Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-16T18:05:19.526Z Has data issue: false hasContentIssue false

4 - Stability and stabilization

Published online by Cambridge University Press:  07 May 2010

Jonathan R. Partington
Affiliation:
University of Leeds
Get access

Summary

The theme of this chapter is control theory. We discuss what it means to say that a linear system is stable, and then present some of the themes of H control theory, presented from an operator-theoretic point of view.

One of the main aims of modern control theory is to achieve robustness, that is, the stabilization of a system subject to perturbations, measurement errors, and the like. In order to study this we require a measure of the distance between systems, and it turns out that the operator gap is the “correct” one to use. Another way of measuring distances, the so-called chordal metric between meromorphic functions, turns out to be closely related.

Stability theory

The basic signal spaces in this chapter are vector-valued L2(0, ∞) or ℓ2(ℤ+) spaces, and we are concerned with shift-invariant input–output operators T. Our first result shows that, if the domain of such an operator is the whole space, then it is necessarily bounded (a result in automatic continuity theory).

Theorem 4.1.1Let T: L2(0, ∞; ℂm) → L2(0, ∞; ℂp) be an operator commuting with the right shift Rλfor some λ > 0. Then T is bounded.

Proof: It is sufficient to prove the result for m = p = 1, since in general T may be represented by a p × m matrix of shift-invariant operators from L2(0, ∞) to itself.

Type
Chapter
Information
Linear Operators and Linear Systems
An Analytical Approach to Control Theory
, pp. 63 - 88
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×