Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-09T21:43:07.632Z Has data issue: false hasContentIssue false

3 - An Overview of Linear Logic Programming

Published online by Cambridge University Press:  17 May 2010

Dale Miller
Affiliation:
INRIA - Futurs & Laboratoire d'Informatique LIX, École Polytechnique
Thomas Ehrhard
Affiliation:
Institut de Mathématiques de Luminy, Marseille
Jean-Yves Girard
Affiliation:
Institut de Mathématiques de Luminy, Marseille
Paul Ruet
Affiliation:
Institut de Mathématiques de Luminy, Marseille
Philip Scott
Affiliation:
University of Ottawa
Get access

Summary

Abstract

Logic programming can be given a foundation in sequent calculus by viewing computation as the process of building a cut-free sequent proof bottom-up. The first accounts of logic programming as proof search were given in classical and intuitionistic logic. Given that linear logic allows richer sequents and richer dynamics in the rewriting of sequents during proof search, it was inevitable that linear logic would be used to design new and more expressive logic programming languages. We overview how linear logic has been used to design such new languages and describe briefly some applications and implementation issues for them.

Introduction

It is now commonplace to recognize the important role of logic in the foundations of computer science. When a major new advance is made in our understanding of logic, we can thus expect to see that advance ripple into many areas of computer science. Such rippling has been observed during the years since the introduction of linear logic by Girard in 1987. Since linear logic embraces computational themes directly in its design, it often allows direct and declarative approaches to computational and resource sensitive specifications. Linear logic also provides new insights into the many computational systems based on classical and intuitionistic logics since it refines and extends these logics.

There are two broad approaches by which logic, via the theory of proofs, is used to describe computation. One approach is the proof reduction paradigm, which can be seen as a foundation for functional programming. Here, programs are viewed as natural deduction or sequent calculus proofs and computation is modeled using proof normalization.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×