Book contents
- Frontmatter
- Contents
- Introduction
- Speakers and Titles
- Decorated linear order types and the theory of concatenation
- Cardinal preserving elementary embeddings
- Proof interpretations and majorizability
- Proof mining in practice
- Cardinal structure under AD
- Three lectures on automatic structures
- Pillay's conjecture and its solution—a survey
- Proof theory and meaning: On the context of deducibility
- Bounded super real closed rings
- Analytic combinatorics of the transfinite: A unifying Tauberian perspective
- References
Three lectures on automatic structures
Published online by Cambridge University Press: 01 March 2011
- Frontmatter
- Contents
- Introduction
- Speakers and Titles
- Decorated linear order types and the theory of concatenation
- Cardinal preserving elementary embeddings
- Proof interpretations and majorizability
- Proof mining in practice
- Cardinal structure under AD
- Three lectures on automatic structures
- Pillay's conjecture and its solution—a survey
- Proof theory and meaning: On the context of deducibility
- Bounded super real closed rings
- Analytic combinatorics of the transfinite: A unifying Tauberian perspective
- References
Summary
Preface. This paper grew out of three tutorial lectures on automatic structures given at the Logic Colloquium 2007 in Wrocław (Poland). The paper will follow the outline of the tutorial lectures, supplementing some material along the way. We discuss variants of automatic structures related to several models of computation: word automata, tree automata, Büchi automata, and Rabin automata. Word automata process finite strings, tree automata process finite labeled trees, Büchi automata process infinite strings, and Rabin automata process infinite binary labeled trees. Finite automata are the most commonly known in the general computer science community. An automaton of this type reads finite input strings from left to right, making state transitions along the way. Depending on its last state after processing a given string, the automaton either accepts or rejects the input string. Automatic structures are mathematical objects which can be represented by (word, tree, Büchi, or Rabin) automata. The study of properties of automatic structures is a relatively new and very active area of research.
We begin with some motivation and history for studying automatic structures. We introduce definitions of automatic structures, present examples, and discuss decidability and definability theorems. Next, we concentrate on finding natural isomorphism invariants for classes of automatic structures. These classes include well-founded partial orders, Boolean algebras, linear orders, trees, and finitely generated groups. Finally, we address the issue of complexity for automatic structures.
- Type
- Chapter
- Information
- Logic Colloquium 2007 , pp. 132 - 176Publisher: Cambridge University PressPrint publication year: 2010
References
- 17
- Cited by