Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-09T09:58:43.313Z Has data issue: false hasContentIssue false

Chapter 21 - Sclerosing Cholangitis in Children

from Section III - Hepatitis and Immune Disorders

Published online by Cambridge University Press:  19 January 2021

Frederick J. Suchy
Affiliation:
University of Colorado, Children’s Hospital Colorado, Aurora
Ronald J. Sokol
Affiliation:
University of Colorado, Children’s Hospital Colorado, Aurora
William F. Balistreri
Affiliation:
Cincinnati Children’s Hospital Medical Center, Cincinnati
Jorge A. Bezerra
Affiliation:
Cincinnati Children’s Hospital Medical Center, Cincinnati
Cara L. Mack
Affiliation:
University of Colorado, Children’s Hospital Colorado, Aurora
Benjamin L. Shneider
Affiliation:
Texas Children’s Hospital, Houston
Get access

Summary

Primary sclerosing cholangitis (PSC) is an idiopathic progressive fibrosing cholangiopathy characterized by chronic inflammation and injury of the intra- and/or extrahepatic bile ducts, leading to fibrosis and cholestasis. Although much work has been done over the last several decades to further our understanding of this disease, the underlying mechanisms of pathogenesis remain elusive. To date, there are no effective therapies, and PSC continues to be a well-recognized cause of end-stage liver disease requiring liver transplantation in adults and children.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Molodecky, NA, Kareemi, H, Parab, R, Barkema, HW, Quan, H, Myers, RP, et al. Incidence of primary sclerosing cholangitis: a systematic review and meta-analysis. Hepatology 2011;53(5):1590–9.CrossRefGoogle ScholarPubMed
Tanaka, A, Takikawa, H. Geoepidemiology of primary sclerosing cholangitis: a critical review. J Autoimmun 2013;46:3540.Google Scholar
Lindkvist, B, Benito de Valle, M, Gullberg, B, Bjornsson, E. Incidence and prevalence of primary sclerosing cholangitis in a defined adult population in Sweden. Hepatology 2010;52(2):571–7.Google Scholar
Card, TR, Solaymani-Dodaran, M, West, J. Incidence and mortality of primary sclerosing cholangitis in the UK: a population-based cohort study. J Hepatol 2008;48(6):939–44.CrossRefGoogle Scholar
Escorsell, A, Pares, A, Rodes, J, Solis-Herruzo, JA, Miras, M, de la Morena, E. Epidemiology of primary sclerosing cholangitis in Spain. Spanish Association for the Study of the Liver. J Hepatol 1994;21(5):787–91.Google Scholar
Kaplan, GG, Laupland, KB, Butzner, D, Urbanski, SJ, Lee, SS. The burden of large and small duct primary sclerosing cholangitis in adults and children: a population-based analysis. Am J Gastroenterol 2007;102(5):1042–9.CrossRefGoogle ScholarPubMed
Deneau, M, Jensen, MK, Holmen, J, Williams, MS, Book, LS, Guthery, SL. Primary sclerosing cholangitis, autoimmune hepatitis, and overlap in Utah children: epidemiology and natural history. Hepatology 2013;58(4):1392–400.CrossRefGoogle ScholarPubMed
Deneau, MR, El-Matary, W, Valentino, PL, Abdou, R, Alqoaer, K, Amin, M, et al. The natural history of primary sclerosing cholangitis in 781 children: a multicenter, international collaboration. Hepatology 2017;66(2):518–27.CrossRefGoogle ScholarPubMed
Kaya, M, Angulo, P, Lindor, KD. Overlap of autoimmune hepatitis and primary sclerosing cholangitis: an evaluation of a modified scoring system. J Hepatol 2000;33(4):537–42.Google Scholar
Abdalian, R, Dhar, P, Jhaveri, K, Haider, M, Guindi, M, Heathcote, EJ. Prevalence of sclerosing cholangitis in adults with autoimmune hepatitis: evaluating the role of routine magnetic resonance imaging. Hepatology 2008;47(3):949–57.Google Scholar
Gregorio, GV, Portmann, B, Karani, J, Harrison, P, Donaldson, PT, Vergani, D, et al. Autoimmune hepatitis/sclerosing cholangitis overlap syndrome in childhood: a 16-year prospective study. Hepatology 2001;33(3):544–53.CrossRefGoogle ScholarPubMed
Bergquist, A, Montgomery, SM, Bahmanyar, S, Olsson, R, Danielsson, A, Lindgren, S, et al. Increased risk of primary sclerosing cholangitis and ulcerative colitis in first-degree relatives of patients with primary sclerosing cholangitis. Clin Gastroenterol Hepatol 2008;6(8):939–43.Google Scholar
Folseraas, T, Melum, E, Rausch, P, Juran, BD, Ellinghaus, E, Shiryaev, A, et al. Extended analysis of a genome-wide association study in primary sclerosing cholangitis detects multiple novel risk loci. J Hepatol 2012;57(2):366–75.Google Scholar
Melum, E, Franke, A, Schramm, C, Weismuller, TJ, Gotthardt, DN, Offner, FA, et al. Genome-wide association analysis in primary sclerosing cholangitis identifies two non-HLA susceptibility loci. Nat Genet 2011;43(1):1719.CrossRefGoogle ScholarPubMed
Liu, JZ, Hov, JR, Folseraas, T, Ellinghaus, E, Rushbrook, SM, Doncheva, NT, et al. Dense genotyping of immune-related disease regions identifies nine new risk loci for primary sclerosing cholangitis. Nat Genet 2013;45(6):670–5.CrossRefGoogle ScholarPubMed
Ellinghaus, D, Folseraas, T, Holm, K, Ellinghaus, E, Melum, E, Balschun, T, et al. Genome-wide association analysis in primary sclerosing cholangitis and ulcerative colitis identifies risk loci at GPR35 and TCF4. Hepatology 2013;58(3):1074–83.Google Scholar
Ellinghaus, D, Jostins, L, Spain, SL, Cortes, A, Bethune, J, Han, B, et al. Analysis of five chronic inflammatory diseases identifies 27 new associations and highlights disease-specific patterns at shared loci. Nat Genet 2016;48(5):510–18.CrossRefGoogle ScholarPubMed
Ji, SG, Juran, BD, Mucha, S, Folseraas, T, Jostins, L, Melum, E, et al. Genome-wide association study of primary sclerosing cholangitis identifies new risk loci and quantifies the genetic relationship with inflammatory bowel disease. Nat Genet 2017;49(2):269–73.Google Scholar
Srivastava, B, Mells, GF, Cordell, HJ, Muriithi, A, Brown, M, Ellinghaus, E, et al. Fine mapping and replication of genetic risk loci in primary sclerosing cholangitis. Scand J Gastroenterol 2012;47(7):820–6.CrossRefGoogle ScholarPubMed
Andersen, IM, Tengesdal, G, Lie, BA, Boberg, KM, Karlsen, TH, Hov, JR. Effects of coffee consumption, smoking, and hormones on risk for primary sclerosing cholangitis. Clin Gastroenterol Hepatol 2014;12(6):1019–28.CrossRefGoogle ScholarPubMed
Eaton, JE, Juran, BD, Atkinson, EJ, Schlicht, EM, Xie, X, de Andrade, M, et al. A comprehensive assessment of environmental exposures among 1000 North American patients with primary sclerosing cholangitis, with and without inflammatory bowel disease. Aliment Pharmacol Ther 2015;41(10):980–90.Google Scholar
Sabino, J, Vieira-Silva, S, Machiels, K, Joossens, M, Falony, G, Ballet, V, et al. Primary sclerosing cholangitis is characterised by intestinal dysbiosis independent from IBD. Gut 2016;65(10):1681–9.Google Scholar
Rossen, NG, Fuentes, S, Boonstra, K, D’Haens, GR, Heilig, HG, Zoetendal, EG, et al. The mucosa-associated microbiota of PSC patients is characterized by low diversity and low abundance of uncultured Clostridiales II. J Crohns Colitis 2015;9(4):342–8.Google Scholar
Iwasawa, K, Suda, W, Tsunoda, T, Oikawa-Kawamoto, M, Umetsu, S, Inui, A, et al. Characterisation of the faecal microbiota in Japanese patients with paediatric-onset primary sclerosing cholangitis. Gut 2017;66(7):1344–6.CrossRefGoogle ScholarPubMed
Kummen, M, Holm, K, Anmarkrud, JA, Nygard, S, Vesterhus, M, Hoivik, ML, et al. The gut microbial profile in patients with primary sclerosing cholangitis is distinct from patients with ulcerative colitis without biliary disease and healthy controls. Gut 2017;66(4):611–19.Google Scholar
Hov, JR, Karlsen, TH. The microbiome in primary sclerosing cholangitis: current evidence and potential concepts. Semin Liver Dis 2017;37(4):314–31.Google Scholar
Quraishi, MN, Sergeant, M, Kay, G, Iqbal, T, Chan, J, Constantinidou, C, et al. The gut-adherent microbiota of PSC-IBD is distinct to that of IBD. Gut 2017;66(2):386–8.Google Scholar
Nakamoto, N, Sasaki, N, Aoki, R, Miyamoto, K, Suda, W, Teratani, T, et al. Gut pathobionts underlie intestinal barrier dysfunction and liver T helper 17 cell immune response in primary sclerosing cholangitis. Nat Microbiol 2019;4(3):492503.Google Scholar
Grant, AJ, Lalor, PF, Salmi, M, Jalkanen, S, Adams, DH. Homing of mucosal lymphocytes to the liver in the pathogenesis of hepatic complications of inflammatory bowel disease. Lancet 2002;359(9301):150–7.Google Scholar
Eksteen, B, Grant, AJ, Miles, A, Curbishley, SM, Lalor, PF, Hubscher, SG, et al. Hepatic endothelial CCL25 mediates the recruitment of CCR9+ gut-homing lymphocytes to the liver in primary sclerosing cholangitis. J Exp Med 2004;200(11):1511–17.Google Scholar
McNab, G, Reeves, JL, Salmi, M, Hubscher, S, Jalkanen, S, Adams, DH. Vascular adhesion protein 1 mediates binding of T cells to human hepatic endothelium. Gastroenterology 1996;110(2):522–8.Google Scholar
Deutschmann, K, Reich, M, Klindt, C, Droge, C, Spomer, L, Haussinger, D, et al. Bile acid receptors in the biliary tree: TGR5 in physiology and disease. Biochim Biophys Acta Mol Basis Dis 2018;1864(4 Pt B):1319–25.CrossRefGoogle ScholarPubMed
Masyuk, TV, Masyuk, AI, Lorenzo Pisarello, M, Howard, BN, Huang, BQ, Lee, PY, et al. TGR5 contributes to hepatic cystogenesis in rodents with polycystic liver diseases through cyclic adenosine monophosphate/Galphas signaling. Hepatology 2017;66(4):1197–218.Google Scholar
Meng, L, Quezada, M, Levine, P, Han, Y, McDaniel, K, Zhou, T, et al. Functional role of cellular senescence in biliary injury. Am J Pathol 2015;185(3):602–9.Google Scholar
Lazaridis, KN, LaRusso, NF. Primary sclerosing cholangitis. N Engl J Med 2016;375(12):1161–70.Google Scholar
Lunder, AK, Hov, JR, Borthne, A, Gleditsch, J, Johannesen, G, Tveit, K, et al. Prevalence of sclerosing cholangitis detected by magnetic resonance cholangiography in patients with long-term inflammatory bowel disease. Gastroenterology 2016;151(4):660–9 e4.CrossRefGoogle ScholarPubMed
Tischendorf, JJ, Hecker, H, Kruger, M, Manns, MP, Meier, PN. Characterization, outcome, and prognosis in 273 patients with primary sclerosing cholangitis: a single center study. Am J Gastroenterol 2007;102(1):107–14.Google Scholar
Feldstein, AE, Perrault, J, El-Youssif, M, Lindor, KD, Freese, DK, Angulo, P. Primary sclerosing cholangitis in children: a long-term follow-up study. Hepatology 2003;38(1):210–17.Google Scholar
Miloh, T, Arnon, R, Shneider, B, Suchy, F, Kerkar, N. A retrospective single-center review of primary sclerosing cholangitis in children. Clin Gastroenterol Hepatol 2009;7(2):239–45.CrossRefGoogle ScholarPubMed
Loftus, EV Jr., Harewood, GC, Loftus, CG, Tremaine, WJ, Harmsen, WS, Zinsmeister, AR, et al. PSC-IBD: a unique form of inflammatory bowel disease associated with primary sclerosing cholangitis. Gut 2005;54(1):91–6.Google Scholar
Boonstra, K, van Erpecum, KJ, van Nieuwkerk, KM, Drenth, JP, Poen, AC, Witteman, BJ, et al. Primary sclerosing cholangitis is associated with a distinct phenotype of inflammatory bowel disease. Inflamm Bowel Dis 2012;18(12):2270–6.CrossRefGoogle ScholarPubMed
Lundqvist, K, Broome, U. Differences in colonic disease activity in patients with ulcerative colitis with and without primary sclerosing cholangitis: a case control study. Dis Colon Rectum 1997;40(4):451–6.Google Scholar
Aitola, P, Matikainen, M, Mattila, J, Tomminen, T, Hiltunen, KM. Chronic inflammatory changes in the pouch mucosa are associated with cholangitis found on perioperative liver biopsy specimens at restorative proctocolectomy for ulcerative colitis. Scand J Gastroenterol 1998;33(3):289–93.Google Scholar
Shiau, H, Ihekweazu, FD, Amin, M, Fofanova, T, Miloh, T, Kellermayer, R. Unique inflammatory bowel disease phenotype of pediatric primary sclerosing cholangitis: a single-center study. J Pediatr Gastroenterol Nutr 2017;65(4):404–9.Google Scholar
Faubion, WA Jr., Loftus, EV, Sandborn, WJ, Freese, DK, Pediatric, Perrault J. “PSC-IBD”: a descriptive report of associated inflammatory bowel disease among pediatric patients with PSC. J Pediatr Gastroenterol Nutr 2001;33(3):296300.Google Scholar
Ricciuto, A, Fish, J, Carman, N, Walters, TD, Church, PC, Hansen, BE, et al. Symptoms do not correlate with findings from colonoscopy in children with inflammatory bowel disease and primary sclerosing cholangitis. Clin Gastroenterol Hepatol 2018;16(7):1098–105 e1.Google Scholar
Stanich, PP, Bjornsson, E, Gossard, AA, Enders, F, Jorgensen, R, Lindor, KD. Alkaline phosphatase normalization is associated with better prognosis in primary sclerosing cholangitis. Dig Liver Dis 2011;43(4):309–13.CrossRefGoogle ScholarPubMed
el-Shabrawi, M, Wilkinson, ML, Portmann, B, Mieli-Vergani, G, Chong, SK, Williams, R, et al. Primary sclerosing cholangitis in childhood. Gastroenterology 1987;92(5 Pt 1):1226–35.Google Scholar
Debray, D, Pariente, D, Urvoas, E, Hadchouel, M, Bernard, O. Sclerosing cholangitis in children. J Pediatr 1994;124(1):4956.CrossRefGoogle ScholarPubMed
Wilschanski, M, Chait, P, Wade, JA, Davis, L, Corey, M, St Louis, P, et al. Primary sclerosing cholangitis in 32 children: clinical, laboratory, and radiographic features, with survival analysis. Hepatology 1995;22(5):1415–22.Google Scholar
Batres, LA, Russo, P, Mathews, M, Piccoli, DA, Chuang, E, Ruchelli, E. Primary sclerosing cholangitis in children: a histologic follow-up study. Pediatr Dev Pathol 2005;8(5):568–76.Google Scholar
Hov, JR, Boberg, KM, Karlsen, TH. Autoantibodies in primary sclerosing cholangitis. World J Gastroenterol 2008;14(24):3781–91.Google Scholar
Dave, M, Elmunzer, BJ, Dwamena, BA, Higgins, PD. Primary sclerosing cholangitis: meta-analysis of diagnostic performance of MR cholangiopancreatography. Radiology 2010;256(2):387–96.Google Scholar
Ferrara, C, Valeri, G, Salvolini, L, Giovagnoni, A. Magnetic resonance cholangiopancreatography in primary sclerosing cholangitis in children. Pediatr Radiol 2002;32(6):413–17.CrossRefGoogle ScholarPubMed
Majoie, CB, Reeders, JW, Sanders, JB, Huibregtse, K, Jansen, PL. Primary sclerosing cholangitis: a modified classification of cholangiographic findings. AJR Am J Roentgenol 1991;157(3):495–7.Google Scholar
Ponsioen, CY, Vrouenraets, SM, Prawirodirdjo, W, Rajaram, R, Rauws, EA, Mulder, CJ, et al. Natural history of primary sclerosing cholangitis and prognostic value of cholangiography in a Dutch population. Gut 2002;51(4):562–6.Google Scholar
Cotter, JM, Browne, LP, Capocelli, KE, McCoy, A, Mack, CL. Lack of correlation of liver tests with fibrosis stage at diagnosis in pediatric primary sclerosing cholangitis. J Pediatr Gastroenterol Nutr 2018;66(2):227–33.CrossRefGoogle ScholarPubMed
Nakanuma, Y, Harada, K, Katayanagi, K, Tsuneyama, K, Sasaki, M. Definition and pathology of primary sclerosing cholangitis. J Hepatobiliary Pancreat Surg 1999;6(4):333–42.Google Scholar
Wiesner, RH, Grambsch, PM, Dickson, ER, Ludwig, J, MacCarty, RL, Hunter, EB, et al. Primary sclerosing cholangitis: natural history, prognostic factors and survival analysis. Hepatology 1989;10(4):430–6.Google Scholar
Ludwig, J. Surgical pathology of the syndrome of primary sclerosing cholangitis. Am J Surg Pathol 1989;13(Suppl 1):43–9.Google Scholar
Ishak, K, Baptista, A, Bianchi, L, Callea, F, De Groote, J, Gudat, F, et al. Histological grading and staging of chronic hepatitis. J Hepatol 1995;22(6):696–9.CrossRefGoogle ScholarPubMed
Nakanuma, Y, Zen, Y, Harada, K, Sasaki, M, Nonomura, A, Uehara, T, et al. Application of a new histological staging and grading system for primary biliary cirrhosis to liver biopsy specimens: interobserver agreement. Pathol Int 2010;60(3):167–74.Google Scholar
de Vries, EM, Verheij, J, Hubscher, SG, Leeflang, MM, Boonstra, K, Beuers, U, et al. Applicability and prognostic value of histologic scoring systems in primary sclerosing cholangitis. J Hepatol 2015;63(5):1212–19.Google Scholar
de Vries, EM, de Krijger, M, Farkkila, M, Arola, J, Schirmacher, P, Gotthardt, D, et al. Validation of the prognostic value of histologic scoring systems in primary sclerosing cholangitis: an international cohort study. Hepatology 2017;65(3):907–19.Google Scholar
Aadland, E, Schrumpf, E, Fausa, O, Elgjo, K, Heilo, A, Aakhus, T, et al. Primary sclerosing cholangitis: a long-term follow-up study. Scand J Gastroenterol 1987;22(6):655–64.CrossRefGoogle ScholarPubMed
Farrant, JM, Hayllar, KM, Wilkinson, ML, Karani, J, Portmann, BC, Westaby, D, et al. Natural history and prognostic variables in primary sclerosing cholangitis. Gastroenterology 1991;100(6):1710–17.Google Scholar
Broome, U, Olsson, R, Loof, L, Bodemar, G, Hultcrantz, R, Danielsson, A, et al. Natural history and prognostic factors in 305 Swedish patients with primary sclerosing cholangitis. Gut 1996;38(4):610–15.CrossRefGoogle ScholarPubMed
Chapman, RW, Arborgh, BA, Rhodes, JM, Summerfield, JA, Dick, R, Scheuer, PJ, et al. Primary sclerosing cholangitis: a review of its clinical features, cholangiography, and hepatic histology. Gut 1980;21(10):870–7.CrossRefGoogle ScholarPubMed
Weismuller, TJ, Trivedi, PJ, Bergquist, A, Imam, M, Lenzen, H, Ponsioen, CY, et al. Patient age, sex, and inflammatory bowel disease phenotype associate with course of primary sclerosing cholangitis. Gastroenterology 2017;152(8):1975–84 e8.CrossRefGoogle ScholarPubMed
Bjornsson, E, Boberg, KM, Cullen, S, Fleming, K, Clausen, OP, Fausa, O, et al. Patients with small duct primary sclerosing cholangitis have a favourable long term prognosis. Gut 2002;51(5):731–5.Google Scholar
Scalori, A, Heneghon, MA, Hadzic, ND, Vergani, D, Mieli-Vergani, G. Outcome and survival in childhood onset autoimmune sclerosing cholangitis and autoimmune hepatitis; a 13 years follow-up study. Hepatology 2007;95:1525.Google Scholar
Lindor, KD. Ursodiol for primary sclerosing cholangitis. Mayo Primary Sclerosing Cholangitis-Ursodeoxycholic Acid Study Group. N Engl J Med 1997;336(10):691–5.Google Scholar
van Hoogstraten, HJ, Wolfhagen, FH, van de Meeberg, PC, Kuiper, H, Nix, GA, Becx, MC, et al. Ursodeoxycholic acid therapy for primary sclerosing cholangitis: results of a 2-year randomized controlled trial to evaluate single versus multiple daily doses. J Hepatol 1998;29(3):417–23.CrossRefGoogle ScholarPubMed
Lindor, KD, Kowdley, KV, Luketic, VA, Harrison, ME, McCashland, T, Befeler, AS, et al. High-dose ursodeoxycholic acid for the treatment of primary sclerosing cholangitis. Hepatology 2009;50(3):808–14.Google Scholar
Benedetti, A, Alvaro, D, Bassotti, C, Gigliozzi, A, Ferretti, G, La Rosa, T, et al. Cytotoxicity of bile salts against biliary epithelium: a study in isolated bile ductule fragments and isolated perfused rat liver. Hepatology 1997;26(1):921.CrossRefGoogle ScholarPubMed
Fickert, P, Zollner, G, Fuchsbichler, A, Stumptner, C, Weiglein, AH, Lammert, F, et al. Ursodeoxycholic acid aggravates bile infarcts in bile duct-ligated and Mdr2 knockout mice via disruption of cholangioles. Gastroenterology 2002;123(4):1238–51.Google Scholar
Rodrigues, CM, Fan, G, Ma, X, Kren, BT, Steer, CJ. A novel role for ursodeoxycholic acid in inhibiting apoptosis by modulating mitochondrial membrane perturbation. J Clin Invest 1998;101(12):2790–9.Google Scholar
Triantos, CK, Koukias, NM, Nikolopoulou, VN, Burroughs, AK. Meta-analysis: ursodeoxycholic acid for primary sclerosing cholangitis. Aliment Pharmacol Ther 2011;34(8):901–10.Google Scholar
Poropat, G, Giljaca, V, Stimac, D, Gluud, C. Bile acids for primary sclerosing cholangitis. Cochrane Database Syst Rev 2011;1:CD003626.Google Scholar
Gilger, MA, Gann, ME, Opekun, AR, Gleason, WA Jr. Efficacy of ursodeoxycholic acid in the treatment of primary sclerosing cholangitis in children. J Pediatr Gastroenterol Nutr 2000;31(2):136–41.Google Scholar
Deneau, MR, Mack, C, Abdou, R, Amin, M, Amir, A, Auth, M, et al. Gamma glutamyltransferase reduction is associated with favorable outcomes in pediatric primary sclerosing cholangitis. Hepatol Commun 2018;2(11):1369–78.Google Scholar
Cox, KL, Cox, KM. Oral vancomycin: treatment of primary sclerosing cholangitis in children with inflammatory bowel disease. J Pediatr Gastroenterol Nutr 1998;27(5):580–3.Google Scholar
Davies, YK, Cox, KM, Abdullah, BA, Safta, A, Terry, AB, Cox, KL. Long-term treatment of primary sclerosing cholangitis in children with oral vancomycin: an immunomodulating antibiotic. J Pediatr Gastroenterol Nutr 2008;47(1):61–7.Google Scholar
Tabibian, JH, Weeding, E, Jorgensen, RA, Petz, JL, Keach, JC, Talwalkar, JA, et al. Randomised clinical trial: vancomycin or metronidazole in patients with primary sclerosing cholangitis – a pilot study. Aliment Pharmacol Ther 2013;37(6):604–12.Google Scholar
Rahimpour, S, Nasiri-Toosi, M, Khalili, H, Ebrahimi-Daryani, N, Nouri-Taromlou, MK, Azizi, Z. A triple blinded, randomized, placebo-controlled clinical trial to evaluate the efficacy and safety of oral vancomycin in primary sclerosing cholangitis: a pilot study. J Gastrointestin Liver Dis 2016;25(4):457–64.Google Scholar
Abarbanel, DN, Seki, SM, Davies, Y, Marlen, N, Benavides, JA, Cox, K, et al. Immunomodulatory effect of vancomycin on Treg in pediatric inflammatory bowel disease and primary sclerosing cholangitis. J Clin Immunol 2013;33(2):397406.Google Scholar
Lindor, KD, Wiesner, RH, Colwell, LJ, Steiner, B, Beaver, S, LaRusso, NF. The combination of prednisone and colchicine in patients with primary sclerosing cholangitis. Am J Gastroenterol 1991;86(1):5761.Google Scholar
Van Thiel, DH, Carroll, P, Abu-Elmagd, K, Rodriguez-Rilo, H, Irish, W, McMichael, J, et al. Tacrolimus (FK 506), a treatment for primary sclerosing cholangitis: results of an open-label preliminary trial. Am J Gastroenterol 1995;90(3):455–9.Google Scholar
Angulo, P, Batts, KP, Jorgensen, RA, LaRusso, NA, Lindor, KD. Oral budesonide in the treatment of primary sclerosing cholangitis. Am J Gastroenterol 2000;95(9):2333–7.Google Scholar
Epstein, MP, Kaplan, MM. A pilot study of etanercept in the treatment of primary sclerosing cholangitis. Dig Dis Sci 2004;49(1):14.Google Scholar
Talwalkar, JA, Angulo, P, Keach, JC, Petz, JL, Jorgensen, RA, Lindor, KD. Mycophenolate mofetil for the treatment of primary sclerosing cholangitis. Am J Gastroenterol 2005;100(2):308–12.Google Scholar
Peng, X, Luo, X, Hou, JY, Wu, SY, Li, LZ, Zheng, MH, et al. Immunosuppressive agents for the treatment of primary sclerosing cholangitis: a systematic review and meta-analysis. Dig Dis 2017;35(5):478–85.CrossRefGoogle ScholarPubMed
Lynch, KD, Chapman, RW, Keshav, S, Montano-Loza, AJ, Mason, AL, Kremer, AE, et al. Effects of vedolizumab in patients with primary sclerosing cholangitis and inflammatory bowel diseases. Clin Gastroenterol Hepatol 2019; S1542–3565(19)30523-3. Doi: 10.1016/j.cgh.2019.05.013 [Epub ahead of print].Google Scholar
Smolka, V, Karaskova, E, Tkachyk, O, Aiglova, K, Ehrmann, J, Michalkova, K, et al. Long-term follow-up of children and adolescents with primary sclerosing cholangitis and autoimmune sclerosing cholangitis. Hepatobiliary Pancreat Dis Int 2016;15(4):412–18.CrossRefGoogle ScholarPubMed
Muir, AJ, Levy, C, Janssen, HLA, Montano-Loza, AJ, Shiffman, ML, Caldwell, S, et al. Simtuzumab for primary sclerosing cholangitis: phase 2 study results with insights on the natural history of the disease. Hepatology 2019;69(2):684–98.Google Scholar
Graziadei, IW, Wiesner, RH, Marotta, PJ, Porayko, MK, Hay, JE, Charlton, MR, et al. Long-term results of patients undergoing liver transplantation for primary sclerosing cholangitis. Hepatology 1999;30(5):1121–7.Google Scholar
Miloh, T, Anand, R, Yin, W, Vos, M, Kerkar, N, Alonso, E, et al. Pediatric liver transplantation for primary sclerosing cholangitis. Liver Transpl 2011;17(8):925–33.Google Scholar
Steenstraten, IC, Sebib Korkmaz, K, Trivedi, PJ, Inderson, A, van Hoek, B, Rodriguez Girondo, MDM, et al. Systematic review with meta-analysis: risk factors for recurrent primary sclerosing cholangitis after liver transplantation. Aliment Pharmacol Ther 2019;49(6):636–43.Google Scholar
Trivedi, PJ, Reece, J, Laing, RW, Slaney, E, Cooney, R, Gunson, BK, et al. The impact of ileal pouch-anal anastomosis on graft survival following liver transplantation for primary sclerosing cholangitis. Aliment Pharmacol Ther 2018;48(3):322–32.Google Scholar
Soufi, N, Bazerbachi, F, Deneau, M. Post-transplant disease recurrence in pediatric PSC. Curr Gastroenterol Rep 2018;20(9):44.Google Scholar
Gossard, AA, Angulo, P, Lindor, KD. Secondary sclerosing cholangitis: a comparison to primary sclerosing cholangitis. Am J Gastroenterol 2005;100(6):1330–3.Google Scholar
Suskind, DL, Finn, L, Wahbeh, G, Christie, D, Horslen, S. A child with Kabuki syndrome and primary sclerosing cholangitis successfully treated with ursodiol and cholestryamine. J Pediatr Gastroenterol Nutr 2006;43(4):542–4.Google Scholar
Hadj-Rabia, S, Baala, L, Vabres, P, Hamel-Teillac, D, Jacquemin, E, Fabre, M, et al. Claudin-1 gene mutations in neonatal sclerosing cholangitis associated with ichthyosis: a tight junction disease. Gastroenterology 2004;127(5):1386–90.Google Scholar
Grammatikopoulos, T, Sambrotta, M, Strautnieks, S, Foskett, P, Knisely, AS, Wagner, B, et al. Mutations in DCDC2 (doublecortin domain containing protein 2) in neonatal sclerosing cholangitis. J Hepatol 2016;65(6):1179–87.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×