phys. Rev. A, 29, 690–697 (1984).CrossRefGoogle Scholar
[Ore84b] Oreg, J. and Goshen, S.Spherical modes in N-Level systems”. Phys. Rev. A, 29, 3205–3207 (1984).CrossRefGoogle Scholar
[Ore92] Oreg, J., Bergmann, K., Shore, B.W. and Rosenwaks, S.Population transfer by delayed pulses in a four-state system”. Phys. Rev. A, 45, 4888–4896 (1992).CrossRefGoogle Scholar
[Pal06b] Paldus, J. “Perturbation theory”. In G., Drake (ed.) Springer Handbook of Atomic, Molecular, and Optical Physics, 101–114 (Springer, New York, 2006).Google Scholar
[Pan56] Pancharatnam, S.Generalized theory of interference, and its applications”. Proc. Ind. Acad. Sci., A 44, 247–262 (1956).Google Scholar
[Pan98] Pan, J.W. and Zeilinger, A.Greenberger-Horne-Zeilinger-state analyzer”. Phys. Rev. A, 57, 2208 (1998).CrossRefGoogle Scholar
[Pas00] Paspalakis, E. and Knight, P.L.Spontaneous emission properties of a quasicontinuum”. Opt. Comm., 179, 257–265 (2000).CrossRefGoogle Scholar
[Pas02] Paspalakis, E. and Kis, Z.Pulse propagation in a coherently prepared multilevel medium”. Phys. Rev. A, 66, 025802 (2002).CrossRefGoogle Scholar
[Pea01] Pearson, B.J., White, J.L., Weinacht, T.C. and Bucksbaum, P.H.Coherent control using adaptive learning algorithms”. Phys. Rev. A, 63, 063412 (2001).CrossRefGoogle Scholar
[Pea06] Peach, G. “Collisional broadening of spectral lines”. In G., Drake (ed.) Springer Handbook of Atomic, Molecular, and Optical Physics, 875–890 (Springer, New York, 2006).Google Scholar
[Pec10] Pechen, A., Brif, C., Wu, R., Chakrabarti, R. and Rabitz, H.General unifying features of controlled quantum phenomena”. Phys. Rev. A, 82, 030101 (2010).CrossRefGoogle Scholar
[Per86] Perelomov, A.Generalized Coherent States (Springer, Heidelberg, 1986).CrossRefGoogle Scholar
[Per95] Peres, A.Quantum Theory: Concepts and Methods (Kluwer Academic, Dordrecht, 1995).Google Scholar
[Per06] Peralta-Conde, A., Brandt, L. and Halfmann, T.Trace isotope detection enhanced by coherent elimination of power broadening”. Phys. Rev. Lett., 97, 243004 (2006).Google Scholar
[Phi01] Phillips, D.F., Fleischhauer, A., Mair, A. and Walsworth, R.L.Storage of light in atomic vapor”. Phys. Rev. Lett., 86, 783–786 (2001).CrossRefGoogle ScholarPubMed
[Pil93] Pillet, P., Valentin, C., Yuan, R.L. and Yu, J.Adiabatic population transfer in a multilevel system”. Phys. Rev. A, 48, 845–848 (1993).CrossRefGoogle Scholar
[Ple98] Plenio, M. and Knight, P.The quantum-jump approach to dissipative dynamics in quantum optics”. Rev. Mod. Phys., 70, 101–144 (1998).CrossRefGoogle Scholar
[Pow78] Power, E.A. and Thirunamachandran, T.On the nature of the Hamiltonian for the interaction of radiation with atoms and molecules: (e/mc)p.A, d.E and all that”. Am. J. Phys., 46, 370–378 (1978).CrossRefGoogle Scholar
[Pow85] Power, E.A. and Thirunamachandran, T.Further remarks on the Hamiltonian of quantum optics”. J. Opt. Soc. Am. B, 2, 1100–1105 (1985).CrossRefGoogle Scholar
[Pow82] Power, E.A. and Thirunamachandran, T.Maxwell's equations and the multipolar Hamiltonian”. Phys. Rev. A, 26, 1800–1801 (1982).CrossRefGoogle Scholar
[Pra03] Präkelt, A., Wollenhaupt, M., Assion, A. et al. “Compact, robust and flexible setup for femtosecond pulse shaping”. Rev. Sci. Instrum, 74, 4950–4953 (2003).CrossRefGoogle Scholar
[Pre98] Preskill, J.Lecture notes for Physics 229: Quantum Information and Computation”. available on-line at www.theory.caltech.edu/people/preskill/ph229/(1998).
[Pro97] Protopapas, M., Keitel, C.H. and Knight, P.L.Atomic physics with super-high intensity lasers”. Rep. Prog. Phys., 60, 389–486 (1997).CrossRefGoogle Scholar
[Pur46] Purcell, E.M.Spontaneous emission probabilities at radio frequencies”. Phys. Rev., 69, 681 (1946).Google Scholar
[Rab37] Rabi, I.I.Space quantization in a gyrating magnetic field”. Phys. Rev., 51, 652–654 (1937).CrossRefGoogle Scholar
[Rab54] Rabi, I.I., Ramsey, N.F. and Schwinger, J.Use of rotating coordinates in magnetic resonance problems”. Rev. Mod. Phys., 26, 167–171 (1954).CrossRefGoogle Scholar
[Rab00a] Rabitz, H. and Zhu, W.Optimal control of molecular motion: Design, implementation, and inversion”. Acc. Chem. Res., 33, 572–578 (2000).CrossRefGoogle ScholarPubMed
[Rab00b] Rabitz, H., Vivie-Riedle, R.d., Motzkus, M. and Kompa, K.Whither the future of controlling quantum phenomena?Science, 288, 824–828 (2000).CrossRefGoogle Scholar
[Rab04] Rabitz, H. “Coherent control”. In B.D., Guenther (ed.) Encyclopedia of Modern Optics, 123–134 (Elsevier, New York, 2004).Google Scholar
[Rad82a] Radmore, P.M.Decaying pulse excitation of a two-level atom”. Phys. Lett. A, 87, 285–287 (1982).CrossRefGoogle Scholar
[Rad82b] Radmore, P.M. and Knight, P.L.Population trapping and dispersion in a threelevel system”. J. Phys. B, 15, 561–573 (1982).CrossRefGoogle Scholar
[Rai01] Raimond, J.M., Brune, M. and Haroche, S.Manipulating quantum entanglement with atoms and photons in a cavity”. Rev. Mod. Phys., 73, 565–582 (2001).CrossRefGoogle Scholar
[Ram49] Ramsey, N.F.A new molecular beam resonance method”. Phys. Rev., 76, 996 (1949).CrossRefGoogle Scholar
[Ram95] Ramakrishna, V., Salapaka, M.V., Daleh, M., Rabitz, H. and Pierce, A.Controllability of molecular systems”. Phys. Rev. A, 51, 960–966 (1995).CrossRefGoogle ScholarPubMed
[Ran05] Rangelov, A.A., Vitanov, N.V., Yatsenko, L.P. et al. “Stark-shift-chirped rapid-adiabatic-passage technique among three states”. Phys. Rev. A, 72, 053403 (2005).CrossRefGoogle Scholar
[Ran06] Rangelov, A.A., Vitanov, N.V. and Shore, B.W.Extension of the Morris–Shore transformation to multilevel ladders”. Phys. Rev. A, 74, 053402 (2006).CrossRefGoogle Scholar
[Ran08] Rangelov, A.A., Vitanov, N.V. and Shore, B.W.Population trapping in three-state quantum loops revealed by Householder reflections”. Phys. Rev. A, 77, 033404 (2008).CrossRefGoogle Scholar
[Ran09] Rangelov, A.A., Vitanov, N.V. and Shore, B.W.Rapid adiabatic passage without level crossing”. Opt. Comm., 283, 1346–1350 (2009).Google Scholar
[Ray90] Raymer, M.G. and Walmsley, I.A.The quantum coherence properties of stimulated Raman scattering”. Prog. Opt., 28, 183–272 (1990).Google Scholar
[Rei84] Reintjes, J.F.Nonlinear Optical Parametric Processes in Liquids and Gases (Academic, Orlando, Fla., 1984).Google Scholar
[Ric29] Rice, O.K.Perturbations in molecules and the theory of predissociation and diffuse spectra”. Phys. Rev., 33, 748–759 (1929).CrossRefGoogle Scholar
[Ric00a] Rice, S.A. and Zhao, M.Optical Control of Molecular Dynamics (Wiley, New York, 2000).Google Scholar
[Ric00b] Rickes, T., Yatsenko, L.P., Steuerwald, S. et al. “Efficient adiabatic population transfer by two-photon excitation assisted by a laser-induced Stark shift”. J. Chem. Phys., 113, 534–546 (2000).CrossRefGoogle Scholar
[Ric03] Rickes, T., Marangos, J.P. and Halfmann, T.Enhancement of third-harmonic generation by Stark-chirped rapid adiabatic passage”. Opt. Comm., 227, 133–142 (2003).CrossRefGoogle Scholar
[Rob81] Robinson, E.J.Two-level transition probabilities for asymmetric coupling pulses”. Phys. Rev. A, 24, 2239–2241 (1981).CrossRefGoogle Scholar
[Rob82] Robiscoe, R.T.Quasiadiabatic solution to the two-level problem”. Phys. Rev. A, 25, 1178–1180 (1982).CrossRefGoogle Scholar
[Rob95] Robinson, E.J.Concerning the ‘asymmetrized Rosen-Zener model’”. J. Phys. B, 28, L169 (1995).CrossRefGoogle Scholar
[Ros32] Rosen, N. and Zener, C.Double Stern–Gerlach experiment and related collision phenomena”. Phys. Rev., 40, 502–507 (1932).CrossRefGoogle Scholar
[Ros57] Rose, M.E.Elementary Theory of Angular Momentum (Wiley, New York, 1957).Google Scholar
[Row75] Rowe, D.J. and Ngo-Trong, C.Tensor equations of motion for the excitations of rotationally invariant or charge-independent systems”. Rev. Mod. Phys., 47, 471–485 (1975).CrossRefGoogle Scholar
[Ryb85] Rybicki, G.B. and Lightman, A.P.Radiative Processes in Astrophysics (Wiley, New York, 1985).CrossRefGoogle Scholar
[Saa06] Saalfrank, P.Quantum dynamical approach to ultrafast molecular desorption from surfaces”. Chem. Rev., 106, 4116–4159 (2006).CrossRefGoogle ScholarPubMed
[Sal74] Salzman, W.R.Quantum mechanics of systems periodic in time”. Phys. Rev. A, 10, 461–465 (1974).CrossRefGoogle Scholar
[Sam88] Samuel, J. and Bhandari, R.General setting for Berry's phase”. Phys. Rev. Lett., 60, 2339–2342 (1988).CrossRefGoogle ScholarPubMed
[San04] Sangouard, N., Guérin, S., Yatsenko, L.P. and Halfmann, T.Preparation of coherent superposition in a three-state system by adiabatic passage”. Phys. Rev. A, 70, 013415 (2004).CrossRefGoogle Scholar
[San06] Sangouard, N., Yatsenko, L.P., Shore, B.W. and Halfmann, T.Preparation of nondegenerate coherent superpositions in a three-state ladder system assisted by Stark shifts”. Phys. Rev. A, 73, 043415 (2006).CrossRefGoogle Scholar
[Sav96] Savva, V., Zelenkov, V. and Mazurenko, A.Dynamics of molecular systems with nonequidistant energy levels in a field of laser IR radiation”. J. Appl. Spectrosc., 63, 348–356 (1996).CrossRefGoogle Scholar
[Sch26] Schrödinger, E.Der stetige Ubergang von der Mikro- zur Makromechanik”. Naturwissenschaften, 28, 664–666 (1926).Google Scholar
[Sch77] Schwinger, J.The Majorana formula”. Trans. N.Y. Acad. Sci. II, 38, 170–184 (1977).CrossRefGoogle Scholar
[Sch01] Schrader, D., Kuhr, S., Alt, W. et al. “An optical conveyor belt for single neutral atoms”. Appl. Phys. B, 8, 819–824 (2001).Google Scholar
[Sch03] Schwinger, J. and Englert, B.G.Quantum Mechanics: Symbolism of Atomic Measurements (Springer, Berlin, 2003).Google Scholar
[Scu92] Scully, M.O.From lasers and masers to phaseonium and phasers”. Phys. Rep., 219, 191–201 (1992).CrossRefGoogle Scholar
[Sha79] Shampine, L.F. and Gear, C.W.Auser's view of solving stiff ordinary differential equations”. SIAM Review, 21, 1–17 (1979).CrossRefGoogle Scholar
[Sha89] Shapere, A. and Wilczek, F. (eds.) Geometric Phases in Physics (World Scientific, Singapore, 1989).
[Sha07] Shapiro, E.A., Milner, V., Menzel-Jones, C. and Shapiro, M.Piecewise adiabatic passage with a series of femtosecond pulses”. Phys. Rev. Lett., 99, 033002 (2007).CrossRefGoogle ScholarPubMed
[Shi65] Shirley, J.H.Solution of the Schrödinger equation with a Hamiltonian periodic in time”. Phys. Rev., 138, B979–B987 (1965).CrossRefGoogle Scholar
[Sho67] Shore, B.W.Scattering theory of absorption-line profiles and refractivity”. Rev. Mod. Phys., 39, 439–462 (1967).CrossRefGoogle Scholar
[Sho68] Shore, B.W.Parametrization of absorption-line profiles”. Phys. Rev., 171, 43–54 (1968).CrossRefGoogle Scholar
[Sho69] Shore, B.W.Scattering theory of absorption and autoionization-line profiles”. In S., Geltman, K.T., Mahanthappa and W.E., Brittin (eds.) Lectures in Theoretical Physics, volume 11 (Gordon and Breach, New York, 1969).Google Scholar
[Sho77] Shore, B.W. and Ackerhalt, J.Dynamics of multilevel laser excitation: Three-level atoms”. Phys. Rev. A, 15, 1640–1646 (1977).CrossRefGoogle Scholar
[Sho79] Shore, B.W. and Cook, R.J.Coherent dynamics of N-level atoms and molecules. IV. Two- and three-level behavior”. Phys. Rev. A, 20, 1958–1964 (1979).CrossRefGoogle Scholar
[Sho81a] Shore, B.W.Two-level behavior of coherent excitation of multilevel systems”. Phys. Rev. A, 24, 1413–1418 (1981).CrossRefGoogle Scholar
[Sho81b] Shore, B.W. and Johnson, M.A.Effects of hyperfine structure on coherent excitation”. Phys. Rev. A, 23, 1608–1610 (1981).CrossRefGoogle Scholar
[Sho83] Shore, B.W.Coherence in the quasi-continuum model”. Chem. Phys. Lett., 99, 240–243 (1983).CrossRefGoogle Scholar
[Sho84] Shore, B.W.Gating of population flow in resonant multiphoton excitation”. Phys. Rev. A, 29, 1578–1582 (1984).CrossRefGoogle Scholar
[Sho87] Shore, B.W. and Knight, P.L.Enhancement of high optical harmonics by excessphoton ionisation”. J. Phys. B, 20, 413–423 (1987).CrossRefGoogle Scholar
[Sho90] Shore, B.W.The Theory of Coherent Atomic Excitation (Wiley, New York, 1990).Google Scholar
[Sho91a] Shore, B.W., Bergmann, K., Oreg, J. and Rosenwaks, S.Multilevel adiabatic population transfer”. Phys. Rev. A, 44, 7442–7447 (1991).CrossRefGoogle ScholarPubMed
[Sho91b] Shore, B.W., Meystre, P. and Stenholm, S.Is a quantum standing wave composed of two traveling waves?J. Opt. Soc. Am. B, 8, 903–910 (1991).CrossRefGoogle Scholar
[Sho92] Shore, B.W., Bergmann, K. and Oreg, J.Coherent population transfer: stimulated Raman adiabatic passage and the Landau–Zener picture”. Z. Phys. D, 23, 33–39 (1992).CrossRefGoogle Scholar
[Sho93] Shore, B.W. and Knight, P.L.Topical Review. The Jaynes-Cummings model”. J. Mod. Opt., 40, 1195–1238 (1993).CrossRefGoogle Scholar
[Sho95a] Shore, B.W., Martin, J., Fewell, M.P. and Bergmann, K.Coherent population transfer in multilevel systems with magnetic sublevels. I. Numerical studies”. Phys. Rev. A, 52, 566–582 (1995).CrossRefGoogle ScholarPubMed
[Sho95b] Shore, B.W.Examples of counter-intuitive physics”. Contemp. Phys., 36, 15–28 (1995).CrossRefGoogle Scholar
[Sho03] Shore, B.W.Coherence and transient nonlinearity in laser probing”. Spectrachim. Acta B, 58, 969–998 (2003).Google Scholar
[Sho08] Shore, B.W.Coherent manipulations of atoms using laser light”. Acta Phys. Slovaka, 58, 243–486 (2008).Google Scholar
[Sho10] Shore, B., Rangelov, A. and Vitanov, N.Stimulated Raman adiabatic passage with temporal pulselets”. Opt. Comm., 283, 730–736 (2010).CrossRefGoogle Scholar
[Sie86] Siegman, A.E.Lasers (University Science Books, Mill Valley, Calif., 1986).Google Scholar
[Sil08] Silverman, M.P.Quantum Superposition: Counterintuitive Consequences of Coherence, Entanglement, and Interference (Springer, Berlin, 2008).Google Scholar
[Sjo00] Sjöqvist, E., Pati, A.K., Ekert, A. et al. “Geometric phases for mixed states in interferometry”. Phys. Rev. Lett., 85, 2845–2849 (2000).CrossRefGoogle ScholarPubMed
[Smi92] Smith, A.V.Numerical studies of adiabatic population inversion in multilevel systems”. J. Opt. Soc. Am. B, 9, 1543–1551 (1992).CrossRefGoogle Scholar
[Sob72] Sobel'man, I.I.Introduction to the Theory of Atomic Spectra (Pergamon, New York, 1972).Google Scholar
[Sob92] Sobelman, I.I.Atomic Spectra and Radiative Transitions (Springer, New York, 1992), 2nd edition.CrossRefGoogle Scholar
[Sob95] Sobel'man, I.I., Vainshtein, L.A. and Yukov, E.A.Excitation of Atoms and Broadening of Spectral Lines (Springer, New York, 1995), 2nd edition.CrossRefGoogle Scholar
[Ste72] Stey, G.C. and Gibbard, R.W.Decay of quantum states in some exactly soluble models”. Physica, 60, 1–26 (1972).CrossRefGoogle Scholar
[Ste83] Stebbings, R.F. and Dunning, F.B.Rydberg States of Atoms and Molecules (Cambridge University Press, Cambridge, 1983).Google Scholar
[Ste86a] Steinberg, S. “Lie series, Lie transformations, and their applications”.In J., Sanchez-Mondragon and K.B., Wolf (eds.) Lie Methods in Optics, 52–103 (Springer, Berlin, 1986).Google Scholar
[Ste86b] Stenholm, S.The semiclassical theory of laser cooling”. Rev. Mod. Phys., 58, 699–740 (1986).CrossRefGoogle Scholar
[Str41] Stratton, J.A.Electromagnetic Theory (McGraw-Hill, New York, 1941).Google Scholar
[Stu32] Stückelberg, C.Theory of inelastic collisions between atoms”. Helv. Phys.Acta, 5, 369–423 (1932).Google Scholar
[Sty01] Styer, D.F., Balkin, M.S., Becker, K.M. et al. “Nine formulations of quantum mechanics”. Am. J. Phys., 70, 288–297 (2001).Google Scholar
[Sus11] Sussman, B.J.Five ways to the nonresonant dynamic Stark effect”. Am. J. Phys., 79, 477–484 (2011).CrossRefGoogle Scholar
[Sze04] Szekeres, P.A Course in Modern Mathematical Physics: Groups, Hilbert Space and Differential Geometry (Cambridge University Press, New York, 2004).CrossRefGoogle Scholar
[Tan05] Tannor, D.J.Introduction to Quantum Mechanics: A Time Dependent Perspective (University Science Books, Sausalito, Calif., 2005).Google Scholar
[Tem93] Temkin, R.J.Excitation of an atom by a train of short pulses”. J. Opt. Soc. Am. B, 10, 830–839 (1993).CrossRefGoogle Scholar
[Tha04] Thanopulos, I., Král, P. and Shapiro, M.Complete control of population transfer between clusters of degenerate states”. Phys. Rev. Lett., 92, 113003 (2004).CrossRefGoogle ScholarPubMed
[The98] Theuer, H. and Bergmann, K.Atomic beam deflection by coherent momentum transfer and the dependence on weak magnetic fields”. Eur. Phys. J. D, 2, 279–289 (1998).CrossRefGoogle Scholar
[Tit65] Titulaer, U.M. and Glauber, R.J.Correlation functions for coherent fields”. Phys. Rev., 140, B676–B682 (1965).CrossRefGoogle Scholar
[Tow10] Townsend, D., Sussman, B.J. and Stolow, A.A Stark future for quantum control”. J. Phys. Chem. A, 115, 357–373 (2010).Google ScholarPubMed
[Tuc75] Tucker, W.H.Radiation Processes in Astrophysics (MIT Press, Cambridge, Mass., 1975).Google Scholar
[Tur01] Turinici, G. and Rabitz, H.Quantum wavefunction controllability”. Chem. Phys., 267, 1–9 (2001).CrossRefGoogle Scholar
[Una97] Unanyan, R.G., Yatsenko, L.P., Bergmann, K. and Shore, B.W.Laser-induced adiabatic atomic reorientation with control of diabatic losses”. Opt. Comm., 139, 48–54 (1997).CrossRefGoogle Scholar
[Una98] Unanyan, R.G., Fleischhauer, M., Shore, B.W. and Bergmann, K.Robust creation and phase-sensitive probing of superposition states via stimulated Raman adiabatic passage (STIRAP) with degenerate dark states”. Opt. Comm., 155, 144–154 (1998).CrossRefGoogle Scholar
[Una99] Unanyan, R.G., Shore, B.W. and Bergmann, K.Laser-driven population transfer in four-level atoms: Consequences of non-Abelian geometrical adiabatic phase factors”. Phys. Rev. A, 59, 2910–2919 (1999).CrossRefGoogle Scholar
[Una00] Unanyan, R.G., Vitanov, N.V., Shore, B.W. and Bergmann, K.Coherent properties of a tripod system coupled via a continuum”. Phys. Rev. A, 61, U402–U410 (2000).CrossRefGoogle Scholar
[Una04] Unanyan, R.G., Pietrzyk, M.E., Shore, B.W. and Bergmann, K.Adiabatic creation of coherent superposition states in atomic beams”. Phys. Rev. A, 70, 053404 (2004).CrossRefGoogle Scholar
[Van65] Van Vleck, J.H.The Theory of Electric and Magnetic Susceptibilities (Oxford, London, 1965).Google Scholar
[Var88] Varshalovich, D.A., Moskalev, A.N. and Khersonskii, V.K.Quantum Theory of Angular Momentum: Irreducible Tensors, Spherical Harmonics, Vector Coupling Coefficients, 3j Symbols (World Scientific, Singapore, 1988).CrossRefGoogle Scholar
[Vas04] Vasilev, G.S. and Vitanov, N.V.Coherent excitation of a two-state system by a Gaussian field”. Phys. Rev. A, 70, 053407 (2004).CrossRefGoogle Scholar
[Vas06] Vasilev, G.S. and Vitanov, N.V.Complete population transfer by a zero-area pulse”. Phys. Rev. A, 73, 023416 (2006).CrossRefGoogle Scholar
[Vas09] Vasilev, G.S., Kuhn, A. and Vitanov, N.V.Optimum pulse shapes for stimulated Raman adiabatic passage”. Phys. Rev. A, 80, 013417 (2009).CrossRefGoogle Scholar
[Vas10] Vasilev, G.S., Ljunggren, D. and Kuhn, A.Single photons made-to-measure”. New J. Phys., 2, 63024 (2010).CrossRefGoogle Scholar
[Ved06] Vedral, V.Introduction to Quantum Information Science (Oxford University Press, New York, 2006).CrossRefGoogle Scholar
[Vew03] Vewinger, F., Heinz, M., Fernandez, R.G., Vitanov, N.V. and Bergmann, K.Creation and measurement of a coherent superposition of quantum states”. Phys. Rev. Lett., 9121, 3001 (2003).Google Scholar
[Vew07a] Vewinger, F., Appel, J., Figueroa, E. and Lvovsky, A.I.Adiabatic frequency conversion of optical information in atomic vapor”. Opt. Lett., 32, 2771–2773 (2007).CrossRefGoogle ScholarPubMed
[Vew07b] Vewinger, F., Heinz, M., Shore, B.W. and Bergmann, K.Amplitude and phase control of a coherent superposition of degenerate states. I. Theory”. Phys. Rev. A, 75, 043406 (2007).Google Scholar
[Vew09] Vewinger, F., Shore, B.W. and Bergmann, K. “Superpositions of degenerate atomic quantum states: Preparation and detection in atomic beams”. Advances in Atomic, Molecular and Optical Physics, volume 58, 113–172 (Academic, New York, 2009).Google Scholar
[Vit92] Vitanov, N. and Panev, G.Generalization of the Demkov formula in nearresonant charge transfer”. J. Phys. B, 25, 239–248 (1992).CrossRefGoogle Scholar
[Vit94] Vitanov, N.V.Asymmetrized Rosen–Zener model”. J. Phys. B, 27, 1351–1360 (1994).CrossRefGoogle Scholar
[Vit95a] Vitanov, N. and Knight, P.Coherent excitation of a two-state system by a train of short pulses”. Phys. Rev. A, 52, 2245–2261 (1995).CrossRefGoogle ScholarPubMed
[Vit95b] Vitanov, N.V.Complete population return in a two-state system driven by a smooth asymmetric pulse”. J. Phys. B., 28, L19–L22 (1995).CrossRefGoogle Scholar
[Vit95c] Vitanov, N.V. and Knight, P.L.Coherent excitation by asymmetric pulses”. J. Phys. B., 28, 1905–1920 (1995).CrossRefGoogle Scholar
[Vit95d] Vitanov, N.V. and Knight, P.L.Control of atomic transitions by the symmetry of excitation pulses”. Opt. Comm., 121, 31–35 (1995).CrossRefGoogle Scholar
[Vit96] Vitanov, N.V. and Stenholm, S.Non-adiabatic effects in population transfer in three-level systems”. Opt. Comm., 127, 215–222 (1996).CrossRefGoogle Scholar
[Vit98a] Vitanov, N.V.Analytic model of a three-state system driven by two laser pulses on two-photon resonance”. J. Phys. B, 31, 709–725 (1998).CrossRefGoogle Scholar
[Vit98b] Vitanov, N.V., Shore, B.W. and Bergmann, K.Adiabatic population transfer in multistate systems via dressed intermediate states”. Euro. Phys. J. D, 4, 15–29 (1998).CrossRefGoogle Scholar
[Vit99a] Vitanov, N.V., Suominen, K.A. and Shore, B.W.Creation of coherent atomic superpositions by fractional stimulated Raman adiabatic passage”. J. Phys. B, 32, 4535–4546 (1999).CrossRefGoogle Scholar
[Vit99b] Vitanov, N.V. and Stenholm, S.Adiabatic population transfer via multiple intermediate states”. Phys. Rev. A, 60, 3820–3832 (1999).CrossRefGoogle Scholar
[Vit00a] Vitanov, N.V.Measuring a coherent superposition of multiple states”. J. Phys. B, 33, 2333–2346 (2000).CrossRefGoogle Scholar
[Vit00b] Vitanov, N.V., Shore, B.W., Unanyan, R.G. and Bergmann, K.Measuring a coherent superposition”. Opt. Comm., 179, 73–83 (2000).CrossRefGoogle Scholar
[Vit01a] Vitanov, N.V., Fleischhauer, M., Shore, B.W. and Bergmann, K. “Coherent manipulation of atoms and molecules by sequential laser pulses”. In B., Bederson and H., Walther (eds.) Advances in Atomic Molecular and Optical Physics, volume 46, 55–190 (Academic, New York, 2001).Google Scholar
[Vit01b] Vitanov, N.V., Halfmann, T., Shore, B.W. and Bergmann, K.Laser-induced population transfer by adiabatic passage techniques”. Ann. Rev. Phys. Chem., 52, 763–809 (2001).CrossRefGoogle ScholarPubMed
[Vit01c] Vitanov, N.V., Shore, B.W., Yatsenko, L. et al. “Power broadening revisited: theory and experiment”. Opt. Comm., 199, 117–126 (2001).CrossRefGoogle Scholar
[Vit03] Vitanov, N.V., Kis, Z. and Shore, B.W.Coherent excitation of a degenerate two-level system by an elliptically polarized laser pulse”. Phys. Rev. A, 68, 063414 (2003).CrossRefGoogle Scholar
[Vit05] Vitanov, N.V. and Shore, B.W.Quantum transitions driven by missing frequencies”. Phys. Rev. A, 72, 052507 (2005).CrossRefGoogle Scholar
[Vit06] Vitanov, N.V. and Shore, B.W.Stimulated Raman adiabatic passage in a two-state system”. Phys. Rev. A, 73, 053402 (2006).CrossRefGoogle Scholar
[von55] Von Neumann, J.Mathematical Foundations of Quantum Mechanics (Princeton University Press, Princeton, N.J., 1955).Google Scholar
[Wal94] Walther, H. “Single atoms in cavities and traps”. In J.C., Dainty (ed.) Current Trends in Optics (Academic, London, 1994).Google Scholar
[Wer07] Werschnik, J. and Gross, E.K.U.PhD Tutorial: Quantum optimal control theory”. J. Phys. B, 40, R175–R211 (2007).CrossRefGoogle Scholar
[Whi76] Whitley, R.M. and Stroud, C.R.J.Double optical resonance”. Phys. Rev. A, 14, 1498–1512 (1976).CrossRefGoogle Scholar
[Wil84] Wilczek, F. and Zee, A.Appearance of gauge structure in simple dynamical systems”. Phys. Rev. Lett., 52, 2111–2114 (1984).CrossRefGoogle Scholar
[Win08] Winterfeldt, C., Spielmann, C. and Gerber, G.Colloquium: Optimal control of high-harmonic generation”. Rev. Mod. Phys., 80, 117 (2008).CrossRefGoogle Scholar
[Wol05] Wollenhaupt, M., Engel, V. and Baumert, T.Femtosecond laser photoelectron spectroscopy on atoms and small molecules: Prototype studies in quantum control”. Ann. Rev. Phys. Chem., 56, 25–56 (2005).CrossRefGoogle ScholarPubMed
[Wol07] Wollenhaupt, M., Assion, A. and Baumert, T. “Femtosecond laser pulses: Linear properties, manipulation, generation and measurement”. In Springer Handbook of Lasers and Optics, 937–983 (Springer, New York, 2007).Google Scholar
[Wol10] Wollenhaupt, M., Bayer, T., Vitanov, N.V. and Baumert, T.Three-state selective population of dressed states via generalized spectral phase-step modulation”. Phys. Rev. A, 81, 053422 (2010).CrossRefGoogle Scholar
[Won76] Wong, J., Garrison, J.C. and Einwohner, T.H.Multiple-time scale perturbation theory applied to laser excitation of atoms and molecules”. Phys. Rev. A, 13, 674–687 (1976).CrossRefGoogle Scholar
[Wyb07] Wybourne, B.G. and Smentek, L.Optical Spectroscopy of Lanthanides: Magnetic and Hyperfine Interactions (CRC Press, Boca Raton, Fla., 2007).CrossRefGoogle Scholar
[Wyn99] Wynands, R. and Nagel, A.Precision spectroscopy with coherent dark states”. Appl. Phys. B, 68, 1–25 (1999).CrossRefGoogle Scholar
[Xie98] Xie, X.S. and Trautman, J.K.Optical studies of single molecules at room temperature”. Ann. Rev. Phys. Chem., 49, 441–480 (1998).CrossRefGoogle ScholarPubMed
[Yat98] Yatsenko, L.P., Guerin, S., Halfmann, T. et al. “Stimulated hyper-Raman adiabatic passage I. The basic problem and examples”. Phys. Rev. A, 58, 4683–4690 (1998).CrossRefGoogle Scholar
[Yat97] Yatsenko, L.P., Unanyan, R.G., Bergmann, K., Halfmann, T. and Shore, B.W.Population transfer through the continuum using laser-controlled Stark shifts”. Opt. Comm., 135, 406–412 (1997).CrossRefGoogle Scholar
[Yat99a] Yatsenko, L.P., Vardi, A., Halfmann, T., Shore, B.W. and Bergmann, K.Source of metastable H(2s) atoms using Stark chirped rapid adiabatic passage”. Phys. Rev. A, 60, R4237–R4240 (1999).CrossRefGoogle Scholar
[Yat99b] Yatsenko, L.P., Halfmann, T., Shore, B.W. and Bergmann, K.Photoionization suppression by continuum coherence: Experiment and theory”. Phys. Rev. A, 59, 2926–2947 (1999).CrossRefGoogle Scholar
[Yat02a] Yatsenko, L.P., Vitanov, N.V., Shore, B.W., Rickes, T. and Bergmann, K.Creation of coherent superpositions using Stark-chirped rapid adiabatic passage”. Opt. Comm., 204, 413–423 (2002).CrossRefGoogle Scholar
[Yat02b] Yatsenko, L.P., Guerin, S. and Jauslin, H.R.Topology of adiabatic passage”. Phys. Rev. A, 65, 043407 (2002).CrossRefGoogle Scholar
[Yat03] Yatsenko, L.P., Shore, B.W., Vitanov, N.V. and Bergmann, K.Retroreflection-induced bichromatic adiabatic passage”. Phys. Rev. A, 68, 043405 (2003).CrossRefGoogle Scholar
[Yoo85] Yoo, H.I. and Eberly, J.H.Dynamical theory of an atom with two or three levels interacting with quantized cavity fields”. Phys. Rep., 118, 239–337 (1985).CrossRefGoogle Scholar
[Yur77] Yuratich, M.A. and Hanna, D.C.Coherent anti-Stokes Raman spectroscopy (CARS) selection rules, depolarization ratios and rotational structure”. Mol. Phys., 33, 671–682 (1977).CrossRefGoogle Scholar
[Zak85] Zakrzewski, J.Analytic solutions of the two-state problem for a class of chirped pulses”. Phys. Rev. A, 32, 3748–3751 (1985).CrossRefGoogle ScholarPubMed
[Zar88] Zare, R.N.Angular Momentum: Understanding Spatial Aspects in Chemistry and Physics (Wiley, New York, 1988).Google Scholar
[Zen32] Zener, C.Non-adiabatic crossing of energy levels”. Proc. Roy. Soc. (London), A137, 696–699 (1932).Google Scholar
[Zim08] Zimmer, F.E., Otterbach, J., Unanyan, R., Shore, B.W. and Fleischhauer, M.Dark-state polaritons for multi-component and stationary light fields”. Phys. Rev. A, 77, 063823 (2008).CrossRefGoogle Scholar
[Zol87] Zoller, P., Marte, M. and Walls, D.F.Quantum jumps in atomic systems”. Phys. Rev. A, 35, 198–207 (1987).CrossRefGoogle ScholarPubMed
[Zub96] Zubairy, M.S.Quantum state measurement via Autler–Townes spectroscopy”. Phys. Lett. A, 222, 91–96 (1996).CrossRefGoogle Scholar
[Zum87] Zumino, B. “Geometry and Physics”. Technical report, Lawrence Berkeley Lab (1987).
[Zwa90] Zwanziger, J.W., Koenig, M. and Pines, A.Berry's phase”. Ann. Rev. Phys. Chem., 41, 601–646 (1990).CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Bruce W. Shore
  • Book: Manipulating Quantum Structures Using Laser Pulses
  • Online publication: 07 October 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511675713.033
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Bruce W. Shore
  • Book: Manipulating Quantum Structures Using Laser Pulses
  • Online publication: 07 October 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511675713.033
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Bruce W. Shore
  • Book: Manipulating Quantum Structures Using Laser Pulses
  • Online publication: 07 October 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511675713.033
Available formats
×