Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-22T19:58:20.657Z Has data issue: false hasContentIssue false

Bibliography

Published online by Cambridge University Press:  01 July 2019

Hans Halvorson
Affiliation:
Princeton University, New Jersey
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adámek, J., Sobral, M., and Sousa, L. (2006). Morita equivalence of many-sorted algebraic theoriesJournal of Algebra, 297(2):361371.CrossRefGoogle Scholar
Ahlbrandt, G. and Ziegler, M. (1986). Quasi finitely axiomatizable totally categorical theoriesAnnals of Pure and Applied Logic, 30(1):6382.CrossRefGoogle Scholar
Ainsworth, P. M. (2009). Newman’s objectionThe British Journal for the Philosophy of Science, 60(1):135171.CrossRefGoogle Scholar
Andreas, H. (2007). Carnap’s Wissenschaftslogik: Eine Untersuching zur Zweistufenkonzeption. Mentis.CrossRefGoogle Scholar
Andréka, H., Madaraśz, J., and Németi, I. (2008). Defining new universes in many-sorted logic. Mathematical Institute of the Hungarian Academy of Sciences, Budapest, 93.Google Scholar
Andréka, H., Madaraśz, J., and Németi, I. (2005). Mutual definability does not imply definitional equivalence, a simple exampleMathematical Logic Quarterly, 51(6):591597.CrossRefGoogle Scholar
Andréka, H. and Németi, I. (2014). Comparing theories: The dynamics of changing vocabulary. A case-study in relativity theory. In Johan van Benthem on Logic and Information Dynamics. Springer.Google Scholar
Awodey, S. (2010). Category Theory. Oxford University Press.Google Scholar
Awodey, S. and Forssell, H. (2013). First-order logical dualityAnnals of Pure and Applied Logic, 164(3):319348.CrossRefGoogle Scholar
Awodey, S. and Klein, C. (2004). Carnap Brought Home: The View from Jena. Open Court Publishing.Google Scholar
Baker, D. J. (2010). Symmetry and the metaphysics of physicsPhilosophy Compass, 5(12):1157– 1166.CrossRefGoogle Scholar
Barnes, D. W. and Mack, J. M. (1975). An Algebraic Introduction to Mathematical Logic. Springer-Verlag.CrossRefGoogle Scholar
Barrett, T. W. (2015). On the structure of classical mechanicsThe British Journal for the Philosophy of Science, 66(4):801828.CrossRefGoogle Scholar
Barrett, T. W. (2018a). Equivalent and inequivalent formulations of classical mechanics, The British Journal for the Philosophy of Science, https://doi.org/10.1093/bjps/axy017.CrossRefGoogle Scholar
Barrett, T. W. (2018b). What do symmetries tell us about structure? Philosophy of Science, 85(4), 617639.CrossRefGoogle Scholar
Barrett, T. W. and Halvorson, H. (2016a). Glymour and Quine on theoretical equivalenceJournal of Philosophical Logic, 45(5):467483.CrossRefGoogle Scholar
Barrett, T. W. and Halvorson, H. (2016b). Morita equivalenceThe Review of Symbolic Logic, 9(3):556582.CrossRefGoogle Scholar
Barrett, T. W. and Halvorson, H. (2017a). From geometry to conceptual relativityErkenntnis, 82(5):10431063.CrossRefGoogle Scholar
Barrett, T. W. and Halvorson, H. (2017b). Quine’s conjecture on many-sorted logicSynthese, 194(9):35633582.CrossRefGoogle Scholar
Bealer, G. (1978). An inconsistency in functionalismSynthese, 38(3):333372.CrossRefGoogle Scholar
Bell, J. and Machover, M. (1977). A Course in Mathematical Logic. North-Holland.Google Scholar
Belot, G. (1998). Understanding electromagnetismThe British Journal for the Philosophy of Science, 49(4):531555.CrossRefGoogle Scholar
Belot, G. (2017). Fifty million Elvis fans can’t be wrongNoûs, 52(4):946981.CrossRefGoogle Scholar
Ben-Menahem, Y. (2006). Conventionalism: From Poincaré to Quine. Cambridge University Press.CrossRefGoogle Scholar
Beni, M. D. (2015). Structural realism without metaphysics: Notes on Carnap’s measured pragmatic structural realismOrganon F, 22(3):302324.Google Scholar
Beth, E. and Tarski, A. (1956). Equilaterality as the only primitive notion of Euclidean geometryIndagationes Mathematicae, 18:462467.CrossRefGoogle Scholar
Beth, E. W. (1956). On Padoa’s method in the theory of definitionJournal of Symbolic Logic, 21(2):194195.Google Scholar
Bickle, J. (1998). Psychoneural Reduction: The New Wave. MIT Press.Google Scholar
Bickle, J. (2013). Multiple realizability. Stanford Encyclopedia of Philosophy. https://plato.stanford.edu/entries/multiple-realizability/.Google Scholar
Blanchette, P. (2012). The Frege-Hilbert controversy. The Stanford Online Encyclopedia of Philosophy. https://plato.stanford.edu/entries/frege-hilbert/.Google Scholar
Blatti, S. and Lapointe, S. (2016). Ontology after Carnap. Oxford University Press.CrossRefGoogle Scholar
Boolos, G. S., Burgess, J. P., and Jeffrey, R. C. (2002). Computability and Logic. Cambridge University Press.CrossRefGoogle Scholar
Borceux, F. (1994). Handbook of Categorical Algebra. Cambridge University Press.Google Scholar
Bourbaki, N. (1970). Théorie des Ensembles. Hermann.Google Scholar
Breiner, S. (2014). Scheme Representation for First-Order Logic. PhD thesis, Carnegie Mellon University.Google Scholar
Bueno, O. (2010). A defense of second-order logicAxiomathes, 20(2-3):365383.CrossRefGoogle Scholar
Burgess, J. P. (1984). Synthetic mechanicsJournal of Philosophical Logic, 13(4):379395.CrossRefGoogle Scholar
Burgess, J. P. (2005). Fixing Frege. Princeton University Press.CrossRefGoogle Scholar
Button, T. (2013). The Limits of Realism. Oxford University Press.CrossRefGoogle Scholar
Butz, C. and Moerdijk, I. (1998). Representing topoi by topological groupoidsJournal of Pure and Applied Algebra, 130:223235.CrossRefGoogle Scholar
Carnap, R. (1928). Der Logische Aufbau der Welt. Springer Verlag.Google Scholar
Carnap, R. (1934). Logische Syntax der Sprache. Springer.CrossRefGoogle Scholar
Carnap, R. (1935). Philosophy and Logical Syntax. Kegan Paul.Google Scholar
Carnap, R. (1950). Empiricism, semantics, and ontology. Revue Internationale de Philosophie, pages 20–40.Google Scholar
Carnap, R. (1956). The methodological character of theoretical concepts. In The Foundations of Science and the Concepts of Psychology and Psychoanalysis, pages 3876. University of Minnesota Press.Google Scholar
Carnap, R. (1966). Philosophical Foundations of Physics. Basic Books.Google Scholar
Carnap, R. and Schilpp, P. A. (1963). The Philosophy of Rudolf Carnap. Cambridge University Press.Google Scholar
Chalmers, D., Manley, D., and Wasserman, R. (2009). Metametaphysics: New Essays on the Foundations of Ontology. Oxford University Press.CrossRefGoogle Scholar
Coffa, A. (1986). From geometry to tolerance: Sources of conventionalism in nineteenth-century geometry. In Colodny, R., editor, From Quarks to Quasars: Philosophical Problems of Modern Physics, pages 370. University of Pittsburgh Press.CrossRefGoogle Scholar
Coffa, J. A. (1993). The Semantic Tradition from Kant to Carnap: To the Vienna Station. Cambridge University Press.Google Scholar
Cori, R. and Lascar, D. (2000). Mathematical Logic. Oxford University Press.CrossRefGoogle Scholar
Coxeter, H. S. M. (1955). The affine planeScripta Mathematica, 21:514.Google Scholar
Creath, R. and Friedman, M. (2007). The Cambridge Companion to Carnap. Cambridge University Press.Google Scholar
Cruse, P. and Papineau, D. (2002). Scientific realism without reference. In Marsonet, M., editor, The Problem of Realism, pages 174189. Ashgate.Google Scholar
Curiel, E. (2014). Classical mechanics is Lagrangian; it is not HamiltonianThe British Journal for the Philosophy of Science, 65(2):269321.CrossRefGoogle Scholar
Davidson, D. (1970). Mental events. In Foster, L. and Swanson, J. W., editors, Essays on Actions and Events, pages 107119. Clarendon Press.Google Scholar
de Bouvére, K. L. (1965). Synonymous theories. In Symposium on the Theory of Models, pages 402406. North-Holland Publishing Company.Google Scholar
Demopoulos, W. (2013). Logicism and Its Philosophical Legacy. Cambridge University Press.CrossRefGoogle Scholar
Dewar, N. (2017b). Sophistication about symmetries. The British Journal for the Philosophy of Science.Google Scholar
Dewar, N. (2018a). On translating between two logicsAnalysis, 78:622630.CrossRefGoogle Scholar
Dewar, N. (2018b). Supervenience, reduction, and translation. Preprint.Google Scholar
Dewar, N. (2019). Ramsey equivalenceErkenntnis, 84(1):7799.CrossRefGoogle Scholar
Dicken, P. and Lipton, P. (2006). What can Bas believe? Musgrave and van Fraassen on observabilityAnalysis, 66(291):226233.CrossRefGoogle Scholar
Dizadji-Bahmani, F., Frigg, R., and Hartmann, S. (2010). Who’s afraid of Nagelian reduction? Erkenntnis, 73(3):393412.CrossRefGoogle Scholar
Dorr, C. (2014). Quantifier variance and the collapse theoremsThe Monist, 97(4):503570.Google Scholar
Dukarm, J. J. (1988). Morita equivalence of algebraic theoriesColloquium Mathematicae, 55(1):1117.CrossRefGoogle Scholar
Dwinger, P. (1971). Introduction to Boolean Algebras. Physica-Verlag.Google Scholar
Eilenberg, S. and Mac Lane, S. (1942). Group extensions and homologyAnnals of Mathematics, 43(4):757831.CrossRefGoogle Scholar
Eilenberg, S. and Mac Lane, S. (1945). General theory of natural equivalencesTransactions of the American Mathematical Society, 58:231294.CrossRefGoogle Scholar
Engelking, R. (1989). General Topology. Heldermann Verlag.Google Scholar
Feferman, S. (1974). Applications of many-sorted interpolation theorems. In Proceedings of the Tarski Symposium, volume 25, pages 205–223.CrossRefGoogle Scholar
Fewster, C. J. (2015). Locally covariant quantum field theory and the problem of formulating the same physics in all spacetimesPhilosophical Transactions of the Royal Society A, 373(2047):20140238.Google ScholarPubMed
Field, H. (1980). Science without Numbers. Princeton University Press.Google Scholar
Fletcher, S. (2016). Similarity, topology, and physical significance in relativity theoryBritish Journal for the Philosophy of Science, 67(2):365389.CrossRefGoogle Scholar
Freyd, P. (1964). Abelian Categories. Harper and Row.Google Scholar
Friedman, H. M. and Visser, A. (2014). When bi-interpretability implies synonymyLogic Group Preprint Series, 320:119.Google Scholar
Friedman, M. (1982). Review of The Scientific Image Journal of Philosophy, 79(5):274283.Google Scholar
Friedman, M. (1999). Reconsidering Logical Positivism. Cambridge University Press.CrossRefGoogle Scholar
Friedman, M. (2011). Carnap on theoretical terms: Structuralism without metaphysicsSynthese, 180(2):249263.CrossRefGoogle Scholar
Frigg, R. and Votsis, I. (2011). Everything you always wanted to know about structural realism but were afraid to askEuropean Journal for Philosophy of Science, 1(2):227276.CrossRefGoogle Scholar
Gajda, A., Krynicki, M., and Szczerba, L. (1987). A note on syntactical and semantical functionsStudia Logica, 46(2):177185.CrossRefGoogle Scholar
Givant, S. and Halmos, P. (2008). Introduction to Boolean Algebras. Springer.Google Scholar
Glymour, C. (1971). Theoretical realism and theoretical equivalence. In Buck, R. C. and Cohen, R. S., editors, PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association, pages 275288. Springer.Google Scholar
Glymour, C. (1977). The epistemology of geometryNoûs, 11:227251.CrossRefGoogle Scholar
Glymour, C. (1980). Theory and Evidence. Princeton University Press.Google Scholar
Gödel, K. (1929). Über die Vollständigkeit des Logikkalküls. PhD thesis, University of Vienna.Google Scholar
Goldblatt, R. (1987). Orthogonality and Spacetime Geometry. Springer.CrossRefGoogle Scholar
Halmos, P. and Givant, S. (1998). Logic as Algebra. Cambridge University Press.CrossRefGoogle Scholar
Halvorson, H. (2011). Natural structures on state space. Manuscript.Google Scholar
Halvorson, H. (2012). What scientific theories could not bePhilosophy of Science, 79(2): 183206.CrossRefGoogle Scholar
Halvorson, H. (2013). The semantic view, if plausible, is syntacticPhilosophy of Science, 80(3):475478.CrossRefGoogle Scholar
Halvorson, H. (2016). Scientific theories. In Humphreys, P., editor, The Oxford Handbook of the Philosophy of Science. Oxford University Press.Google Scholar
Harnik, V. (2011). Model theory vs. categorical logic: Two approaches to pretopos completion (aka T eq ). In Hart, B., editor, Models, Logics, and Higher-Dimensional Categories, page 79. American Mathematical Society.CrossRefGoogle Scholar
Hawthorne, J. P. (2006). Plenitude, convention, and ontology. In Metaphysical Essays, pages 53– 70. Oxford University Press.CrossRefGoogle Scholar
Healey, R. (2007). Gauging What’s Real: The Conceptual Foundations of Contemporary Gauge Theories. Oxford University Press.CrossRefGoogle Scholar
Hellman, G. (1985). Determination and logical truthThe Journal of Philosophy, 82(11):607616.CrossRefGoogle Scholar
Hellman, G. P. and Thompson, F. W. (1975). Physicalism: Ontology, determination, and reductionThe Journal of Philosophy, 72(17):551564.CrossRefGoogle Scholar
Herrlich, H. (2006). Axiom of Choice. Springer.Google Scholar
Herrlich, H. and Keremedis, K. (2000). The Baire category theorem and choiceTopology and Its Applications, 108(2):157167.CrossRefGoogle Scholar
Hilbert, D. (1930). Grundlagen der Geometrie. Teubner.Google Scholar
Hirsch, E. (2011). Quantifier Variance and Realism: Essays in Metaontology. Oxford University Press.CrossRefGoogle Scholar
Hirsch, E. and Warren, J. (2017). Quantifier variance and the demand for a semantics. Philosophy and Phenomenological Research.Google Scholar
Hodges, W. (1993). Model Theory. Cambridge University Press.CrossRefGoogle Scholar
Hudetz, L. (2018a). Definable categorical equivalencePhilosophy of Science, 2019 86(1): 4775.CrossRefGoogle Scholar
Hudetz, L. (2018b). The Logic of Scientific Theories. PhD thesis, University of Salzburg.Google Scholar
Hudson, R. (2010). Carnap, the principle of tolerance, and empiricismPhilosophy of Science, 77(3):341358.CrossRefGoogle Scholar
Hylton, P. (2007). Quine. Routledge.CrossRefGoogle Scholar
Johnstone, P. T. (1986). Stone Spaces. Cambridge University Press.Google Scholar
Johnstone, P. T. (2003). Sketches of an Elephant: A Topos Theory Compendium. Oxford University Press.Google Scholar
Kanger, S. (1968). Equivalent theoriesTheoria, 34(1):16.CrossRefGoogle Scholar
Keisler, H. J. (2010). The ultraproduct construction. www.math.wisc.edu/keisler/ultraproducts-web-final.pdf.CrossRefGoogle Scholar
Ketland, J. (2004). Empirical adequacy and RamsificationThe British Journal for the Philosophy of Science, 55(2):287300.CrossRefGoogle Scholar
Kleene, S. C. (1952). Introduction to Metamathematics. van Nostrand.Google Scholar
Knox, E. (2014). Newtonian spacetime structure in light of the equivalence principleThe British Journal for the Philosophy of Science, 65(4):863880.CrossRefGoogle Scholar
Koppelberg, S. (1989). General theory of Boolean algebras. In Monk, J. and Bonnet, R., editors, Handbook of Boolean Algebras, volume 3. North-Holland.Google Scholar
Kuratowski, K. (1966). Topology. Academic Press.Google Scholar
Ladyman, J. (2014). Structural realism. Stanford Online Encyclopedia of Philosophy. https://plato.stanford.edu/entries/structural-realism/.Google Scholar
Lawvere, F. W. (1964). An elementary theory of the category of setsProceedings of the National Academy of Sciences, 52(6):15061511.CrossRefGoogle ScholarPubMed
Lawvere, F. W. and Rosebrugh, R. (2003). Sets for Mathematics. Cambridge University Press.CrossRefGoogle Scholar
Leinster, T. (2014). Rethinking set theoryAmerican Mathematical Monthly, 121(5):403415.CrossRefGoogle Scholar
Leitgeb, H. (2011). Logic in general philosophy of science: Old things and new thingsSynthese, 179(2):339350.CrossRefGoogle Scholar
Lewis, D. (1966). An argument for the identity theoryThe Journal of Philosophy, 63(1):1725.CrossRefGoogle Scholar
Lewis, D. (1970). How to define theoretical termsThe Journal of Philosophy, 67(13):427446.CrossRefGoogle Scholar
Lewis, D. (1972). Psychophysical and theoretical identificationsAustralasian Journal of Philosophy, 50(3):249258.CrossRefGoogle Scholar
Lewis, D. (1984). Putnam’s paradoxAustralasian Journal of Philosophy, 62(3):221236.CrossRefGoogle Scholar
Lewis, D. (1994). Reduction of mind. In Guttenplan, S., editor, Companion to the Philosophy of Mind, 412431. Blackwell.Google Scholar
Lloyd, E. (1984). A Semantic Approach to the Structure of Evolutionary Theory. PhD thesis, Princeton University.Google Scholar
Love, A. C. and Hüttemann, A. (2016). Reduction. In Humphreys, P., editor, The Oxford Handbook of Philosophy of Science. Oxford University Press.Google Scholar
Mac Lane, S. (1948). Groups, categories and dualityProceedings of the National Academy of Sciences, 34(6):263267.CrossRefGoogle Scholar
Mac Lane, S. (1971). Categories for the Working Mathematician. Springer.CrossRefGoogle Scholar
Makkai, M. (1985). Ultraproducts and categorical logic. In Methods in Mathematical Logic, pages 222309. Springer.CrossRefGoogle Scholar
Makkai, M. (1987). Stone duality for first order logicAdvances in Mathematics, 65(2):97170.CrossRefGoogle Scholar
Makkai, M. (1991). Duality and Definability in First Order Logic. American Mathematical Society.Google Scholar
Makkai, M. (1995). First order logic with dependent sorts with applications to category theory. www.math.mcgill.ca/makkai/folds/foldsinpdf/FOLDS.pdf.Google Scholar
Makkai, M. and Reyes, G. E. (1977). First Order Categorical Logic. Springer.CrossRefGoogle Scholar
Manes, E. G. (1976). Algebraic Theories. Springer.CrossRefGoogle Scholar
Manzano, M. (1993). Introduction to many-sorted logic. In Meinke, K. and Tucker, J., editors, Many-Sorted Logic and Its Applications, pages 386. Wiley.Google Scholar
Manzano, M. (1996). Extensions of First-Order Logic. Cambridge University Press.Google Scholar
Marker, D. (2006). Model Theory: An Introduction. Springer.Google Scholar
Maxwell, G. (1962). The ontological status of theoretical entities. In Feigl, H. and Maxwell, G., editors, Scientific Explanation, Space, and Time, pages 327. University of Minnesota Press.Google Scholar
McLaughlin, B. and Bennett, K. (2018). Supervenience. Stanford Online Encyclopedia of Philosophy. https://plato.stanford.edu/entries/supervenience/.Google Scholar
McSweeney, M. (2016a). An epistemic account of metaphysical equivalencePhilosophical Perspectives, 30(1):270293.CrossRefGoogle Scholar
McSweeney, M. (2016b). The Metaphysical Basis of Logic. PhD thesis, Princeton University.Google Scholar
Melia, J. and Saatsi, J. (2006). Ramseyfication and theoretical contentThe British Journal for the Philosophy of Science, 57(3):561585.CrossRefGoogle Scholar
Menzies, P. and Price, H. (2009). Is semantics in the plan? In Braddon-Mitchell, D. and Nola, R., editors, Conceptual Analysis and Philosophical Naturalism, pages 159182. MIT Press.Google Scholar
Mere, M. C. and Veloso, P. (1992). On extensions by sortsMonografias em Ciências da Computaçao, DI, PUC-Rio, 38:92.Google Scholar
Moerdijk, I. and Vermeulen, J. (1999). Proof of a conjecture of A. PittsJournal of Pure and Applied Algebra, 143(1-3):329338.CrossRefGoogle Scholar
Monk, J. D. (2014). The mathematics of Boolean algebras. https://plato.stanford.edu/entries/boolalg-math/.Google Scholar
Munkres, J. R. (2000). Topology. Prentice Hall.Google Scholar
Myers, D. (1997). An interpretive isomorphism between binary and ternary relations. In Structures in Logic and Computer Science, pages 84105. Springer.CrossRefGoogle Scholar
Nagel, E. (1935). The logic of reduction in the sciencesErkenntnis, 5(1):4652.CrossRefGoogle Scholar
Nagel, E. (1961). The Structure of Science. Harcourt, Brace, and World, Inc.CrossRefGoogle Scholar
Nestruev, J. (2002). Smooth Manifolds and Observables. Springer.Google Scholar
Newman, M. H. (1928). Mr. Russell’s “causal theory of perception”Mind, 37(146):137148.CrossRefGoogle Scholar
North, J. (2009). The “structure” of physics: A case studyThe Journal of Philosophy, 106:5788.CrossRefGoogle Scholar
Park, W. (2012). Friedman on implicit definition: In search of the Hilbertian heritage in philosophy of scienceErkenntnis, 76(3):427442.CrossRefGoogle Scholar
Pearce, D. (1985). Translation, reduction and equivalence. Peter Lang, Frankfurt.Google Scholar
Pelletier, F. J. and Urquhart, A. (2003). Synonymous logicsJournal of Philosophical Logic, 32(3):259285.CrossRefGoogle Scholar
Petrie, B. (1987). Global supervenience and reductionPhilosophy and Phenomenological Research, 48(1):119130.CrossRefGoogle Scholar
Pinter, C. C. (1978). Properties preserved under definitional equivalence and interpretationsMathematical Logic Quarterly, 24(31-36):481488.CrossRefGoogle Scholar
Poizat, B. (2012). A Course in Model Theory. Springer.Google Scholar
Price, H. (2009). Metaphysics after Carnap: The ghost who walks. In Chalmers, D., Manley, D., and Wasserman, R., editors, Metametaphysics: New Essays on the Foundations of Ontology, pages 320346. Oxford University Press.CrossRefGoogle Scholar
Psillos, S. (2000). Carnap, the Ramsey-sentence and realistic empiricismErkenntnis, 52(2): 253279.CrossRefGoogle Scholar
Psillos, S. (2006). Ramsey’s Ramsey-sentences. In Galavotti, M., editor, Cambridge and Vienna: Vienna Circle Institute Yearbook, pages 6790. Springer.CrossRefGoogle Scholar
Putnam, H. (1962). What theories are not. In Nagel, E., Suppes, P., and Tarski, A., editors, Logic, Methodology and Philosophy of Science: Proceedings of the 1960 International Congress, pages 240251. Stanford University Press.Google Scholar
Putnam, H. (1977). Realism and reason. In Proceedings and Addresses of the American Philosophical Association, volume 50, pages 483–498.CrossRefGoogle Scholar
Putnam, H. (1980). Models and realityThe Journal of Symbolic Logic, 45(3):464482.CrossRefGoogle Scholar
Putnam, H. (1992). Renewing Philosophy. Harvard University Press.CrossRefGoogle Scholar
Putnam, H. (2001). Reply to Jennifer CaseRevue Internationale de Philosophie, 4(218).Google Scholar
Quine, W. V. (1937). New foundations for mathematical logic. American Mathematical Monthly, pages 70–80.CrossRefGoogle Scholar
Quine, W. V. (1938). On the theory of typesThe Journal of Symbolic Logic, 3(04):125139.CrossRefGoogle Scholar
Quine, W. V. (1951a). On Carnap’s views on ontologyPhilosophical Studies, 2(5):6572.CrossRefGoogle Scholar
Quine, W. V. (1951b). Two dogmas of empiricismThe Philosophical Review, 60:2043.CrossRefGoogle Scholar
Quine, W. V. (1956). Unification of universes in set theoryThe Journal of Symbolic Logic, 21(03):267279.CrossRefGoogle Scholar
Quine, W. V. (1960). Word and Object. MIT.Google Scholar
Quine, W. V. (1963). Set Theory and Its Logic. Harvard University Press.CrossRefGoogle Scholar
Quine, W. V. (1964). Implicit definition sustainedThe Journal of Philosophy, 61(2):7174.CrossRefGoogle Scholar
Quine, W. V. (1975). On empirically equivalent systems of the worldErkenntnis, 9(3):313328.CrossRefGoogle Scholar
Quine, W. V. (1976). The Ways of Paradox, and Other Essays. Harvard University Press.Google Scholar
Quine, W. V. and Goodman, N. (1940). Elimination of extra-logical postulatesThe Journal of Symbolic Logic, 5(3):104109.CrossRefGoogle Scholar
Ramsey, F. P. (1929). Theories. In F.P. Ramsey Philosophical Papers. Cambridge University Press.Google Scholar
Rasiowa, H. and Sikorski, R. (1950). A proof of the completeness theorem of GödelFundamenta Mathematicae, 37(1):193200.CrossRefGoogle Scholar
Rasiowa, H. and Sikorski, R. (1963). The Mathematics of Metamathematics. Państwow Wydaawnictwo Naukowe.Google Scholar
Restall, G. (2002). An Introduction to Substructural Logics. Routledge.CrossRefGoogle Scholar
Ribes, L. and Zalesskii, P. (2000). Profinite Groups. Springer.CrossRefGoogle Scholar
Rieffel, M. A. (1974). Morita equivalence for C  -algebras and W  -algebrasJournal of Pure and Applied Algebra, 5:5196.CrossRefGoogle Scholar
Robinson, R. (1959). Binary relations as primitive notions in elementary geometry. In Henkin, L., Suppes, P., and Tarski, A., editors, The Axiomatic Method with Special Reference to Geometry and Physics, pages 6885. North-Holland.Google Scholar
Rooduijn, J. (2015). Translating theories. Bachelor’s Thesis, Universiteit Utrecht.Google Scholar
Rosenstock, S., Barrett, T. W., and Weatherall, J. O. (2015). On Einstein algebras and relativistic spacetimesStudies in History and Philosophy of Modern Physics, 52:309316.CrossRefGoogle Scholar
Rosenstock, S. and Weatherall, J. O. (2016). A categorical equivalence between generalized holonomy maps on a connected manifold and principal connections on bundles over that manifoldJournal of Mathematical Physics, 57(10):102902.CrossRefGoogle Scholar
Royden, H. L. (1959). Remarks on primitive notions for elementary Euclidean and non-Euclidean plane geometry. In Henkin, L., Suppes, P., and Tarski, A., editors, The Axiomatic Method with Special Reference to Geometry and Physics, pages 8696. North-Holland.Google Scholar
Russell, B. (1901). Mathematics and the metaphysicians. In Mysticism and Logic, pages 5774. Dover.Google Scholar
Russell, B. (1914a). Logic as the essence of philosophy. In Our Knowledge of the External World, pages 2648. Routledge.Google Scholar
Russell, B. (1914b). On the scientific method in philosophy. In Mysticism and Logic, pages 7596. Dover.Google Scholar
Sarkar, S. (2015). Nagel on reductionStudies in History and Philosophy of Science, 53:4356.CrossRefGoogle ScholarPubMed
Scheibe, E. (2013). Die Reduktion physikalischer Theorien: Ein Beitrag zur Einheit der Physik. Springer-Verlag.Google Scholar
Schlick, M. (1918). Allgemeine Erkenntnislehre. Springer.Google Scholar
Schmidt, A. (1951). Die Zulässigkeit der Behandlung mehrsortiger Theorien mittels der üblichen einsortigen PrädikatenlogikMathematische Annalen, 123(1):187200.CrossRefGoogle Scholar
Schwabhäuser, W. and Szczerba, L. (1975). Relations on lines as primitive notions for Euclidean geometryFundamenta Mathematicae, 82(4):347355.CrossRefGoogle Scholar
Schwabhäuser, W., Szmielew, W., and Tarski, A. (1983). Metamathematische Methoden in der Geometrie. Springer.CrossRefGoogle Scholar
Scott, D. (1956). A symmetric primitive notion for Euclidean geometryIndagationes Mathematicae, 18:457461.Google Scholar
Shapiro, S. (1991). Foundations without foundationalism: A case for second-order logic. Clarendon Press.Google Scholar
Shoemaker, S. (1981). Some varieties of functionalismPhilosophical Topics, 12(1):93119.CrossRefGoogle Scholar
Sider, T. (2009). Ontological realism. In Chalmers, D., Manley, D., and Wasserman, R., editors, Metametaphysics, pages 384423. Oxford University Press.CrossRefGoogle Scholar
Sider, T. (2013). Writing the Book of the World. Oxford University Press.Google Scholar
Sikorski, R. (1969). Boolean Algebras. Springer.CrossRefGoogle Scholar
Soames, S. (2014). The Analytic Tradition in Philosophy. Princeton University Press.Google Scholar
Suppe, F. (1974). The Structure of Scientific Theories. University of Illinois Press, Urbana, Illinois.Google Scholar
Suppe, F. (1989). The Semantic Conception of Theories and Scientific Realism. University of Illinois Press.Google Scholar
Suppe, F. (2000). Understanding scientific theories: An assessment of developments, 1969-1998. Philosophy of Science, pages S102–S115.CrossRefGoogle Scholar
Svenonius, L. (1959). A theorem on permutations in modelsTheoria, 25(3):173178.CrossRefGoogle Scholar
Swanson, N. and Halvorson, H. (2012). On North’s “The structure of physics”. Manuscript.Google Scholar
Szczerba, L. (1977). Interpretability of elementary theories. In Logic, Foundations of Mathematics, and Computability Theory, pages 129145. Springer.CrossRefGoogle Scholar
Szczerba, L. (1986). Tarski and geometryThe Journal of Symbolic Logic, 51(4).CrossRefGoogle Scholar
Szczerba, L. and Tarski, A. (1979). Metamathematical discussion of some affine geometriesFundamenta Mathematicae, 104(3):155192.CrossRefGoogle Scholar
Tarski, A. (1929). Les fondements de la géométrie des corps. Ksiega Pamiatkowa Pierwszego Polskiego Zjazdu Matematycznego, pages 29–33.Google Scholar
Tarski, A. (1956). A general theorem concerning primitive notions of Euclidean geometryIndagationes Mathematicae, 18:468474.CrossRefGoogle Scholar
Tarski, A. (1959). What is elementary geometry? In Henkin, L., Suppes, P., and Tarski, A., editors, The Axiomatic Method with Special Reference to Geometry and Physics, pages 1629. North-Holland.Google Scholar
Tennant, N. (1985). Beth’s theorem and reductionismPacific Philosophical Quarterly, 66(3-4):342354.CrossRefGoogle Scholar
Tennant, N. (2015). Introducing Philosophy: God, Mind, World, and Logic. Routledge.CrossRefGoogle Scholar
Tsementzis, D. (2017a). First-order logic with isomorphism. https://arxiv.org/abs/1603.03092.Google Scholar
Tsementzis, D (2017b). A syntactic characterization of Morita equivalenceJournal of Symbolic Logic, 82(4):11811198.CrossRefGoogle Scholar
Tuomela, R. (1973). Theoretical Concepts. Springer.CrossRefGoogle Scholar
Turner, J. (2010). Ontological pluralismThe Journal of Philosophy, 107(1):534.CrossRefGoogle Scholar
Turner, J. (2012). Logic and ontological pluralismJournal of Philosophical Logic, 41(2): 419448.CrossRefGoogle Scholar
Uebel, T. (2011). Carnap’s ramseyfications defendedEuropean Journal for Philosophy of Science, 1(1):7187.CrossRefGoogle Scholar
van Benthem, J. (1982). The logical study of scienceSynthese, 51(3):431472.CrossRefGoogle Scholar
van Benthem, J. and Pearce, D. (1984). A mathematical characterization of interpretation between theoriesStudia Logica, 43(3):295303.CrossRefGoogle Scholar
van Fraassen, B. (1976). To save the phenomenaThe Journal of Philosophy, 73(18):623632.CrossRefGoogle Scholar
van Fraassen, B. (1980). The Scientific Image. Oxford University Press.CrossRefGoogle Scholar
van Fraassen, B. (1989). Laws and Symmetry. Oxford University Press.CrossRefGoogle Scholar
van Fraassen, B. (1997). Putnam’s paradox: Metaphysical realism revamped and evadedNoûs, 31(s11):1742.CrossRefGoogle Scholar
van Fraassen, B. (2008). Scientific Representation: Paradoxes of Perspective. Oxford University Press.CrossRefGoogle Scholar
van Fraassen, B. (2011). Logic and the philosophy of scienceJournal of the Indian Council of Philosophical Research, 27:4566.Google Scholar
van Inwagen, P. (2009). Being, existence, and ontological commitment. In Chalmers, D., Manley, D., and Wasserman, R., editors, Metametaphysics, pages 472506. Oxford University Press.CrossRefGoogle Scholar
van Oosten, J. (2002). Basic category theory. www.staff.science.uu.nl/~ooste110/syllabi/catsmoeder.pdf.Google Scholar
van Riel, R. and van Gulick, R. (2014). Scientific reduction. Stanford Encyclopedia of Philosophy. https://plato.stanford.edu/entries/scientific-reduction/.Google Scholar
Veblen, O. and Young, J. W. (1918). Projective Geometry, volume 2. Ginn and Company.Google Scholar
Visser, A. (2006). Categories of theories and interpretations. In Logic in Tehran. Proceedings of the Workshop and Conference on Logic, Algebra and Arithmetic , Held October 18–22, 2003. ASL.Google Scholar
Warren, J. (2014). Quantifier variance and the collapse argumentThe Philosophical Quarterly, 65(259):241253.CrossRefGoogle Scholar
Washington, E. (2018). On the equivalence of logical theories. Bachelor’s Thesis, Princeton University.Google Scholar
Weatherall, J. O. (2016a). Are Newtonian gravitation and geometrized Newtonian gravitation theoretically equivalent? Erkenntnis, 81(5):10731091.CrossRefGoogle Scholar
Weatherall, J. O. (2016b). Regarding the “hole argument”. The British Journal for the Philosophy of Science, pages 1–22.Google Scholar
Weatherall, J. O. (2016c). Understanding gaugePhilosophy of Science, 83(5):10391049.CrossRefGoogle Scholar
Weatherall, J. O. (2018). Categories and the foundations of classical field theories. In Landry, E., editor, Categories for the Working Philosopher. Oxford University Press.Google Scholar
Willard, S. (1970). General Topology. Dover.Google Scholar
Winnie, J. A. (1967). The implicit definition of theoretical termsThe British Journal for the Philosophy of Science, 18(3):223229.CrossRefGoogle Scholar
Winnie, J. A. (1986). Invariants and objectivity: A theory with applications to relativity and geometry. In Colodny, R., editor, From Quarks to Quasars. University of Pittsburgh Press.Google Scholar
Worrall, J. (1989). Structural realism: The best of both worlds? Dialectica, 43(1-2):99124.CrossRefGoogle Scholar
Worrall, J. and Zahar, E. (2001). Ramseyfication and structural realism. In Poincaré’s Philosophy, pages 236251. Open Court.Google Scholar
Zahar, E. (2004). Ramseyfication and structural realismTheoria. Revista de Teoría, Historia y Fundamentos de la Ciencia, 19(1):530.Google Scholar
Zawadowski, M. W. (1995). Descent and dualityAnnals of Pure and Applied Logic, 71(2): 131188.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Bibliography
  • Hans Halvorson, Princeton University, New Jersey
  • Book: The Logic in Philosophy of Science
  • Online publication: 01 July 2019
  • Chapter DOI: https://doi.org/10.1017/9781316275603.011
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Bibliography
  • Hans Halvorson, Princeton University, New Jersey
  • Book: The Logic in Philosophy of Science
  • Online publication: 01 July 2019
  • Chapter DOI: https://doi.org/10.1017/9781316275603.011
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Bibliography
  • Hans Halvorson, Princeton University, New Jersey
  • Book: The Logic in Philosophy of Science
  • Online publication: 01 July 2019
  • Chapter DOI: https://doi.org/10.1017/9781316275603.011
Available formats
×