Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-09T06:37:52.709Z Has data issue: false hasContentIssue false

5 - Feeding ecology in the natural world

Published online by Cambridge University Press:  04 August 2010

Laurie J. Vitt
Affiliation:
Sam Noble Oklahoma Museum of Natural History and Zoology Department University of Oklahoma
Eric R. Pianka
Affiliation:
Section of Integrative Biology School of Biological Sciences University of Texas at Austin
Stephen M. Reilly
Affiliation:
Ohio University
Lance B. McBrayer
Affiliation:
Georgia Southern University
Donald B. Miles
Affiliation:
Ohio University
Get access

Summary

Introduction

Foraging mode, originally defined on the basis of clear differences in behaviors used to find and capture prey (MacArthur and Pianka, 1966; Pianka, 1966; Schoener, 1971) has become a central paradigm in lizard ecology (see, for example, Huey and Pianka, 1981; Vitt and Congdon, 1978; Cooper, 1994a, b, 1995a, b; Perry, 1999; Perry and Pianka, 1997; Perry et al., 1990). Sit-and-wait (often referred to as “ambush”) foragers pursue prey detected visually from short distances, often returning to the same perch after capturing a prey item. Wide (often referred to as “active”) foragers move through the environment in search of prey that are often hidden, using a combination of visual and chemical cues to locate and discriminate prey. Trade-offs between energy invested in capture versus search for these two foraging modes are key elements of optimal foraging theory (MacArthur and Pianka, 1966; Charnov, 1976; Kamil, 1983). Identification of this foraging dichotomy has stimulated lizard research in many areas, including ecology, behavior, life histories, and physiology, to mention a few.

The foraging mode paradigm is much more complex than previously envisioned, as evidenced by research presented in other chapters in this book. For example, what appeared to be a sharp historical separation of foraging modes (see, for example, Pianka and Vitt, 2003; Vitt et al., 2003) is replete with exceptions embedded in major clades, suggesting either loss of or multiple origins of traits often linked to foraging mode (see, for example, Cooper, 1997; Cooper et al., 1997).

Type
Chapter
Information
Lizard Ecology , pp. 141 - 172
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, G. J., Heever, C. and Lazenby, S. L. (2001). Thermal dependence of appetite and digestive rate in the flat lizard, Platysaurus intermedius wilhelmi. J. Herpetol. 35, 461–6.CrossRefGoogle Scholar
Anderson, R. A. and Karasov, W. H. (1981). Contrasts in energy intake and expenditure in sit-and-wait and widely foraging lizards. Oecologia 49, 67–72.CrossRefGoogle ScholarPubMed
Anderson, R. A. and Vitt, L. J. (1990). Sexual selection versus alternative causes of sexual dimorphism in teiid lizards. Oecologia 84, 145–57.CrossRefGoogle ScholarPubMed
Anderson, S. C. (1999). The Lizards of Iran. Ithaca, NY: Society for the Study of Amphibians and Reptiles.Google Scholar
Auffenberg, W. (1978). Social feeding behavior in Varanus komodoensis. In Behavior and Neurology of Lizards, ed. Greenberg, N. and MacLean, P. D., pp. 301–31. Poolesville, MD: National Institute of Mental Health.Google Scholar
Auffenberg, W. (1981). The Behavioral Ecology of the Komodo dragon. Gainesville, FL: University of Florida Press.Google Scholar
Autumn, K. and DeNardo, D. F. (1995). Behavioral thermoregulation increases growth rate in a nocturnal lizard. J. Herpetol. 29, 157–62.CrossRefGoogle Scholar
Autumn, K., Jindrich, D., DeNardo, D. F. and Mueller, R. (1999). Locomotor performance at low temperature and the evolution of nocturnality in geckos. Evolution 53, 580–99.CrossRefGoogle ScholarPubMed
Avery, R. A. (1981). Feeding ecology of the nocturnal gecko Hemidactylus brookii in Ghana. Amph.-Rept. 1, 269–76.CrossRefGoogle Scholar
Ayers, D. Y. and Shine, R. (1997). Thermal influences on foraging ability: body size, posture and cooling rate of an ambush predator, the python Morelia spilota. Funct. Ecol. 11, 342–7.CrossRefGoogle Scholar
Ballinger, R. E. and Holscher, V. L. (1980). Assimilation efficiency and nutritive state in the striped plateau lizard, Sceloporus virgatus (Sauria: Iguanidae). Copeia 1980, 838–9.Google Scholar
Beaupre, S. J., Dunham, A. E. and Overall, K. L. (1993). The effects of consumption rate and temperature on apparent digestibility coefficient, urate production, metabolizable energy coefficient and passage time in canyon lizards (Sceloporus merriami) from two populations. Funct. Ecol. 7, 273–80.CrossRefGoogle Scholar
Beck, D. D. (1990). Ecology and behavior of the gila monster in southwestern Utah. J. Herpetol. 24, 54–68.CrossRefGoogle Scholar
Beck, D. D. and Lowe, C. H. (1991). Ecology of the beaded lizard, Heloderma horridum, in a tropical dry forest in Jalisco, Mexico. J. Herpetol. 25, 395–406.CrossRefGoogle Scholar
Blum, M. S. (1981). Chemical Defenses of Arthropods. New York: Academic Press.Google Scholar
Charnov, E. L. (1976). Optimal foraging: the marginal value theorem. Theor. Pop. Biol. 9, 129–36.CrossRefGoogle ScholarPubMed
Clarke, B. C. and Nicolson, S. W. (1994). Water, energy, and electrolyte balance in captive Namib sand-dune lizards (Angolosaurus skoogi). Copeia 1994, 962–74.CrossRefGoogle Scholar
Cooper, W. E. Jr. (1994a). Prey chemical discrimination, foraging mode, and phylogeny. In Lizard Ecology: Historical and Experimental Perspectives, ed. Vitt, L. J. and Pianka, E. R., pp. 95–116. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
Cooper, W. E. Jr. (1994b). Chemical discrimination by tongue-flicking in lizards: a review with hypotheses on its origin and its ecological and phylogenetic relationships. J. Chem. Ecol. 20, 439–87.CrossRefGoogle Scholar
Cooper, W. E. Jr. (1995a). Foraging mode, prey chemical discrimination, and phylogeny in lizards. Anim. Behav. 50, 973–85.CrossRefGoogle Scholar
Cooper, W. E. Jr. (1995b). Prey chemical discrimination and foraging mode in gekkonoid lizards. Herp. Monogr. 9, 120–9.CrossRefGoogle Scholar
Cooper, W. E. Jr. (1997). Independent evolution of squamate olfaction and vomerolfaction and correlated evolution of vomerolfaction and lingual structure. Amph.-Rept. 18, 85–105.CrossRefGoogle Scholar
Cooper, W. E. Jr. and Hartdegen, R. (1999). Discriminative response to animal, but not plant, chemicals by an insectivorous, actively foraging lizard, Scincella lateralis, and differential response to surface and internal prey cues. J. Chem. Ecol. 25, 1531–41.CrossRefGoogle Scholar
Cooper, W. E. Jr. and Vitt, L. J. (2002). Distribution, extent, and evolution of plant consumption by lizards. J. Zool. Lond. 257, 487–517.CrossRefGoogle Scholar
Cooper, W. E. Jr., Caldwell, J. P., Vitt, L. J., Pérez-Mellado, V. and Baird, T. A. (2002a). Food chemical discriminations and correlated evolution between plant diet and plant chemical discrimination in lacertiform lizards. Can. J. Zool. 80, 655–63.CrossRefGoogle Scholar
Cooper, W. E. Jr., Pérez-Mellado, V., Vitt, L. J. and Budzinsky, B. (2002b). Behavioral responses to plant toxins by the omnivorous Balearic lizard, Podarcis lilfordi. Physiol. Behav. 76, 297–303.CrossRefGoogle Scholar
Cooper, W. E. Jr., Whiting, M. J. and Wyk, J. H. V. (1997). Foraging modes of cordyliform lizards. S. Afr. J. Zool. 32, 9–13.CrossRefGoogle Scholar
Cundall, D. and Greene, H. W. (2000). Feeding in snakes. In Feeding, ed. Schwenk, K., pp. 293–333. San Diego: Academic Press.Google Scholar
Queiroz, A., Pough, F. H., Andrews, R. M. and Collazo, A. (1987). Thermal dependence of prey-handling costs for the scincid lizard, Chalcides ocellatus. Physiol. Zool. 60, 492–8.CrossRefGoogle Scholar
Doughty, P. and Shine, R. (1995). Life in two dimensions: natural history of the southern leaf-tailed gecko, Phyllurus platurus. Herpetologica 51, 193–201.Google Scholar
Dunham, A. E. (1980). An experimental study of interspecific competition between the iguanid lizards Sceloporus merriami and Urosaurus ornatus. Ecol. Monogr. 50, 304–30.CrossRefGoogle Scholar
Durtsche, R. D. (2000). Ontogenetic plasticity of food habits in the Mexican spiny-tailed iguana, Ctenosaura pectinata. Oecologia (Berlin) 124, 185–95.CrossRefGoogle ScholarPubMed
Durtsche, R. D., Gier, P. J., Fuller, M. M.et al. (1997). Ontogenetic variation in the autecology of the greater earless lizard Cophosaurus texanus. Ecography 20, 336–46.CrossRefGoogle Scholar
Espinoza, R. E., Wiens, J. J. and Tracy, C. R. (2004). Recurrent evolution of herbivory in small, cold-climate lizards: breaking the ecophysiological rules of reptilian herbivory. Proc. Natl. Acad. Sci. USA 101, 16819–24.CrossRefGoogle ScholarPubMed
Ferguson, G. W., Gehrmann, W. H., Karsten, K. B.et al. (2003). Do panther chameleons bask to regulate endogenous vitamin d3 production? Physiol. Biochem. Zool. 76, 52–9.CrossRefGoogle ScholarPubMed
Frost, D. R. (1992). Phylogenetic analysis and taxonomy of the Tropidurus group of lizards (Iguania: Tropiduridae). Amer. Mus. Novit. 3033, 1–68.Google Scholar
Giannini, N. P. (2003). Canonical phylogenetic ordination. Syst. Biol. 52, 684–95.CrossRefGoogle ScholarPubMed
Gotelli, N. J. and Entsminger, G. L. (2004). EcoSim: Null Models Software for Ecology. Version 7. Burlington, VT: Acquired Intelligence Inc. & Kesey-Bear.Google Scholar
Greene, H. W. (1997). Snakes: the Evolution of Mystery in Nature. Berkeley, CA: University of California Press.Google Scholar
Greenwald, O. E. (1971). Thermal dependence of striking and prey capture by gopher snakes. Copeia 1971, 141–8.Google Scholar
Harlow, H. J., Hillman, S. S. and Hoffman, M. (1976). The effect of temperature on digestive efficiency in the herbivorous lizard, Dipsosaurus dorsalis. J. Comp. Physiol. B. 111, 1–6.CrossRefGoogle Scholar
Harwood, R. H. (1979). The effect of temperature on the digestive efficiency of three species of lizards, Cnemidophorus tigris, Gerrhonotus multicarinatus and Sceloporus occidentalis. Comp. Biochem. Physiol. 63A, 417–33.CrossRefGoogle Scholar
Howland, J. M., Vitt, L. J. and Lopez, P. T. (1990). Life on the edge: the ecology and life history of the tropidurine iguanid lizard Uranoscodon superciliosum. Can. J. Zool. 68, 1366–73.CrossRefGoogle Scholar
Huey, R. B. (1982). Temperature, physiology, and the ecology of reptiles. In Biology of the Reptilia, vol. 12. Physiology C, ed. Gans, C. and Pough, F. H., pp. 25–91. New York: Academic Press.Google Scholar
Huey, R. B. and Pianka, E. R. (1981). Ecological consequences of foraging mode. Ecology 62, 991–9.CrossRefGoogle Scholar
Huey, R. B., Pianka, E. R., Egan, M. E. and Coons, L. W. (1974). Ecological shifts in sympatry: Kalahari fossorial lizards (Typhlosaurus). Ecology 55, 304–16.CrossRefGoogle Scholar
Huey, R. B., Niewiarowski, P. H., Kaufmann, J. and Herron, J. C. (1989). Thermal biology of nocturnal ectotherms: is sprint performance of geckos maximal at low body temperatures? Physiol. Zool. 62, 488–504.CrossRefGoogle Scholar
Huey, R. B., Pianka, E. R. and Vitt, L. J. (2001). How often do lizards “run on empty?”Ecology 82, 1–7.Google Scholar
Iverson, J. B. (1979). Behavior and ecology of the rock iguana Cyclura carinata. Bull. Florida State Mus. Biol. Sci. 24, 175–358.Google Scholar
Iverson, J. B. (1982). Adaptations to herbivory in iguanine lizards. In Iguanas of the World, ed. Burghardt, G. M. and Rand, A. S., pp. 60–76. Park Ridge, NJ: Noyes Publications.Google Scholar
Ivlev, V. S. (1961). Experimental Feeding Ecology of Fishes. New Haven, CT: Yale University Press.Google Scholar
Jackman, T. R., Larson, A., Queiroz, K. and Losos, J. B. (1999). Phylogenetic relationships and tempo of early diversification in Anolis lizards. Syst. Biol. 48, 254–85.CrossRefGoogle Scholar
Kamil, A. C. (1983). Optimal foraging theory and the psychology of learning. Amer. Zool. 23, 291–302.CrossRefGoogle Scholar
Kaufmann, R. and Pough, F. H. (1982). The effect of temperature upon the efficiency of assimilation of preformed water by the desert iguana, Dipsosaurus dorsalis. Comp. Biochem. Physiol. 72A, 221–4.CrossRefGoogle Scholar
Kearney, M. and Predavec, M. (2000). Do nocturnal ectotherms thermoregulate? A study of the temperate gecko Christinus marmoratus. Ecology 81, 2984–96.CrossRefGoogle Scholar
Losos, J. B. (1992). The evolution of convergent structure in Caribbean Anolis communities. Syst. Biol. 41, 403–20.CrossRefGoogle Scholar
Losos, J. B. (1994). Historical contingency and lizard community ecology. In Lizard Ecology: Historical and Experimental Perspectives, ed. Vitt, L. J. and Pianka, E. R., pp. 319–33. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
Losos, J. B. (1996). Phylogenetic perspectives on community ecology. Ecology 77, 1344–54.CrossRefGoogle Scholar
Losos, J. B., Warheit, K. I. and Schoener, T. W. (1997). Adaptive differentiation following experimental island colonization in Anolis lizards. Nature 387, 70–3.CrossRefGoogle Scholar
MacArthur, R. H. and Pianka, E. R. (1966). On optimal use of a patchy environment. Amer. Nat. 100, 603–9.CrossRefGoogle Scholar
Mautz, W. J. and Nagy, K. A. (1987). Ontogenetic changes in diet, field metabolic rate, and water flux in the herbivorous lizard Dipsosaurus dorsalis. Physiol. Zool. 60, 640–58.CrossRefGoogle Scholar
McBrayer, L. D. and Reilly, S. M. (2002). Prey processing in lizards: behavioral variation in sit-and-wait and widely foraging taxa. Can. J. Zool. 80, 882–92.CrossRefGoogle Scholar
Miranda, J. P. and Andrade, G. V. (2003). Seasonality in diet, perch use, and reproduction in the gecko Gonatodes humeralis from eastern Brazilian Amazon. J. Herpetol. 37, 433–8.CrossRefGoogle Scholar
Montanucci, R. R. (1989). The relationship of morphology to diet in the horned lizard genus Phrynosoma. Herpetologica 45, 208–16.Google Scholar
Nussear, K. E., Espinoza, R. E., Gubbins, C. M., Field, K. J. and Hayes, J. P. (1998). Diet quality does not affect resting metabolic rate or body temperatures selected by an herbivorous lizard. J. Comp. Physiol. B 168, 183–9.CrossRefGoogle Scholar
Ostrom, J. H. (1963). Further comments on herbivorous lizards. Evolution 17, 368–9.CrossRefGoogle Scholar
Parker, W. S. and Pianka, E. R. (1974). Further ecological observations on the western banded gecko, Coleonyx variegatus. Copeia 1974, 528–31.CrossRefGoogle Scholar
Perry, G. (1999). The evolution of search modes: ecological versus phylogenetic perspectives. Am. Nat. 153, 99–109.CrossRefGoogle ScholarPubMed
Perry, G. and Pianka, E. R. (1997). Animal foraging: past, present, and future. Trends Ecol. Evol. 12, 360–4.CrossRefGoogle Scholar
Perry, G., Lampl, I., Lerner, A.et al. (1990). Foraging mode in lacertid lizards: variation and correlates. Amph.-Rept. 11, 373–84.CrossRefGoogle Scholar
Pianka, E. R. (1966). Convexity, desert lizards and spatial heterogeneity. Ecology 47, 1055–9.CrossRefGoogle Scholar
Pianka, E. R. (1969). Sympatry of desert lizards (Ctenotus) in western Australia. Ecology 50, 1012–30.CrossRefGoogle Scholar
Pianka, E. R. (1970). Comparative autecology of the lizard Cnemidophorus tigris in different parts of its geographic range. Ecology 51, 703–20.CrossRefGoogle Scholar
Pianka, E. R. (1971). Comparative ecology of two lizards. Copeia 1971, 129–38.CrossRefGoogle Scholar
Pianka, E. R. (1973). The structure of lizard communities. Ann. Rev. Ecol. Syst. 4, 53–74.CrossRefGoogle Scholar
Pianka, E. R. (1986). Ecology and Natural History of Desert Lizards. Analyses of the Ecological Niche and Community Structure. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
Pianka, E. R. (1994). Comparative ecology of Varanus in the Great Victoria desert. Australian J. Ecol. 19, 395–408.CrossRefGoogle Scholar
Pianka, E. R. and Huey, R. B. (1978). Comparative ecology, niche segregation, and resource utilization among gekkonid lizards in the southern Kalahari. Copeia 1978, 691–701.CrossRefGoogle Scholar
Pianka, E. R. and King, D. R., eds. (2004). Varanoid Lizards of the World. Bloomington, Indiana University Press.CrossRefGoogle Scholar
Pianka, E. R. and Parker, W. S. (1975). Ecology of horned lizards: A review with special reference to Phrynosoma platyrhinos. Copeia 1975, 141–62.CrossRefGoogle Scholar
Pianka, E. R. and Pianka, H. D. (1970). The ecology of Moloch horridus (Lacertilia: Agamidae) in Western Australia. Copeia 1970, 90–103.CrossRefGoogle Scholar
Pianka, E. R. and Pianka, H. D. (1976). Comparative ecology of twelve species of nocturnal lizards (Gekkonidae) in the Western Australian desert. Copeia 1976, 125–42.CrossRefGoogle Scholar
Pianka, E. R. and Vitt, L. J. (2003). Lizards: Windows to the Evolution of Diversity. Berkeley, CA: University of California Press.Google Scholar
Pianka, G. A., Pianka, E. R. and Thompson, G. G. (1998). Natural history of thorny devils Moloch horridus (Lacertilia: Agamidae) in the Great Victoria Desert. J. Roy. Soc. West. Australia 81, 183–90.Google Scholar
Rocha, C. F. D. (1996). Seasonal shift in lizard diet: the seasonality in food resources affecting the diet of Liolaemus lutzae (Tropiduridae). Ciênc. Cult. 48, 264–9.Google Scholar
Schoener, T. W. (1971). Theory of feeding strategies. Ann. Rev. Ecol. Syst. 2, 369–404.CrossRefGoogle Scholar
Schwenk, K. (1995). Of tongues and noses: chemoreception in lizards and snakes. Trends Ecol. Evol. 10, 7–12.CrossRefGoogle ScholarPubMed
Schwenk, K. (2000a). Tetrapod feeding in the context of vertebrate morphology. In Feeding, ed. Schwenk, K., pp. 3–20. San Diego, CA: Academic Press.Google Scholar
Schwenk, K. (2000b). Feeding in lepidosaurs. In Feeding, ed. Schwenk, K., pp. 175–291. San Diego: Academic Press.Google Scholar
Sexton, O. J., Bauman, J. and Ortleb, E. (1972). Seasonal food habits of Anolis limifrons. Ecology 53, 182–6.CrossRefGoogle Scholar
Sherbrooke, W. C. (1981). Horned lizards: unique reptiles of western North America. Southwest Parks and Monuments Association.Google Scholar
Sherbrooke, W. C. (2003). Introduction to Horned Lizards of North America. Berkeley: University of California Press.CrossRefGoogle Scholar
Shine, R. (1986). Food habits, habitats and reproductive biology of four sympatric species of varanid lizards in tropical Australia. Herpetologica 42, 346–60.Google Scholar
Spotila, J. R. and Standora, E. A. (1985). Energy budgets of ectothermic vertebrates. Amer. Zool. 25, 973–86.CrossRefGoogle Scholar
Braak, C. J. F. and Smilauer, P. (2002). CANOCO Reference Manual and User's Guide to Canoco for Windows: Software for Canonical Community Ordination (version 4.5). Ithaca, NY: Microcomputer Power (USA).Google Scholar
Townsend, T. M., Larson, A., Louis, E. and Macey, J. R. (2004). Molecular phylogenetics of Squamata: the position of snakes, amphisbaenians, and dibamids, and the root of the squamate tree. Syst. Biol. 33, 735–57.CrossRefGoogle Scholar
Troyer, K. (1984). Structure and function of the digestive tract of a herbivorous lizard Iguana iguana. Physiol. Zool. 57, 1–8.CrossRefGoogle Scholar
Troyer, K. (1987). Small differences in daytime body temperature affect digestion of natural food in a herbivorous lizard (Iguana iguana). Comp. Biochem. Physiol. A87, 623–6.CrossRefGoogle Scholar
Marken Lichtenbelt, W. D. (1992). Digestion in an ectothermic herbivore, the green iguana (Iguana iguana): effect of food composition on body temperature. Physiol. Zool. 65, 649–73.CrossRefGoogle Scholar
Marken Lichtenbelt, W. D. and Wesselingh, R. A. (1993). Energy budgets in free-living green iguanas in a seasonal environment. Ecology 74, 1157–72.CrossRefGoogle Scholar
Wyk, J. H. (2000). Seasonal variation in stomach contents and diet composition in the large girdled lizard, Cordylus giganteus (Reptilia: Cordylidae) in the Highveld grasslands of the northeastern Free State, South Africa. African Zool. 35, 9–27.Google Scholar
Vitt, L. J. (1991). Desert reptile communities. In The Ecology of Desert Communities, ed. Polis, G. A., pp. 250–76. Tucson, AZ: University of Arizona Press.Google Scholar
Vitt, L. J. (1995). The ecology of tropical lizards in the Caatinga of northeast Brazil. Occ. Pap. Oklahoma Mus. Nat. Hist. 1, 1–29.Google Scholar
Vitt, L. J. (2004). Shifting paradigms: herbivory and body size in lizards. Proc. Natl. Acad. Sci. USA 101, 16713–14.CrossRefGoogle ScholarPubMed
Vitt, L. J. and Colli, G. R. (1994). Geographical ecology of a neotropical lizard: Ameiva ameiva (Teiidae) in Brazil. Can. J. Zool. 72, 1986–2008.CrossRefGoogle Scholar
Vitt, L. J. and Congdon, J. D. (1978). Body shape, reproductive effort, and relative clutch mass in lizards: resolution of a paradox. Am. Nat. 112, 595–608.CrossRefGoogle Scholar
Vitt, L. J. and Cooper, W. E. Jr. (1986). Foraging and diet of a diurnal predator (Eumeces laticeps) feeding on hidden prey. J. Herpetol. 20, 408–15.CrossRefGoogle Scholar
Vitt, L. J. and Pianka, E. R. (2004). Historical patterns in lizard ecology: what teiids can tell us about lacertids. In The Biology of Lacertids. Evolutionary and Ecological Perspectives, ed. Perez-Mellado, V., Riera, N. and Perera, A., Recerca 8, pp. 139–57. Menorca. Spain: Institut Menorquí d'Estudis.Google Scholar
Vitt, L. J. and Pianka, E. R. (2005). Deep history impacts present-day ecology and biodiversity. Proc. Natl. Acad. Sci. USA 102, 7877–81.CrossRefGoogle ScholarPubMed
Vitt, L. J. and Zani, P. A. (1996a). Ecology of the elusive tropical lizard Tropidurus [= Uracentron] flaviceps (Tropiduridae) in lowland rain forest of Ecuador. Herpetologica 52, 121–32.Google Scholar
Vitt, L. J. and Zani, P. A. (1996b). Organization of a taxonomically diverse lizard assemblage in Amazonian Ecuador. Can. J. Zool. 74, 1313–35.CrossRefGoogle Scholar
Vitt, L. J. and Zani, P. A. (1997). Ecology of the nocturnal lizard Thecadactylus rapicauda (Sauria: Gekkonidae) in the Amazon region. Herpetologica 53, 165–79.Google Scholar
Vitt, L. J. and Zani, P. A. (1998). Prey use among sympatric lizard species in lowland rain forest of Nicaragua. J. Trop. Ecol. 14, 537–59.CrossRefGoogle Scholar
Vitt, L. J., Caldwell, J. P., Sartorius, S. S.et al. (2005). Pushing the edge: extended activity as an alternative to risky body temperatures in an herbivorous teiid lizard (Cnemidophorus murinus: Squamata). Funct. Ecol. 19, 152–8.CrossRefGoogle Scholar
Vitt, L. J., Pianka, E. R., Cooper, W. E. Jr. and Schwenk, K. (2003). History and the global ecology of squamate reptiles. Amer. Nat. 162, 44–60.CrossRefGoogle ScholarPubMed
Vitt, L. J., Zani, P. A. and Avila-Pires, T. C. S. (1997). Ecology of the arboreal tropidurid lizard Tropidurus (= Plica) umbra in the Amazon region. Can. J. Zool. 75, 1876–82.CrossRefGoogle Scholar
Vitt, L. J., Zani, P. A. and Espósito, M. C. (1999). Historical ecology of Amazonian lizards: implications for community ecology. Oikos 87, 286–94.CrossRefGoogle Scholar
Wagner, G. P. and Schwenk, K. (2000). Evolutionarily stable configurations: functional integration and the evolution of phenotypic stability. In Evolutionary Biology, Vol. 31, ed. Hecht, M. K., McIntyre, R. J. and Clegg, M. T., pp. 155–217. New York: Kluwer Academic/Plenum Publishers.CrossRefGoogle Scholar
Webb, C. O., Ackerly, D. D., Peek, M. A. and Donoghue, M. J. (2002). Phylogenies and community ecology. Ann. Rev. Ecol. Syst. 33, 475–505.CrossRefGoogle Scholar
Wilhoft, D. C. (1958). Observations on preferred body temperature and feeding habits of some selected tropical iguanas. Herpetologica 14, 161–4.Google Scholar
Winemiller, K. O. and Pianka, E. R. (1990). Organization in natural assemblages of desert lizards and tropical fishes. Ecol. Monogr. 60, 27–55.CrossRefGoogle Scholar
Xue-Feng, X. U., Xue-Jun, C. and Xiang, J. I. (2001). Selected body temperature, thermal tolerance and influence of temperature on food assimilation and locomotor performance in lacertid lizards, Eremias brenchleyi. Zool. Res. 22, 443–5.Google Scholar
Zaidan, F. III and Beaupre, S. J. (2003). Effects of body mass, meal size, fast length, and temperature on specific dynamic action in the Timber Rattlesnake. Physiol. Biochem. Zool. 76, 447–58.CrossRefGoogle ScholarPubMed
Zimmerman, L. C. and Tracy, C. R. (1989). Interactions between the environment and ectothermy and herbivory in reptiles. Physiol. Zool. 62, 374–409.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×