Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-08T18:32:02.840Z Has data issue: false hasContentIssue false

3 - Beyond binary classification

Published online by Cambridge University Press:  05 November 2012

Peter Flach
Affiliation:
University of Bristol
Get access

Summary

THE PREVIOUS CHAPTER introduced binary classification and associated tasks such as ranking and class probability estimation. In this chapter we will go beyond these basic tasks in a number of ways. Section 3.1 discusses how to handle more than two classes. In Section 3.2 we consider the case of a real-valued target variable. Section 3.3 is devoted to various forms of learning that are either unsupervised or aimed at learning descriptive models.

Handling more than two classes

Certain concepts are fundamentally binary. For instance, the notion of a coverage curve does not easily generalise to more than two classes. We will now consider general issues related to having more than two classes in classification, scoring and class probability estimation. The discussion will address two issues: how to evaluate multi-class performance, and how to build multi-class models out of binary models. The latter is necessary for some models, such as linear classifiers, that are primarily designed to separate two classes. Other models, including decision trees, handle any number of classes quite naturally.

Multi-class classification

Classification tasks with more than two classes are very common. For instance, once a patient has been diagnosed as suffering from a rheumatic disease, the doctor will want to classify him or her further into one of several variants. If we have k classes, performance of a classifier can be assessed using a k-by-k contingency table. Assessing performance is easy if we are interested in the classifier's accuracy, which is still the sum of the descending diagonal of the contingency table, divided by the number of test instances.

Type
Chapter
Information
Machine Learning
The Art and Science of Algorithms that Make Sense of Data
, pp. 81 - 103
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×