Published online by Cambridge University Press: 05 May 2022
In this chapter, we continue the study of the resolvent set and the i/s/o resolvent matrix of an i/s/o node Σ begun in Chapter 5. In particular, we show that if Σ is resolvable, i.e., if Σ has a nonempty resolvent set ρ(Σ), then the main operator A of Σ is also resolvable and ρ(Σ) = ρ(A). Moreover, the i/s/o resolvent matrix is analytic and satisfies the i/s/o resolvent identity in ρ(Σ). Even more interesting is the converse claim: every i/s/o pseudoresolvent is a restriction of the i/s/o resolvent matrix of a unique i/s/o node Σ, where we by an i/s/o pseudo-resolvent mean a locally bounded block matrix operator-valued function that satisfies the i/s/o resolvent identity in some open subset Ω of C. In particular, every i/s/o pseudo-resolvent is analytic. Our class of regular resolvable i/s/o nodes is known from before in the literature with more complicated definitions and different names (e.g., in Staffans, 2005; systems that belong to this class are called “operator nodes”). At the end of this chapter, we continue the study of the connection between the characteristic bundles of a s/s system Σ and the i/s/o resolvent matrices of i/s/o representations of Σ and show that these characteristic bundles are analytic in ρ(Σ).
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.