Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-06T02:06:32.506Z Has data issue: false hasContentIssue false

9 - Patterns of head shape variation in lizards: morphological correlates of foraging mode

Published online by Cambridge University Press:  04 August 2010

Lance D. McBrayer
Affiliation:
Department of Biology Georgia Southern University
Clay E. Corbin
Affiliation:
Department of Biological and Allied Health Sciences Bloomsburg University
Stephen M. Reilly
Affiliation:
Ohio University
Lance B. McBrayer
Affiliation:
Georgia Southern University
Donald B. Miles
Affiliation:
Ohio University
Get access

Summary

Introduction

The relationship between cranial morphology, diet, and feeding performance has been explored in most vertebrate classes. In fact, key biomechanical elements and regions of the skull are known to be associated with various prey types in a wide range of species (Radinsky, 1981; Kiltie, 1982; Lauder, 1991; Zweers et al., 1994; Perez-Barberia and Gordon, 1999). Numerous examples in teleosts have linked form, function, and diet (Lauder, 1991; Turingan et al., 1995; Wainwright, 1996); in birds, beak morphology and lever mechanics have been correlated with various dietary patterns (Beecher, 1962; James, 1982; Barbosa and Moreno, 1999). In mammals, the rostrum (snout) often becomes narrower and incisor tooth structure changes as dietary selectivity increases (Radinsky, 1981; Solounias, 1988; Gordon and Illius, 1994; Biknevicius, 1996).

In lizards (non-ophidian squamates), there are relatively few quantitative and comparative studies relating diet to skull morphology, especially with regard to foraging modes (McBrayer, 2004). Classic works provide descriptions of lizard skull and muscle morphology (see, for example, Haas, 1973; Gomes, 1974). Some functional morphological studies have detailed particularly interesting forms such as the outgroup to lizards, Sphenodon (Gorniak et al., 1982), durophagous species (Wineski and Gans, 1984; Gans et al., 1985; Gans and De Vree, 1986, 1987), carnivorous species (Smith, 1982, 1984; Throckmorton and Saubert, 1982), ovophagous species (Herrel et al., 1997b), and herbivorous species (Throckmorton, 1976, 1978, 1980; Herrel and De Vree, 1999; Herrel et al., 1999a).

Type
Chapter
Information
Lizard Ecology , pp. 271 - 301
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arnold, S. J. (1983). Morphology, performance and fitness. Am. Zool. 23, 347–61.CrossRefGoogle Scholar
Arnold, E. N. (1991). Relationships of the South African lizards assigned to Aporosaura, Meroles, and Pedioplanis (Reptilian: Lacertidae)J. Nat. Hist. 25, 783–807.CrossRefGoogle Scholar
Arnold, E. N. (1998). Cranial kinesis in lizards: variations, uses, and origins. Evol. Biol. 30, 323–57.Google Scholar
Barbosa, A., and Moreno, E. (1999). Evolution of foraging strategies in shorebirds: an ecomorphological approach. Auk 116, 712–25.Google Scholar
Beecher, W. J. (1962). The bio-mechanics of the bird skull. Bull. Chic. Acad. Sci. 11, 10–33.Google Scholar
Biknevicius, A. R. (1996). Functional discrimination in the masticatory apparatus of juvenile and adult cougars (Puma concolor) and spotted hyenas (Crocuta crocuta). Can. J. Zool. 74, 1934–42.CrossRefGoogle Scholar
Bock, W. J. (1994). Concepts and methods in ecomorphology. J. Biosci. 19, 403–13.CrossRefGoogle Scholar
Bock, W. J. and Wahlert, G. (1965). Adaptation and the form-function complex. Evolution 19, 269–99.CrossRefGoogle Scholar
Breiman, L., Friedman, J., Olshen, R. and Stone, C. (1984). Classification and Regression Trees. Pacific Grove, CA: Wadsworth Publishing.Google Scholar
Condon, K. (1987). A kinematic analysis of mesokinesis in the Nile monitor (Varanus niloticus). J. Exp. Biol. 47, 73–87.Google Scholar
Colless, D. H. (1980). Congruence between morphometric and allozyme data for Menidia species: a reappraisal. Syst. Zool. 29, 288–99.CrossRefGoogle Scholar
Cooper, W. E. Jr. (1994a). Chemical discrimination by tongue-flicking in lizards: A review with hypotheses on its origin and its ecological and phylogenetic relationships. J. Chem. Ecol. 20, 439–87.CrossRefGoogle Scholar
Cooper, W. E. Jr. (1994b). Prey chemical discrimination, foraging mode, and phylogeny. In Lizard Ecology: Historical and Experimental Perspectives, ed. Vitt, L. J. and Pianka, E. R., pp. 97–116. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
Cooper, W. E. Jr. (1995a). Evolution and function of lingual shape in lizards, with emphasis on elongation, extensibility, and chemical sampling. J. Chem. Ecol. 21, 477–505.CrossRefGoogle Scholar
Cooper, W. E. Jr. (1995b). Foraging mode, prey chemical discrimination, and phylogeny in lizards. Anim. Behav. 50, 973–85.CrossRefGoogle Scholar
Cooper, W. E. Jr. (1997). Correlated evolution of prey chemical discrimination with foraging, lingual morphology and vomeronasal chemoreceptor abundance in lizards. Behav. Ecol. Sociobiol. 41, 257–65.CrossRefGoogle Scholar
Cooper, W. E. Jr., Whiting, M. J. and Wyk, J. H. (1997). Foraging modes of cordyliform lizards. S. Afr. J. Zool. 32, 9–13.CrossRefGoogle Scholar
Costanzo, R. A. and Bauer, A. M. (1993). Diet and activity of Mabuya acutilabris (Reptilia: Scincidae) in Namibia. Herpetol. J. 3, 130–5.Google Scholar
Vree, F. and Gans, C. (1987.) Kinetic movements in the skull of adult Trachydosaurus rugosus. An. Hist. Emb. 16, 206–9.Google Scholar
Druzinsky, R. E. and Greaves, W. S. (1979). A model to explain the posterior limit of the bite point in reptiles. J. Morphol. 160, 165–8.CrossRefGoogle ScholarPubMed
Dunham, A. E., Miles, D. B. and Reznick, D. N. (1988). Life history patterns in squamate reptiles. In Biology of the Reptilia, vol. 16, ed. Gans, C. and Huey, R., pp. 441–519. New York: A. R. Liss.Google Scholar
Emerson, S. (1985). Skull shape in frogs – correlations with diet. Herpetologica 41, 177–88.Google Scholar
Estes, R., de Queiroz, K. and Gauthier, J. (1988) Phylogenetic relationships within Squamata. In Phylogenetic Relationships of the Lizard Families: Essays Commemorating Charles L. Camp, ed. Estes, R. and Pregill, G., pp. 119–281. Stanford: Stanford University Press.Google Scholar
Frazzetta, T. (1983). Adaptation and function of cranial kinesis in reptiles: a time-motion analysis of feeding in alligator lizards. In Advances in Herpetology and Evolutionary Biology, ed. Rhodin, A. and Miyata, K., pp. 222–44. Cambridge: Harvard University Museum of Comparative Zoology.Google Scholar
Gans, C. and Vree, F. (1986). Shingle-back lizards crush snail shells using temporal summation (tetanus) to increase the force of the adductor muscles. Experientia 42, 387–9.CrossRefGoogle Scholar
Gans, C. and Vree, F. (1987). Functional bases of fiber length and angulation in muscle. J. Morphol. 192, 63–85.CrossRefGoogle ScholarPubMed
Gans, C., Vree, F. and Carrier, D. (1985). Usage pattern of the complex masticatory muscles in the shingleback lizard, Trachydosaurus rugosus: a model for muscle placement. Amer. J. Anat. 173, 219–40.CrossRefGoogle ScholarPubMed
Gomes, N. M. B. (1974). Antomie comparée de la musculature trigeminale des lacertiliens. Mem. Mus. Nat. Hist. Nat. A90, 1–107.Google Scholar
Gordon, I. and Illius, A. (1994). The functional significance of the browser-grazer dichotomy in African ruminants. Oecologia 98, 167–75.CrossRefGoogle ScholarPubMed
Gorniak, G. C., Rosenberg, H. I. and Gans, C. (1982). Mastication in the tuatara, Sphenodon punctatus (Reptilia: Rhynchocephalia): structure and activity of the motor system. J. Morphol. 171, 321–53.CrossRefGoogle Scholar
Greaves, W. S. (1988). The maximum average bite force for a given jaw length. J. Zool. Lond. 214, 295–306.CrossRefGoogle Scholar
Haas, G. (1973). Muscles of the jaws and associated structure in the Rynchocephalia and Squamata. In Biology of the Reptilia, ed. Gans, C. and Parsons, T., pp. 285–490. London: Academic Press.Google Scholar
Herrel, A. and Vree, F. (1999). Kinematics of intraoral transport and swallowing in the herbivorous lizard Uromastix acanthinurus. J. Exp. Biol. 202, 1127–37.Google ScholarPubMed
Herrel, A., Aerts, P. and Vree, F. (2000). Cranial kinesis in geckoes: Functional implications. J. Exp. Biol. 203, 1415–23.Google ScholarPubMed
Herrel, A., Aerts, P., Fret, J. and Vree, F. (1999a). Morphology of the feeding system in agamid lizards: ecological correlates. Anat. Rec. 254, 496–507.3.0.CO;2-Q>CrossRefGoogle Scholar
Herrel, A., Cleuren, J. and Vree, F. (1997a). Quantitative analysis of jaw and hyolingual muscle activity during feeding in the lizard Agama stellio. J. Exp. Biol. 200, 101–115.Google Scholar
Herrel, A., Grauw, E. and Lemos-Espinal, J. A. (2001a). Head shape and bite performance in xenosaurid lizards. J. Exp. Zool. 290, 101–7.CrossRefGoogle Scholar
Herrel, A., Vree, F., Delheusy, V. and Gans, C. (1999b). Cranial kinesis in gekkonid lizards. J. Exp. Biol. 202, 387–98.Google Scholar
Herrel, A., Meyers, J., Nishikawa, K. and Vree, F. (2001b). The evolution of feeding motor patterns in lizards: modulatory complexity and possible constraints. Amer. Zool. 41, 1311–20.Google Scholar
Herrel, A., Spithoven, L., Damme, R. and Vree, F. (1999c). Sexual dimorphism of head size in Gallotia galloti: Testing the niche divergence hypothesis by functional analyses. Funct. Ecol. 13, 289–97.CrossRefGoogle Scholar
Herrel, A., Damme, R., Vanhooydonck, B. and Vree, F. (2001c). The implications of bite performance for diet in two species of lacertid lizards. Can. J. Zool. 79, 662–70.CrossRefGoogle Scholar
Herrel, A., Wauters, I., Aerts, P. and Vree, F. (1997b). The mechanics of ovophagy in the beaded lizards (Heloderma horridum). J. Herpetol. 31, 383–393.CrossRefGoogle Scholar
Huey, R. and Pianka, E. R. (1981). Ecological consequences of foraging mode. Ecology 62, 991–9.CrossRefGoogle Scholar
Iordansky, N. (1990). Evolution of cranial kinesis in lower tetrapods. Neth. J. Zool. 40, 32–54.CrossRefGoogle Scholar
Iordansky, N. (1996). The temporal ligaments and their bearing on cranial kinesis in lizards. J. Zool. Lond. 239, 167–75.CrossRefGoogle Scholar
James, F. (1982). The ecological morphology of birds: a review. Ann. Zool. Fenn. 19, 265–75.Google Scholar
Kerels, T. J., Bryant, A. A. and Hick, D. S. (2004). Comparison of discriminant functions and classification tree analyses for age classification of marmots. Oikos 105, 575–87.CrossRefGoogle Scholar
Kiltie, R. A. (1982). Bite force as a basis for niche differentiation between rain forest peccaries (Tayassu tajacu and T. pecari). Biotropica 14, 188–95.CrossRefGoogle Scholar
Lang, M. (1991). Generic relationships within Cordyliformes (Reptilia: Squamata). Biologie 61, 121–88.Google Scholar
Lauder, G. (1991). Biomechanics and evolution: integrating physical and historical biology in the study of complex systems. In Biomechanics in Evolution, ed. Rayner, J. and Wootton, R., pp. 1–19. Cambridge: Cambridge University Press.Google Scholar
Lee, M. S. Y. (1998). Convergent evolution and character correlation in burrowing reptiles: towards a resolution of squamate relationships. Biol. J. Linn. Soc. 65, 369–453.CrossRefGoogle Scholar
Maddison, D. R. and Maddison, W. P. (2003). MacClade 4: Analysis of Phylogeny and Character Evolution. Version 4.06. Sunderland, MA: Sinauer Associates.Google Scholar
Maddison, W. P. and Maddison, D. R. (2004). Mesquite: A Modular System for Evolutionary Analysis. Version 1.05. http://mesquiteproject.org.
Marriog, G. and Cheverud, J. M. (2005). Size as a line of least evolutionary resistance: diet and adaptive morphological radiation in new world monkeys. Evolution 59, 1128–42.CrossRefGoogle Scholar
McBrayer, L. D. (2004). The relationship between skull morphology, biting performance and foraging mode in Kalahari lacertid lizards. Zool. J. Linn. Soc. 140, 403–16.CrossRefGoogle Scholar
McBrayer, L. D. and White, T. D. (2002). Bite force, behavior, and electromyography in the teiid lizard, Tupinambis teguixin. Copeia 2002, 111–19.CrossRefGoogle Scholar
Metzger, K. (2002). Cranial kinesis in lepidosaurs: skulls in motion. In Topics in Functional and Ecological Vertebrate Morphology, ed. Aerts, P., D'Aout, K., Herrel, A. and Damme, R., pp. 15–46. Maastricht, The Netherlands: Shaker Publishing.Google Scholar
Mosimann, J. E. and James, F. C. (1979). New statistical methods for allometry with application to Florida red-winged blackbirds. Evolution 33, 444–59.CrossRefGoogle ScholarPubMed
MVSP (2000). Multivariate Statistical Package, Version 3.11f. Anglesey, Wales: Kovach Computing Services.
Patchell, F. C. and Shine, R. (1986). Feeding mechanisms in pygopodid lizards: how can Lialis swallow such large prey?J. Herpetol. 20, 59–64.CrossRefGoogle Scholar
Perez-Barberia, F. J. and Gordon, I. J. (1999). The functional relationship between feeding type and jaw and cranial morphology in ungulates. Oecologia 118, 157–65.Google ScholarPubMed
Perry, G., Lampl, I., Lerner, A.et al. (1990). Foraging mode in lacertid lizards: variation and correlates. Amph.-Rept. 11, 373–84.CrossRefGoogle Scholar
Perry, G. (1999). The evolution of search modes: ecological versus phylogenetic perspectives. Am. Nat. 153, 98–109.CrossRefGoogle ScholarPubMed
Pianka, E. R. (1981). Resource acquisition and allocation among animals. In Physiological Ecology: An Evolutionary Approach to Resource Use, ed. Townsend, C. and Calow, P., pp. 300–14. Sunderland: Sinauer Associates.Google Scholar
Pianka, E. R. (1986). Ecology and Natural History of Desert Lizards: Analyses of the Ecological Niche and Community Structure. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
Pianka, E. R. and Vitt, L. J. (2003). Lizards: Windows to the Evolution of Diversity. Berkeley, CA: University of California Press.Google Scholar
Preest, M. R. (1994). Sexual size dimorphism and feeding energetics in Anolis carolinensis: why do females take smaller prey than males?J. Herpetol. 28, 292–8.CrossRefGoogle Scholar
Radinsky, L. (1981). Evolution of skull shape in carnivores. 1. Representative modern carnivores. Biol. J. Linn. Soc. 15, 369–88.CrossRefGoogle Scholar
Rieppel, O. (1978). Streptostyly and muscle function in lizards. Experientia 34, 776–7.CrossRefGoogle Scholar
Ricklefs, R. E. and Travis, J. (1980). A morphological approach to the study of avian community organization. Auk 97, 321–38.Google Scholar
SAS Institute (2001). SAS. Version 8.02. Cary, NC: SAS Institute.
Schulte, J. A., Valladares, J. P. and Larson, A. (2003). Phylogenetic relationships within Iguanidae inferred using molecular and morphological data and a phylogenetic taxonomy of iguanian lizards. Herpetologica 59, 399–419.CrossRefGoogle Scholar
Schluter, D. (1996). Adaptive radiation along genetic lines of least resistance. Evolution 50, 1766–74.CrossRefGoogle ScholarPubMed
Schwenk, K. (1994). Why snakes have forked tongues. Science 263, 1573–7.CrossRefGoogle ScholarPubMed
Schwenk, K. (1995). Of tongues and noses: chemoreception in lizards and snakes. Trends Ecol. Evol. 10, 7–12.CrossRefGoogle ScholarPubMed
Schwenk, K. (2000). Feeding in lepidosaurs. In Feeding, ed. Schwenk, K., pp. 175–291. San Diego, CA: Academic Press.Google Scholar
Schwenk, K. and Throckmorton, G. S. (1989). Functional and evolutionary morphology of lingual feeding in squamate reptiles: phylogenetics and kinematics. J. Zool. Lond. 219, 153–75.CrossRefGoogle Scholar
Smith, K. K. (1980). Mechanical significance of streptostyly in lizards. Nature 283, 778–9.CrossRefGoogle Scholar
Smith, K. K. (1982). An electromyographic study of the function of jaw adducting muscle in Varanus exanthematicus (Varanidae). J. Morphol. 173, 137–58.CrossRefGoogle Scholar
Smith, K. K. (1984). The use of the tongue and hyoid apparatus during feeding in lizards (Ctenosaura similis and Tupinambis nigropunctatus). J. Zool. Lond. 202, 115–3.CrossRefGoogle Scholar
Smith, K. K. and Hylander, W. L. (1985). Strain gauge measurement of mesokinetic movement in the lizard Varanus exanthematicus. J. Exp. Biol. 114, 53–70.Google ScholarPubMed
Solounias, N. S. (1988). Interpreting the diet of extinct ruminants: the case of a non-browsing giraffid. Paleobiology 14, 287–300.CrossRefGoogle Scholar
Stayton, C. T. (2005). Morphological evolution of the lizard skull: a geometric morphometrics survey. J. Morphol. 263, 47–59.CrossRefGoogle ScholarPubMed
Steinberg, D. and Colla, P. (1977). CART – Classification and Regression Trees. San Diego, CA: Salford Systems.Google Scholar
Swofford, D. L. (2002). PAUP∗ Version 4.0: Phylogenetic Analysis Using Parsimony. Sunderland, MA: Sinauer Associates.Google Scholar
Throckmorton, G. S. (1976). Oral food processing in two herbivorous lizards, Iguana iguana (Iguanidae) and Uromastix aegyptius (Agamidae). J. Morphol. 148, 363–90.CrossRefGoogle Scholar
Throckmorton, G. S. (1978). Action of the pterygoideus muscle during feeding in the lizard Uromastix aegyptius (Agamidae). Anat. Rec. 190, 217–22.CrossRefGoogle Scholar
Throckmorton, G. S. (1980). The chewing cycle in the herbivorous lizard Uromastix aegyptius (Agamidae). Arch. Oral Biol. 25, 225–33.CrossRefGoogle Scholar
Throckmorton, G. S. and Saubert, C. W. (1982). Histochemical properties of some jaw muscles of the lizard Tupinambis nigropunctatus (Teiidae). J. Morphol. 203, 345–52.Google Scholar
Townsend, T. M., Larson, A., Louis, E. and Macey, J. R. (2004). Molecular phylogenetics of squamata: the position of snakes, amphisbaenians, and dibamids, and the root of the squamate tree. Syst. Biol. 53, 735–57.CrossRefGoogle ScholarPubMed
Turingan, R. G., Wainwright, P. C. and Hensley, D. A. (1995). Interpopulation variation in prey use and feeding biomechanics in Caribbean triggerfishes. Oecologia 102, 296–304.CrossRefGoogle ScholarPubMed
Vitt, L. J., Pianka, E. R., Cooper, W. E. and Schwenk, K. (2003). History and global ecology of squamate reptiles. Am. Nat. 162, 44–60.CrossRefGoogle ScholarPubMed
Wagner, G. P. and Schwenk, K. (2000). Evolutionarily stable configurations: functional integration and the evolution of phenotypic stability. In Evolutionary Biology, vol. 31, ed. Hecht, M., pp. 155–217. New York: Kluwer Academic/Plenum.CrossRefGoogle Scholar
Wainwright, P. C. (1996). Ecological explanation through functional morphology: the feeding biology of sunfishes. Ecology 77, 1336–43.CrossRefGoogle Scholar
Werner, Y. L., Okada, S., Ota, H., Perry, G. and Tonkunaga, S. (1997). Varied and fluctuating foraging modes in nocturnal lizards of the family Gekkonidae. As. Herpetol. Res. 7, 153–65.Google Scholar
Wineski, L. E. and Gans, C. (1984). Morphological basis of the feeding mechanics in the shingleback lizard Trachydosaurus rugosus (Scincidae, Reptilia). J. Morphol. 181, 271–95.CrossRefGoogle Scholar
Zweers, G. A., Berkhoudt, H. and Vanden Berge, J. C. (1994). Behavioral mechanisms of avian feeding. In Advances in Comparative and Environmental Physiology, vol. 18, ed. Bels, V. L., Chardon, M. and Vandewalle, P., pp. 241–79. Berlin: Springer-Verlag.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×