Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-17T15:09:18.554Z Has data issue: false hasContentIssue false

Primes and irreducibles in truncation integer parts of real closed fields

Published online by Cambridge University Press:  30 March 2017

Ali Enayat
Affiliation:
American University, Washington DC
Iraj Kalantari
Affiliation:
Western Illinois University
Mojtaba Moniri
Affiliation:
Tarbiat Modares University, Tehran, Iran
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Logic in Tehran , pp. 42 - 64
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[B] A., Berarducci, Factorization in generalized power series,Transactions of the American Mathematical Society, vol. 352 (2000), no. 2, pp. 553–577.Google Scholar
[B-O] A., Berarducci and M., Otero, A recursive nonstandard model of normal open induction,The Journal of Symbolic Logic, vol. 61 (1996), no. 4, pp. 1228–1241.Google Scholar
[Bi] D., Biljakovic, Recursive Models of Open Induction With Infinite Primes, preprint, 1996.
[Bo] S., Boughattas, Résultats optimaux sur l'existence d'une partie entière dans les corps ordonnés,The Journal of Symbolic Logic, vol. 58 (1993), no. 1, pp. 326ndash;333.Google Scholar
[Bo2]S., Boughattas, Trois théorèmes sur l'induction pour les formules ouvertes munies de l'exponentielle,The Journal of Symbolic Logic, vol. 65 (2000), no. 1, pp. 111–154.Google Scholar
[Br] R., Brown, Valued vector spaces of countable dimension,Publicationes Mathematicae Debrecen, vol. 18 (1971), pp. 149–151.Google Scholar
[F] A., Fornasiero, Embedding Henselian fields into power series, submitted (2005) http:// www.dm.unipi.it/~fornasiero/ressayre.pdf.
[G] H., Gonshor, An Introduction to The Theory of Surreal Numbers, Cambridge University Press, Cambridge, 1986.
[KF] F.-V., Kuhlmann, Dense Subfields of Henselian Fields, and Integer Parts, this volume.
[K] S., Kuhlmann, Ordered Exponential Fields, Fields Institute Monographs, vol. 12, American Mathematical Society, Providence, RI, 2000.
[M] M., Moniri, Recursive models of open induction of prescribed finite transcendence degree > 1 with cofinal twin primes, Comptes Rendus de l'Académie des Sciences. Série I. Mathématique, vol. 319 (1994), no. 9, pp. 903–908.Google Scholar
[M-R] M.-H., Mourgues and J. P., Ressayre, Every real closed field has an integer part,The Journal of Symbolic Logic, vol. 58 (1993), no. 2, pp. 641–647.Google Scholar
[P] D., Pitteloud, Existence of prime elements in rings of generalized power series,The Journal of Symbolic Logic, vol. 66 (2001), no. 3, pp. 1206–1216.Google Scholar
[PC] S. Prieß, Crampe, Angeordnete Strukturen. Gruppen, Körper, projektive Ebenen, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 98, Springer-Verlag, Berlin, 1983.
[R] J.-P., Ressayre, Integer parts of real closed exponential fields (extended abstract), Arithmetic, Proof Theory, and Computational Complexity (Prague, 1991) (P., Clote and J., Krajicek, editors), Oxford Logic Guides, vol. 23, Oxford Univ. Press, New York, 1993, pp. 278–288.
[Ri] P., Ribenboim, Théorie des Valuations, vol. 1964, Les Presses de l'Université deMontréal, Montreal, Que., 1968.
[S] J. C., Shepherdson, A non-standard model for a free variable fragment of number theory,Bulletin de l'Académie Polonaise des Sciences. Série des Sciences Mathématiques, Astronomiques et Physiques, vol. XII (1964), pp. 79–86.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×